
	

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Strains, Plasmids, and Oligonucleotides 
The yeast strain BY4741 (MATa his3∆1, leu2∆0, met15∆0, ura3∆0) was the parent strain for all linear 
transformations, except for constructs with the Renilla luciferase-codon insert-GFP fusion reporter where 
the parent strain was AW765 (BY4741, nmd2Δ::kanMX)(Wolf and Grayhack, 2015). Plasmids used in this 
study are reported in Supplementary Table S7. The plasmid vector pEAW315, in which PGAL1 controls 
transcription of a GLN4 NTD-GFP fusion, is a variation on plasmids previously described (Wolf and 
Grayhack, 2015). The GLN4(1-99) fragment was obtained by PCR amplification of pJE1012a (Grant et al., 
2012) using oligonucleotides OW377 and OW378, and was then inserted into the Pac1 site of pEKD1024 
(Dean and Grayhack, 2012) using LIC cloning, which regenerated the Pac1 site as well as a LIC site. Thus, 
all insertions of codon sequences into the GLN4-GFP fusion protein were performed via LIC cloning of 
two annealed oligos into pEAW315. Oligonucleotides employed in this study are reported in 
Supplementary Table S6. 
 
Library Construction and Fluorescence-Activated Cell Sorting 
The RNA-ID GFP construct is a fusion protein encoding a site for 3C protease, an HA epitope, and His6, 
followed by superfolder GFP. The (NNN)3 and (VNN)3 libraries of GFP variants in E. coli were derived 
from those made by Dean and Grayhack (Dean and Grayhack, 2012). DNA was obtained from E. coli 
libraries (1 ml frozen aliquots) grown at 37 °C to saturation in 100 ml LB+amp, using a QiaFilter kit 
(Qiagen). For the (NNN)3  and (VNN)3 libraries, 1900 ng and 1950 ng of StuI cut and gel-purified linear 
DNA were transformed into 10 ml BY4741 yeast cells, which were plated on four plates of selective media 
(SD-met) to obtain 73,068 [(NNN)3 Library 1], 50,532 [(NNN)3 Library 2] and 77,200 [(VNN)3 Library] 
yeast transformants, as described (Guy et al., 2014). For each transformation, transformants from four 
plates were pooled by scraping the plates into YP + 2% raffinose + 8% DMSO and saved at -80 °C. 
Aliquots were grown for 3.5 generations in selective media (S-met + 2% raffinose) at 30 °C. Then cells 
were diluted into 25 ml YP + 80 mg/L Ade + 2% raffinose + 2% galactose media at a starting OD600 of 0.08 
and grown for 3.5 generations at 30 °C, diluted into another 50 ml at a starting OD600 of 0.05, grown 
overnight for 5 generations, and diluted into 10 ml at a starting OD600 of 0.3, followed by another 4h of 
growth at 30 °C. Fluorescence-activated cell sorting (FACS) of ~3 million to ~9.5 million cells was 
performed as previously described (Dean and Grayhack, 2012). 
 
Quality Filtering of GFP Library Sequences 
We used PRINSEQ (Schmieder and Edwards, 2011) to trim reads and require that each of the 9 variable 
base calls had a quality score of at least Q30. We also applied a read depth cutoff based on the maximum 
number of possible variants in each bin (the total number of cells sorted).  

To ensure a dataset of only the highest-quality variant expression scores, we applied a minimum 
threshold for total number of variant read counts across FACS bin samples. For the (NNN)3 libraries, we 
determined these thresholds empirically, based on the drop in stop codon-containing variants with a high 
proportion of spurious, high-expression bin counts. This threshold was 30 read counts for (NNN)3 Library 1 
variants, and 60 read counts for (NNN)3 Library 2 variants.  We then used stop codon-containing variants 
with reads above these thresholds to estimate the average degree of spread into distant fluorescent bins. We 
removed variants with bimodal-like distributions, where the variant had more than an average spread in 
both the background (no expression) and the high expression bin. These bimodal-like variants constituted 
4% to 5% of each library. For the (VNN)3 Library, we imposed the stricter of each (NNN)3 Library’s 
threshold values. Furthermore, we removed any (VNN)3 Library variants with a “T” base call in the first 
nucleotide position of a codon. Variants with ≥ 75% of reads in the background bin were removed from all 
libraries.  

