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SUMMARY

The prevailing view of the nuclear genetic code is that
it is largely frozen and unambiguous. Flexibility in
the nuclear genetic code has been demonstrated in
ciliates that reassign standard stop codons to amino
acids, resulting in seven variant genetic codes,
including three previously undescribed ones reported
here. Surprisingly, in twoof thesespecies,wefindeffi-
cient translation of all 64 codons as standard amino
acids and recognition of eitheroneor all three stopco-
dons. How, therefore, does the translation machinery
interpret a ‘‘stop’’ codon? We provide evidence,
basedon ribosomal profiling and ‘‘stop’’ codondeple-
tion shortly before coding sequence ends, that mRNA
30 ends may contribute to distinguishing stop from
sense in a context-dependent manner. We further
propose that such context-dependent termination/
readthrough suppression near transcript ends en-
ables genetic code evolution.
INTRODUCTION

The first exceptions to the supposed universality of eukaryotic

nuclear genetic codes were reported in ciliates (Caron and

Meyer, 1985; Helftenbein, 1985; Horowitz and Gorovsky, 1985;

Preer et al., 1985). Subsequently, additional genetic codes

were discovered in other ciliates, all due to stop codon reassign-

ments, and appear to recur independently in different ciliate lin-

eages (Lozupone et al., 2001; Sánchez-Silva et al., 2003; Touran-

cheau et al., 1995). Genetic code evolution is considered to have

both an ancient phase, which gave rise to the standard genetic

code before the radiation of bacteria, archaea, and eukaryotes,

and a modern phase, which led to diversification from the stan-

dard code (Sengupta and Higgs, 2015). Thus far, alternative nu-

clear genetic codes have only been found in three major eukary-

otic lineages other than ciliates. The first alternative nuclear

genetic code, discovered in ciliates, with the UAA and UAG

stop codons reassigned to glutamine, is also present in green

algae (Acetabularia and Batophora) (Schneider and de Groot,

1991; Schneider et al., 1989) and diplomonads (Keeling and

Doolittle, 1996). Alternative nuclear genetic codes, with CUG re-

assigned from leucine, also occur in the yeastsCandida albicans

(predominantly to serine) andPachysolen tannophilus (to alanine)
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(Gomes et al., 2007; Mühlhausen et al., 2016; Santos and Tuite,

1995).

Other than the diversity of genetic codes in ciliates, the great-

est number of variant genetic codes are found in mitochondria

(Knight et al., 2001), whose diversification may have been facili-

tated by their small genomes and strong mutational biases,

which increase the likelihood of loss and reassignment of rare

codons (Osawa and Jukes, 1989). Expressed ciliate genomes

(macronuclear genomes) are not especially small (typically

50–100 Mb) (Swart et al., 2013), and the manner in which

changes in their genetic codes arose may not be as straightfor-

ward as that in smaller mitochondrial genomes. Alternative ex-

planations for the evolution of ciliate genetic codes, such as

the abolishment of recognition of certain stop codons by muta-

tions in the stop-recognizing translation termination factor eu-

karyotic release factor 1 (eRF1) allowing codon reassignment

have therefore been proposed (Lozupone et al., 2001).

While the genetic code is classically taught as being unambig-

uous, and indeedmay largely be so, we now know this is an over-

simplification. Since the original discovery of the standard genetic

code, alternative translational interpretations of codons have

been found, most notably in the use of the UGA codon for seleno-

cysteine incorporation, in the context of special mRNA stem-

loops in the UTRs of a small number of protein-coding genes

(Nasim et al., 2000). An additional form of codon ambiguity, trans-

lational readthrough of stop codons, is now also recognized as

pervasive, but usually weak, in eukaryotes, occurring at a few

percent or less compared to the non-readthrough form (e.g.,

Dunn et al., 2013; Harrell et al., 2002; Roy et al., 2015). Transla-

tional readthrough usually gives rise to short protein extensions,

e.g., a median length of 35 amino acids in Drosophila (Jungreis

et al., 2011). Readthrough is enabled by near-cognate pairing of

tRNAs to codons, with either the first or third anticodon base non-

canonically paired (Blanchet et al., 2014). Thus, there is competi-

tion for the same codons between eRF1 and tRNAs.

