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Supporting Methods

Estimating Eq. 4 for a step function Repeating the pairwise comparison in Eq. 5 for all
points in Si and Mi returns the folllowing i−1 and T−i distributions to be satisfied respectively:
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da:z terms in Eq. 9 and Eq. 10 are independent of each other, so the probability of selecting
ti in Eq. 4 can be separated into two integrals as in:
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where p
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L(ti, 1) > L(tj , 1), ∀j ∈ Si

)
is the probability of the likelihood defined by ti being

higher than the likelihood of all other points that are smaller than ti. da:z variables for each
time point ta in Si have acyclic dependencies between them, da:z variables depend only on the
variables of time points between ta and ti−1. Due to the existence of this ordering between
variables, p
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can be expressed by the following nested integral:
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where d̂i−1 =
∑nr

z=1 di−1:z is a variable for summation of all repeats for the i− 1’th time point.

Each d̂j is distributed gaussian with mean mj+1
j = nr

∑j
m=j, tm≥sg 1 and standard deviation

σj+1
j = σ

√
nr. The gaussians are independent of each other over interval [−∞, nr2 ], so this

becomes:
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where A =
∏

j∈Si Φ(nr2 ,m
j+1
j , σj+1

j ). Eq. 13 can be efficiently estimated by Gaussian quadrature

or by MCMC [1]. We use similar derivation to estimate p
(
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)
. For large

T d, exact estimation of nested multidimensional integral in Eq. 11 can be complicated so we
instead estimate its upper and lower bounds as below.

Estimating upper and lower bounds Exact estimation of nested multidimensional integral
in Eq. 11 can be complicated for large T d. In this case, we can rather estimate its lower and upper
bounds quite efficiently.

∏
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pairwise terms are not originally independent. We can estimate an upper bound of p
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as follows: Let D(n) be upper bound of the integral defined only by the
topmost n equations in (9). By approximating the multi-dimensional integral symmetrically,
upper bound can be estimated recursively by:
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where U(n) is upper bound of the integral defined only by the topmost n − i + 1 equations
in (10), and base case is U(i) = 1 − Ai:i+1 = 1 − Φ(nr2 ,m

i+1
i , σi+1

i ). Solution of this recursion



is U(T − 1) =
∏T−1
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(T−i)! . Let Id be the vector points in T d ordered by their absolute
distance from sg. Once upper bound of Eq. 11 is estimated, we can estimate the corresponding
lower bound of E(fmis) by Algorithm 1. Upper bound of E(fmis) can be estimated similarly by
the same algorithm where we use lower bound of Eq. 11 instead of its upper bound estimation
in Lines 5− 9.

Algorithm 1 Table 1 related to Methods: An algorithm for computing a lower bound for
E(fmis).

1: r = 1, d = 0 {r is the remaining probability mass, d is the expected distance}
2: Let I be an ordering of the points in T w.r.t. their distance from sg
3: while I 6= ∅ do
4: ti ← first point in I; I = I \ ti
5: lbi = 1
6: for tj ∈ I do
7: cj = P (L(ti, 1) > L(tj , 1))
8: lbi = lbicj
9: end for

10: d = d+ rlbi(|ti − sg|)
11: r = r(1− lbi)
12: end while
13: return d

Supporting Figure

(a) Light/Dark (LD) (b) Constant dark (DD)

Figure S1, related to Figure 4: Using piecewise linear curves to compare sampling strategies over all genes
exhibiting circadian and diel rhythms. Genes sorted by absolute MSE difference between Dense and Repeat2
when using 8 experiments over LD and DD data respectively. Similar to Figure 7 which performs the same
comparison using splines we see that Dense generally greatly outperforms Repeaton this data.

Data S1. Software Source Code, Related to Experimental Procedures
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