 
GFPSEQ and syn-GFPSEQ Expression Scores 
We used the median GFP fluorescence value of each FACS bin and the proportion of variant read counts in 
each bin to calculate a mean expression score (GFPSEQ

 ) for each 9-base sequence variant, relative to 100% 
high bin expression.  After checking for a high degree of correlation between libraries (Figure S1A), we 
combined the variant data from each library. For identical sequences measured in separate FACS libraries, 
we treated each library’s measurement as a biological replicate and took the average. To obtain syn-GFPSEQ 
scores we normalized to the highest GFPSEQ score among a set of synonymous variants. If there were no 



	

synonymous variants, or if the highest GFPSEQ fell below the mean of all scores (0.9547), then these 
sequences were not included in the downstream analysis. 
 
Heatmap Generation 
The heatmap shows permutation p-values for enrichment of 6-mers in low expression variants at each of 
the four possible 6-mer positions in the 9-base variable region. It includes all 6-mers that have a 
permutation p-value ≤ 0.001 at one or more of the four positions and numeric p-values at all four positions. 
Fifty-seven significant sequences with missing data at one or more of the positions are not plotted (Table 
S3). Most of these 6-mers (79%) had a 3-nucleotide stop codon sequence in one of the reading frames. We 
clustered and plotted the data using pheatmap package in R.  
 
RNA Structure Prediction and Reduced Structure Subset 
To assess RNA structure across all 35,811 sequence variants of our library, we found the global free energy 
(ΔG) for each variant and compared local, paired nucleotide probabilities between synonymous sequences 
in a manner similar to Goodman et al. (Goodman et al., 2013). We used NUPACK pairs to make ΔG and 
paired nucleotide predictions (Zadeh et al., 2011). We ran these calculations at 30 ºC for a 175 base 
window, from the transcription start site (-74 from the start codon) through the 101st base in the open 
reading frame. NUPACK computes the pair probability between each nucleotide pair combination across 
the length of the sequence window. Then it estimates the probability that a given position will be unpaired. 
Taking NUPACK’s unpaired estimate for each position in a variant, we calculated the mean probability 
that a position would be unpaired within sliding windows of 10 bases and subtracted from 1 to arrive at 
mean paired nucleotide probability for each window.  
 We then identified windows where the mean paired nucleotide probabilities differed between 
synonymous sequences. To identify these windows, for each window position and each variant, we took the 
ratio of probabilities between the window in the variant sequence and the same window position in a 
synonymous reference sequence. This ratio yielded the relative paired nucleotide probability for each 
window. To evaluate whether structure may contribute to synonymous expression differences, for each 
window position we found the Spearman rank correlation between relative paired nucleotide probabilities 
and syn-GFPSEQ (Figure S1C).  

To identify a subset of variants with similar degrees of structure, we first identified all window 
positions, after the translational start, where relative paired nucleotide probabilities had a significant 
negative correlation with expression (p-value < 0.001; positions: 1-10, 17-35, 51-54, 57-59, 78-87, and 94-
96). Then we removed variants with probabilities more than 1 standard deviation away from the high 
category mean. We also removed variants for which the global free energy (as measured by NUPACK), for 
the region running from the transcription start site to +102, fell more than 1 standard deviation away from 
the high variant category mean. This reduced structure subset had 13,061 variants in total, with 183 low 
variants, 1,133 intermediate variants, and 6,597 non-reference high variants. 

 
Analysis of Individual Variants by Flow Cytometry  
Variant sequences in GFP (at amino acids 6 to 8), in GLN4(1-99)-GFP (beginning at amino acid 100), and in 
Renilla luciferase-GFP (beginning at amino acid 318) were inserted using LIC cloning as previously 
described (Dean and Grayhack, 2012; Wolf and Grayhack, 2015). Synonymous optimal codons were 
chosen based on CAI. If two synonymous codons had a similar CAI, the more A-U rich codon was chosen. 
Strains to be analyzed by flow cytometry were grown overnight in YP + 80 mg/L Ade + 2% raffinose + 2% 
galactose media at 30 °C, followed by dilution to OD600 between 0.1-0.2 and grown for 4-6 hours in the 
same media to OD600 of ~0.8. Analytical flow cytometry and downstream analysis were performed for 4 
independent isolates of each strain (sometimes 3) as previously described (Dean and Grayhack, 2012).  
 To examine the effects of expressing various tRNA genes from 2µ vectors, strains were grown 
using the same protocol in S minimal media lacking leucine + 2% raffinose + 2% galactose media 
(Sherman, 1986). 
 