Although the options for engineering of new genetic codes with

artificial amino acids have been proliferating (Lemke, 2014), many

important questions about natural genetic codes remain unre-

solved. Among these questions, are basic ones of how codons

are recognized in variant genetic codeswith stop codon reassign-

ments and whether there is competition between eRF1 and stop-

cognate tRNAs for the same codons. Experimental evidence at-

tempting to address the former problem has been conflicting,

supporting either loss or ongoing recognition of reassigned stop

codons by eRF1 (Eliseev et al., 2011; Lekomtsev et al., 2007;

Salas-Marco et al., 2006; Vallabhaneni et al., 2009).
July 28, 2016 ª 2016 The Author(s). Published by Elsevier Inc. 691
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:mariusz.nowacki@izb.unibe.ch
http://dx.doi.org/10.1016/j.cell.2016.06.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2016.06.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A

B

Figure 1. New Genetic Codes

(A) Stop codon reassignments (Q, glutamine; W,

tryptophan; C, cysteine; Y, tyrosine; *, stop) are

mapped onto an eRF1 maximum likelihood phy-

logeny. Homo sapiens (standard genetic code) is an

outgroup. Bootstrap support for every node is

shown. Scale bar indicates amino acid substitutions

per site. UGA codons were previously found in the

coding sequences of Blepharisma americanum and

were predicted to encode tryptophan (Eliseev et al.,

2011; Lozupone et al., 2001). Experimental assays

in Blepharisma japonicum suggest its eRF1 recog-

nizes all three standard stop codons (Eliseev et al.,

2011). It should be noted that ciliates from the family

Mesodiniidae have both a unique genetic code

(UAG/UAA = UAR = tyrosine; UGA = stop) and

extremely divergent rRNAs (Johnson et al., 2004).

(B) Predicted C. magnum genetic code. Stop co-

dons are highlighted in orange. Predicted amino

acids are those with maximal heights. Codon usage

inferred from translated BLAST matches is shown

below the codons. UAA and UAG codons were

previously predicted to encode glutamine (Loz-

upone et al., 2001; Tourancheau et al., 1995).

See also Figure S1 and Table S1.
With extensive sequence data spanning a wide range of

eukaryotes, including ciliates, now available, uncertain genetic

codes may be properly determined, and consequently, the

proposed basis for nuclear genetic code diversification is also

ripe for reinvestigation. We present the new genetic codes we

discovered in the course of screening a large collection of eu-

karyotic transcriptomes, how codons may have multiple mean-

ings in two of these codes, and the consequences of tolerance

of genetic code ambiguity for genetic code evolution.

RESULTS

Genetic Codes in which All 64 Codons Encode Standard
Amino Acids
To identify and classify reassigned codons, we used a com-

putational screening approach to search the Marine Microbial

Eukaryote Transcriptome Sequencing Project (MMETSP) tran-

scriptomes (Keeling et al., 2014). We found that like Bembidion

americanum, Bradyrhizobium japonicum uses UGA as a trypto-
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phan codon, although it does so at low

levels (0.059%) and hence this reassign-

ment may easily go undetected in small

sequence samples (Figures 1B, S1A,

and S1B). Thus, given this reassignment

and previous experimental results (Eliseev

et al., 2011), we deduce that B. japoni-

cum’s eRF1 and at least one of its trypto-

phan tRNAs may be in competition for the

same codon.

Because MMETSP represents the cur-

rent broadest eukaryotic molecular diver-

sity survey (Keeling et al., 2014) we
screened all its transcriptomes to search for new genetic codes.

In our screen, we discovered three new genetic codes among

24 ciliate species (Figures 1A, 1B and S1; Data S1A), but no

new codes in the remaining 265 eukaryotes (Data S1B). Unex-

pectedly, in two of these genetic codes, belonging to the heter-

otrichous ciliate Condylostoma magnum and an unclassified

karyorelict (18S rRNA 95% identical to that of Parduzcia orbis

[Edgcomb et al., 2011]; Parduzcia sp. hereafter) all three

‘‘stop’’ codons are predicted to be reassigned to amino acids:

UAA = Q, UAG = Q, UGA = W. As the remaining C. magnum

andParduzcia sp. codons encode standard amino acids (Figures

1A and S1A), all 64 of their codons are translated. Hence, the

question is if and how translation termination occurs given these

codes.

Because the UGA codon usage in C. magnum, Parduczia sp.,

and B. japonicum is relatively low (0.042%, 0.120%, and

0.059%, respectively), to computationally assess the hypothesis

that the C. magnum and Parduczia sp. genes with in-frame UGA

codons are functional, and not simply pseudogenes with in frame



stops, we sought essential single copy genes with in-frame UGAs

and examined their substitution rates. In-frame UGA codons are

present in critical genes, such as C. magnum tryptophan-tRNA

ligase (Figure 2B; MMETSP0210: CAMNT_0008287141) and

eRF1 of Parduczia sp. (MMETSP1317: CAMNT_0047593165).

Substitution rates of genes such as these support the hypothesis

of functionality since they indicate strong purifying selection, e.g.,

for C. magnum tryptophan-tRNA ligase aligned toOxytricha trifal-

lax tryptophan-tRNA ligase, dN/dS is 0.013 (dN/dS = nonsynony-

mous substitutions per nonsynonymous site over synonymous

substitutions per synonymous site; dN/dS <1 indicates purifying

selection) (Yang, 2007). The hypothesis that UGA codons are

translated was assessed experimentally in two ways: we deter-

mined that UGA codons are translated as tryptophan by protein

mass spectrometry (Data S1D and S1E); using ribosome profiling

we observe that ribosomes efficiently translate through UGA

codons, as they also do through UAG and UAA codons (Figures

2B and S3E).

The Genetic Codes of C. magnum and Parduczia sp. Are
Ambiguous
Given evidence that all three ‘‘stop’’ codons in the C. magnum

and Parduczia sp. genetic codes can be translated, we wished

to assess how translation termination occurs. To investigate

the nature of translation termination inC.magnum and Parduczia

sp. we began by examining histone H4 coding sequence ends,

since the proteins encoded by these sequences are among the

most highly conserved proteins and typically have the same

C-terminal residues (e.g., 95% of 105 reviewed UniProt histone

H4 proteins end with two glycines; Feb 9, 2015). With respect

to the conserved C-terminal amino acid of histone H4 homologs

in other eukaryotes, each of the C. magnum histone H4 paralog

coding sequences is expected to end with a C-terminal gly-

cine codon (Figure 2C). The codon immediately following this,

either UAG or UGA, is therefore a candidate stop. The coding

sequence of the single histone H4 in the Parduzcia sp. transcrip-

tome is followed by a UGA codon at the expected stop position

(Figure 2C). With respect to aligned homologs from other

organisms, all the Parduczia sp. transcripts we inspected have

a UGA where a stop codon would normally be expected.

C. magnum also has transcripts that have only the possibility

of UAA stops in proximity to where stops are expected (Figures

S2B–S2D). From the sequence alignments, we therefore infer

that C. magnum’s eRF1 recognizes all three standard stop co-

dons and hence needs to outcompete stop cognate tRNAs to

terminate translation.

To test whether translation termination occurs at the putative

histone H4 stop codons, we used ribosome profiling (ribo-seq).

For C. magnum’s histone H4.1b and H4.1c forms, it can be

seen that translation terminates precisely at the predicted stop

codons (Figure 2D), whereas it does so with a small amount of

imprecision forH4.1d (Figure3A;H4.1awas insufficiently covered

by ribo-seq reads to assess termination). In general, translation

terminating C. magnum translation terminating ribosome-pro-

tected fragments (RPFs) end 11/12 nucleotides (nt) after stop

codon 30 nt (Figure 3D—compare to sense codons in Figure 3C;

Figure 2D is a typical example). Consequently, both the primary

and secondary H4.1d stop codons, UAG and UAA, trigger trans-
lation termination, and the typical histone H4 C-terminusmay oc-

casionally be extended by one or more amino acids.