Quantitative RT-PCR. 
Strains were grown as described above for flow cytometry. We measured GFP and RFP for each strain and 
harvested cell pellets from the same culture. Bulk RNA was prepared using glass beads and treated with 
DNase (Promega); a total of 62.5 ng RNA was used to synthesize cDNA using Superscript II Reverse 
Transcriptase (Invitrogen). As a negative control, the reverse transcription (RT) reaction was also prepared 



	

without enzyme. Primers used to amplify GFP cDNA and the internal controls, Actin cDNA and RFP 
cDNA, are shown in Table S6. cDNA was amplified using Fast SYBR Green Master Mix (Applied 
Biosystems), detected using the 7500 Fast Real-Time PCR system, and analyzed with the 7500 Software 
v2.3 (Applied Biosystems). 
 
Strain Growth for leu2-d Selection in tRNA Suppression Studies 
Strains transformed with the 2µ leu2-d vectors, pECB1118 and pECB1406, were grown for ~18 hours at 30 
°C in 5 ml S-ura + 2% raffinose + 2% galactose + 80 mg/L Ade media, followed by dilution to OD600 of 
0.01 in 5 ml S-ura-leu + 2% raffinose + 2% galactose + 80 mg/L Ade media and grown overnight at 30 °C.  
Approximately 4 hours before flow cytometry analysis, the strains were diluted to OD600 of 0.25 in 5 ml S-
ura-leu + 2% raffinose + 2% galactose + 80 mg/L Ade media (Whipple et al., 2011). 
 
Yeast Translation Efficiency Data Sources and ORF Comparisons 
We downloaded S. cerevisiae coding ORFs from SGD (www.yeastgenome.org). ORF mRNA levels were 
downloaded from the RNA sequencing work of Presnyak (Presnyak et al., 2015). From this work, we used 
the mRNA levels from rRNA-depleted, whole-cell RNA at the initial expression level and took the average 
of two runs. Protein copy number estimates were downloaded from the mass spectrometry work of Kulak 
(Kulak et al., 2014) 

The combined dataset of mRNA and protein measurements included 4,489 yeast ORFs.  We 
applied a minimum mRNA threshold of 1. For each ORF we calculated the mean CAI of its codons. Mean 
CAI for ORFs with an inhibitory pair fell predominately in the range from 0.4 to 0.6. Across this range, we 
grouped ORFs into 8 CAI bins of size 0.025. Six CAI bins from 0.425 through 0.575 had at least 30 ORFs 
in each category. For these bins, we ran t-tests between the estimated translation efficiencies 
(log2(protein/mRNA)) of ORFs with at least one of the 17 inhibitory codon pairs and ORFs without any 
identified pairs.  

For a subset of 12 pairs (excluding AUA-CGA, CGA-AUA; CUG-CGA, CGA-CUG; and CGA-
CGA) we compared ORFs with at least one of the 12 pairs to ORFs with at least one of these pairs in the 
reverse codon order. These categories were mutually exclusive, such that if an ORF had an inhibitory pair 
and a reverse pair, it was excluded from the analysis. (There were 614 ORFs with both inhibitory and 
reverse pairs). All t-test p-values were corrected using the Holms-Bonferroni procedure. 
 
Footprint Counts and Ribosome Occupancy 
We used A-site codon footprint counts derived from the Jan et al. (Jan et al., 2014) sec63mVenusBirA_-
CHX_1minBiotin_input dataset, a whole cell ribosome profiling experiment with no cycloheximide 
treatment. For each codon pair, we aligned all ORFs with the pair, relative to the pair site. Then we took the 
sum of A-site footprint counts at aligned codon positions, thereby obtaining a joint footprint count at the 
pair and at each codon distance up to 49 codons away from the pair (49 positions 5’ of the pair and 49 
positions 3’ of the pair). We calculated ribosome occupancy at each position as the joint count relative to 
total joint counts across the 100-codon position window. For Fisher’s exact test comparisons, we used the 
sum of joint counts at positions with the pair in the ribosomal P, A-sites and E, P-sites versus the joint 
counts sum across all surrounding window positions (except those with the pair at A-site, -1 and +1, E-site 
locations). 