While readthrough is conventionally classified as translation of

stop codons by near-cognate tRNAs, in C. magnum, which has

stop cognate tRNAs (see next section), translation through

stop codons by near-cognate tRNAs is effectively indistinguish-

able from translation by cognate tRNAs in ribo-seq data. There-

fore, for the sake of simplicity, in C. magnum, we classify

readthrough as translation through codons that typically trigger

translation termination (as for H4.1d). It should be noted that in

C. magnum, multiple translation termination opportunities often

exist before the ribosome translates into poly(A) tails (on average

approximately five codons intervene between the primary and

additional downstream non-primary stops). As a consequence,

if extensions result from readthrough they are typically expected

to be very short. Even though multiple possible stop codons

exist, examples of imprecise termination as in H4.1d are in the

minority: �90% of transcripts examined with >20 RPFs situated

at their stops show no readthrough. Thus, overall readthrough is

quite low, e.g., a mean of <1.8% andmedian of 0% (Figure S3K).

The small amount of readthrough that does occur is most

readily detected when the ribosome occupies downstream

stops (Figure 3E).

Multiple lines of evidence therefore demonstrate that ‘‘stop’’

codons as a class in the C. magnum and Parduczia sp. genetic

codes are ambiguous, whereas their individual codons are typi-

cally recognized unambiguously as either sense or stops, solving

the translation termination paradox.

In Search of tRNAs that Enable ‘‘Stop’’ Codon
Translation
All model ciliates have ‘‘suppressor’’ tRNAs that are complemen-

tary to and permit translation of reassigned stop codons (Eisen

et al., 2006; Hanyu et al., 1986; Kuchino et al., 1985). Although

we found a comprehensive set of tRNAs in our C. magnum

genome assemblies, including glutamine tRNAs capable of

recognizing UAA and UAG codons (Figures 4A and 4B; Data

S1G), we were unable to detect tRNATrps with UCA anticodons.

Given the high sequence coverage of the C. magnum macronu-

clear genome, it is unlikely that we missed tRNATrp(UCA)s. Cili-

ates possess both a micronuclear and a macronuclear genome,

with the former predominantly unsequenced in our C. magnum

assembly due to its comparatively low ploidy. It is also unlikely

that tRNATrp(UCA)s have gone undetected because they are mi-

cronuclear genome-encoded: although these genomes are tran-

scriptionally active during ciliate sexual development they are

generally inactive during vegetative growth (Chen et al., 2014;

Nowacki et al., 2009) when many transcripts with UGA trypto-

phan codons are expressed. To test if CCA / UCA anticodon

editing produces a UGA-cognate tRNATrp, we sequenced RT-

PCR products targeting nuclear genome-encoded tRNATrps

and examined tRNA reads from small RNA sequencing data,

but found no signs of significant anticodon editing (see Supple-

mental Experimental Procedures).

All sequenced ciliate mitochondrial genomes encode a UGA-

cognate tRNATrp(UCA) (Swart et al., 2013) and so does that

of C. magnum (Figure S4A). Experiments in cell-free lysates

show cytoplasmic ribosomes can use yeast mitochondrial
Cell 166, 691–702, July 28, 2016 693
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tRNATrp(UCA) to translate UGA codons (Tuite and McLaughlin,

1982). Thus, to determine whether C. magnum’s mitochondrial

tRNATrp(UCA)s are used to translate its mRNA UGA codons, it

will be necessary to show these tRNAs are accessible to cyto-

plasmic ribosomes in quantities adequate for translation.

In standard genetic code organisms, readthrough UGA stop

codons are preferentially translated as tryptophan (e.g., for

Saccharomyces cerevisiae: UGA: 86% W, 7% C, 7% R) (Roy

et al., 2015) by near-cognate tRNATrp(CCA)s. Near-cognate

pairing of tRNATrp(CCA) to UGA may also be substantially

enhanced through particular mutations, e.g., in Escherichia coli

a tRNATrp(CCA) D-stem point mutation leads to 303 more tryp-

tophan translation at UGA stop codons than the wild-type tRNA

(Hirsh, 1971; Hirsh and Gold, 1971). C. magnum has three types

of tRNATrp(CCA) (Figures S4B and S4C), and it will be necessary

to experimentally assess if any of these tRNAs permits efficient

translation of its mRNA UGA codons.

‘‘Stop’’ Codon Recognition Switches from Sense in
Coding Sequences to Stop Near Transcript Ends
We assessed two hypotheses for how sense codons are distin-

guished from stop codons in ambiguous codes: (1) that there

are sequence-specific features (motifs) allowing discriminating

protein factors to bind nearby sense and stop codons, and

(2) that proximity to transcript ends results in recognition of

stops. We reject the hypothesis that specific sequences are

necessary for stop/sense discrimination for the following rea-

sons: (1) the base composition around sense ‘‘stop’’ codons is

not constrained (Figure S5A), and (2) although the bases flanking

C. magnum stop codons are weakly biased (Figure S5B), and

such biases exist in other eukaryotes, where they are associated

with enhanced termination efficiency (McCaughan et al., 1995), it

is trivial to find sense ‘‘stop’’ codons with the preferred stop

codon flanking Us, thus flanking bases cannot be sufficient to

distinguish stop codons.

We next assessed if the proximity of the ‘‘stop’’ codon to tran-

script ends might determine sense/stop state. While analyzing

ciliate 30 UTRs we were struck by how short they are, with those

of heterotrichs the shortest of all (median lengths, excluding the

poly(A) tail and stop codon: 21–23 nt; Figure 5A). In the literature,

we could find no eukaryotes with shorter 30 UTRs. In comparison,

yeast, metazoan, and plant 30 UTRs typically have a >100 nt

length mode and may be considerably longer (Aoki et al., 2010;

Jan et al., 2011). Because poly(A) tails of certainC.magnum tran-

scripts, especially those with UAA stop codons, start immedi-

ately after their stop codon (Figures 5B–5D) stops can be situ-
Figure 2. ‘‘Stop’’ Codons in C. magnum and Parduczia sp.: Either Sens

(A) C. magnum protein kinase alignment region highlighting putative sense ‘‘sto

larger stars for UGA. MMETSP0210 IDs: CAMNT_0008311047, CAMNT_0008

CAMNT_0008274561, CAMNT_0008271577, CAMNT_0008291651, CAMNT_000

(B) Ribosome-protected fragments (RPFs) mapped to aC.magnum tryptophan-tR

all the bases of 25–32 nt RPFs.

(C) Histone H4 C-termini and stop codons (gray arrow, coding sequence) from

C. magnum and Parduczia sp. mRNA 30 termini. Histone H4.1a– H4.1d: MMETSP

and CAMNT_0008296393; Parduczia sp. histone H4 is MMETSP137 CAMNT_004

end read mapping, the 30 UTR of H4.1a is incorrectly fused to a downstream tra

(D) RPFs mapped to histone H4.1c (Data S1AE and S1AF).

See also Figure S2.
ated adjacent to poly(A)-binding proteins (PABPs) in vivo, and

hence translation may be terminated with no additional informa-

tion encoded by 30 UTRs. Because the ribosome occupies 11 or

12 nucleotides downstream ofC.magnum stop codons, even for

those transcripts with 30UTRs, there may be little room for ribo-

somes to maneuver passed stop codons without displacing

PABPs. Given such short 30 UTRs in ciliates, we therefore pro-

pose that nearby protein-bound poly(A) tails may contribute to

discriminating stop from sense.

The very low readthrough levels detected in C. magnum by

ribosome profiling imply that when ‘‘stop’’ codons are positioned

close to transcript ends the probable outcome is termination.