From Lareau et al. 2014 (Lareau et al., 2014), we took the tallied ribosome footprints at inferred 
A-site codons in untreated cells. We used the total of both short (20-22 nucleotides) and long (28-30 
nucleotides) mRNA fragment sizes. These datasets excluded ORFs with fewer than ten footprints. The 
authors also excluded footprints for the first 50 codons of each open reading frame (ORF) due to the 
scarcity of footprints from these regions. ORF coverage (footprints/codon) varied widely across the three 
biological replicates. Overall, Replicate 1 (GSM1406453) averaged 0.65 footprints per codon (from the 
pooled dataset), whereas Replicate 2 (GSM1406454) averaged 0.54 and Replicate 3 (GSM1406455) only 
0.16. Inhibitory pairs identified in our GFP assay occurred relatively infrequently in the sampled 
transcriptome and often in transcripts with relatively low expression (where footprints were rarer). We 
considered sufficient coverage of many ORFs in the low expression range critical to our analysis. Thus, we 
pooled footprint counts from each replicate, and then follow the same analysis procedure as with the Jan et 
al. dataset. 
 
 



	

Statistical Methods 
For the permutation p-values of 6-mer sequence enrichment in low expression variants, we calculated 
Benjamini-Hochberg false discovery rates (FDR) to control for the number of false positives. The 28 
candidate pairs reached significance in the full dataset at a FDR of 3%, while the revised list of 20 
candidate pairs reached significance in the reduced structure set of variants at a FDR of 7%. In evaluating 
the reduced structure set, we determined permutation p-values based on occurrences at the combination of 
s1 and s4 positions; as opposed to at each position independently. 
 We ran one-sided Wilcoxon rank sum tests to compare syn-GFPSEQ distributions. Wilcoxon rank 
sum tests were carried out in R. For each of the 20 candidate pairs, we compared the distribution of variants 
with an inhibitory pair to variants with the 6-mer sequence in an out-of-frame position as well as to variants 
with the two codons present but separated. For 12 inhibitory pairs we compared the distribution of variants 
with the inhibitory pair to the distribution of variants with the codons in reverse order. We corrected 
Wilcoxon p-values for 52 tests using the Holms-Bonferroni procedure. 
 In the ribosome profiling analysis, permutation analysis p-values were corrected for 17 inhibitory 
codon pair tests using the Holms-Bonferroni procedure. To directly compare the significance of ribosome 
occupancy differences between related, comparison pairs, we used a one-sided Fisher’s exact test. For each 
pair, we took the footprint count with the pair occupying 2 ribosomal site positions and footprint count in 
the remainder of the 100 codon distance window. We evaluated whether the inhibitory codon pair had a 
higher proportion of footprints at ribosomal sites than the comparison pair. We ran these Fisher’s exact 
tests in R, and we compared the footprint counts of 17 inhibitory pairs to two synonymous sequences. We 
also compared the footprint counts to the counts for a pair with the same codons in reverse order (except for 
the CGA-CGA pair). We corrected Fisher’s exact p-values for 50 tests using the Holms-Bonferroni 
procedure. From each Fisher’s exact test we also obtained the odds ratio (calculated by conditional 
maximum likelihood estimation) and confidence interval. 
 
  



	

SUPPLEMENTAL TABLES AND LEGENDS 
 

Codon Amino Acid Frequency CAI Wobble 
CGA R 0.092 0.002 I•A 
CUG L 0.077 0.003 U•G 
CGG R 0.071 0.002 - 
AGG R 0.060 0.003 - 
CUU L 0.047 0.006 U•U 
GUA V 0.043 0.002 - 
GUG V 0.041 0.018 - 
CCG P 0.035 0.002 U•G 
AUA I 0.034 0.003 - 
CUC L 0.032 0.003 - 

Table S2. Frequency of Codon Use in Low Variant Insertions, Related to Figure 1 
The top 10 frequencies are shown. The expected frequency due to chance is 1/61 or 0.016. 
  