The few ‘‘stop’’ codons existing in the vicinity before stop co-

dons (24–66 nt upstream; mean 50 nt upstream; 16 out of

1,672 transcripts) are efficiently translated and show no signs

of appreciable premature translation termination (Figure S3I).

Given the low tolerance of either readthrough or premature

translation termination, the prediction is that when codons

recognized inefficiently as either stop or sense arise in coding

sequences, they are deleterious. Thus, in the hypothesis of

discrimination of codons as stops close to transcript ends, if

‘‘stop’’ codons arise just upstream of the proper stops, where

theymight either be translated or result in premature termination,

they will be counterselected and hence decrease in frequency.

Consistent with this hypothesis, such a decrease in ‘‘stop’’

codon frequency exists in the upstream coding sequence vicinity

of the stops in C. magnum (UAA, UAG, UGA) and Parduczia sp.

(UGA) (Figures 6 and S6). Conversely, no codons other than

‘‘stop’’ codons become rare in coding sequences just before

the actual stops (e.g., C. magnum; Figure S6). Furthermore,

following cognate tRNA acquisition CAA and CAG frequencies

are expected to remain higher near stops than distal coding

sequence regions, since these codons may not freely mutate

to UAA and UAG without causing premature translation termina-

tion (Figure 6D; unlike any other codons [Figure S6]; given the low

UGA sense codon usage, only a small fraction of UGG codons

has mutated to UGA, and UGG codon frequencies are not ex-

pected to be higher near stops).

DISCUSSION

Based on the observations of ribosome positioning and distribu-

tion of ‘‘stop’’ codons in transcripts, for translation inC. magnum

and Parduczia sp. we propose a model where translation, rather

than termination, is the default recognition mode for ‘‘stop’’ co-

dons and where termination is due to the context-specific
e or Stop Codons

p’’ codons. Standard genetic code stop codons are shown with stars, with

316317, CAMNT_0008295895, CAMNT_0008281491, CAMNT_0008274923,

8280967, CAMNT_0008289329.

NA ligase transcript (Data S1AC and S1AD). ‘‘RPF coverage’’ is calculated from

C. magnum, Parduczia sp., and Homo sapiens. Poly(A) tails are visible at

0210 IDs: CAMNT_0008274265, CAMNT_0008297091, CAMNT_0008284521,

7598059. H. sapiens histone H4 is GenBank: M16707.1. Judging from paired-

nscript.
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Figure 3. Ribosome Profiling Reveals Different Ribosome States at ‘‘Stop’’ Codons

(A) RPFs (25–32 nt) mapped to histone H4.1d (Data S1AG and S1AH). RPF 30 termini counts are given at the sequence coverage steps: the first and second steps

correspond to ribosomes whose P-sites are the first and second stop codons, respectively.

(B) RPF read length distribution and frame distribution. For the 3U TruSeq ribo profile nuclease digestion more mRNA reads were present due to lower rRNA

degradation, and most 30-nt RPFs have their 30 ends in frame 3 (compare to Figures S3A and S3B).

(C and D) Distribution of 30 nt RPF 30 ends around sense (C) and stop (D) UAG, UGA, and UAA codons (positions 1–3, indicated by dashed vertical lines) in Trinity

assembled transcripts. CDS, coding sequence; UTR, untranslated region. Putative ribosomal P- and A-site locations of translation terminating RPFs situated at

stop codons, based on that predicted for other eukaryotic ribosomes (Chung et al., 2015). Figures S3C–S3H show the distribution of RPF 30 ends around in-

dividual ‘‘stop’’ codons. Though the termination signal is most pronounced for 30-nt RPFs, it is also exhibited by other RPFs (Figure S3J).

(E) Distribution of 30-nt RPFs for transcripts with detected readthrough (R13 nt downstream of the primary stop codon); additional stop codons are located

downstream of the primary one, hence the region downstream of the primary stop may be either coding or untranslated.