	

Candidate Median IQR n Construct Type GFPFLOW Inhib./Opt. 
AGG-CGA 0.48 0.31 30 AGGCGAAAT Inhibitory 58.0 ±2.0 0.42 ±0.02 

    AGAAGAAAT Optimal 138.1 ±3.5   
AGG-CGG 0.82 0.46 36 AGGCGGCAC Inhibitory 58.1 ±2.7 0.52 ±0.03 

    AGAAGACAC Optimal 112.0 ±3.8   
AUA-CGA 0.58 0.30 11 ATACGAGAT Inhibitory 55.7 ±1.0 0.39 ±0.01 

    ATTAGAGAT Optimal 143.1 ±2.6   
AUA-CGG 0.65 0.43 27 ATACGGACG Inhibitory 56.8 ±0.5 0.64 ±0.02 

    ATTAGAACG Optimal 89.0 ±3.3   
CGA-AUA 0.51 0.29 27 CGAATACAT Inhibitory 38.6 ±1.7 0.34 ±0.02 

    AGAATTCAT Optimal 112.9 ±0.01   
CGA-CCG 0.44 0.05 22 CGACCGAGC Inhibitory 13.0 ±0.5 0.16 ±0.01 

    AGACCAAGC Optimal 82.6 ±2.1   
CGA-CGA 0.44 0.06 25 CGACGAACT Inhibitory 24.5 ±1.0 0.19 ±0.01 

    AGAAGAACT Optimal 126.7 ±4.1   
CGA-CGG 0.48 0.13 38 CGACGGAGC Inhibitory 42.2 ±0.7 0.35 ±0.01 

    AGAAGAAGC Optimal 121.6 ±2.3   
CGA-CUG 0.47 0.31 21 AACCGACTG Inhibitory 71.6 ±0.9 0.46 ±0.01 

    AACAGATTG Optimal 154.8 ±4.2   
CGA-GCG 0.44 0.03 30 CGAGCGAGT Inhibitory 35.2 ±0.5 0.26 ±0.01 

    AGAGCTAGT Optimal 136.0 ±3.1  
CUC-AUA 0.70 0.45 12 CTCATAACG Inhibitory 60.4 ±6.9 0.47 ±0.05 

    TTGATTACG Optimal 129.1 ±1.7   
CUC-CCG 0.44 0.04 15 CTCCCGACT Inhibitory 17.8 ±0.8 0.14 ±0.01 

    TTGCCAACT Optimal 126.9 ±1.3   
CUG-AUA 0.71 0.30 22 CTGATAATG Inhibitory 58.0 ±3.0 0.61 ±0.06 

    TTGATTATG Optimal 94.3 ±7.8   
CUG-CCG 0.49 0.39 30 CTGCCGACC Inhibitory 49.9 ±0.4 0.39 ±0.01 

    TTGCCAACC Optimal 127.7 ±1.6   
CUG-CGA 0.50 0.48 25 CTGCGAAGT Inhibitory 46.0 ±1.2 0.37 ±0.01 

    TTGAGAAGT Optimal 124.1 ±1.5   
CUG-CUG 0.66 0.31 25 CTGCTGACA Inhibitory 62.4 ±3.4 0.76 ±0.08 

    TTGTTGACA Optimal 82.1 ±8.0   
CUU-CUG 0.74 0.32 27 CTTCTGACG Inhibitory 65.6 ±4.4 0.66 ±0.06 

    TTGTTGACG Optimal 99.1 ±5.6   
GUA-CCG 0.80 0.42 25 GTACCGAGT Inhibitory 59.9 ±2.0 0.42 ±0.03 

    GTTAGAAGT Optimal 142.0 ±7.5   
GUA-CGA 0.53 0.21 36 GTACGACAA Inhibitory 35.7 ±3.4 0.39 ±0.04 

    GTTAGACAA Optimal 91.5 ±1.9   
GUG-CGA 0.60 0.33 30 GTGCGAACT Inhibitory 50.0 ±0.6 0.43 ±0.01 

    GTTAGAACT Optimal 115.8 ±1.7   
Table S4. Candidate Inhibitory Pairs and GFPFLOW Comparisons, Related to Figure 1. For each 
candidate, the syn-GFPSEQ median, interquartile range (IQR), and number of library variants (n) is shown 
with the individual construct sequences used in validating reduced expression. GFPFLOW (GFP*100/RFP) 
are the mean of 3 or 4 independent isolates ±SD. 
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