See also Figure S3.
override provided by transcript ends (Figure 7). Thus, at sense

‘‘stop’’ codons, tRNAs outcompete eRF1, and at proper stop co-

dons, eRF1 outcompetes tRNAs. The converse model (default
696 Cell 166, 691–702, July 28, 2016
termination; context-specific translation), is not consistent with

our results, and given preexisting surrounding coding sequence

constraints, widespread context-specific translation signals



Figure 4. Predicted UAA- and UAG-Cognate C. magnum tRNAs

(A and B) UAA- and UAG-cognate glutamine tRNA secondary structures.

Bonds shown are predicted by the RNAfold web server (Lorenz et al., 2011)

(default parameters).

See also Figure S4.
necessary to translate all the ‘‘stop’’ codons are exceedingly un-

likely to arise.

Given the existence of transcripts without 30 UTRs, we deduce

these regions are not essential for translation termination, and

we propose that the close proximity of a poly(A) tail and

poly(A)-interacting proteins, in particular PABPs, alone may be

necessary to trigger termination. Three prior observations favor

this hypothesis: (1) PABP overexpression enhances translation

termination when it is weak, implying that PABPs may be

involved in translation termination (Cosson et al., 2002), (2) teth-

ering of a PABP 37–73 nt downstreamof a premature stop codon

substantially decreases NMD and results in recruitment of the

translation termination factor eRF3, suggesting that PABP is

involved in discriminating stops from premature stops (Amrani

et al., 2004); and (3) PABPs bind to AU-rich RNA including 30

UTRs (Baejen et al., 2014; Kini et al., 2016; Sladic et al., 2004).

Reassigned ‘‘stop’’ codons in C. magnum and Parduczia sp.

differ from conventional readthrough stops in standard genetic

code organisms because they are efficiently translated and

distributed throughout coding sequences, whereas conventional

readthrough stops are the major termination signals whose

disregard gives rise to modest levels of short protein extensions

(Dunn et al., 2013; Jungreis et al., 2011). From their distribution

throughout coding sequences, it is evident that most reassigned

codons in ciliates arose from substitutions of codons that were

already normally translated, rather than from readthrough stop

codons. Upon acquisition of a stop cognate tRNA, a shift in bal-

ance from translation termination to readthrough at stop codons

is expected. Normally this acquisition would immediately be

deleterious, due to the creation of aberrant C-terminal peptide

signals or the triggering of non-stop mRNA decay (Frischmeyer

et al., 2002) upon translation into mRNA poly(A) tails. By enforc-

ing proper translation termination close to transcript ends, cili-

ates with ambiguous genetic codes provide a way of getting

around these problems.

Given that we detected no new genetic codes in 265 diverse

non-ciliate eukaryotic species from MMETSP, the abundance

of alternative genetic codes within ciliates is all the more striking.
Two hypotheses for the origin of genetic codes in ciliates are that

they were enabled by codon capture or eRF1 mutations. Under

the ‘‘codon capture’’ hypothesis (Osawa and Jukes, 1989)

when a codon disappears in a genome due to strong mutational

biases it may then be reassigned when a suitable cognate tRNA

arises (via tRNA duplication and anticodon mutation) and the

codon subsequently reappears. To date, all sequenced ciliate

genomes are AT rich (Aeschlimann et al., 2014; Aury et al.,

2006; Coyne et al., 2011; Eisen et al., 2006; Swart et al., 2013;

Wang et al., 2016). Reflecting their A/T mutational biases, among

eukaryotes with the highest UAA stop codon usage are standard

genetic code ciliates (Figures S7B–S7D; Data S1V). This sug-

gests that the diversification of genetic codes from the standard

one could have followed UAG and UGA stop codon depletion in

ancestral ciliates with AT rich genomes.While codon capture is a

reasonable explanation for the evolution of the Blepharisma ge-

netic code (UAA stop codon usage 91%), it does not readily

explain the origin of other ciliate genetic codes. For example,

in Euplotes sp., according to tRNA anticodon-codon wobble

rules, UGG codons are expected to be misread as cysteine

following the origin of a tRNACys(UCA).

Evenwhen relaxing the stop codon disappearance criterion (via

genetic code ambiguity tolerance), codon capture cannot easily

explain the general UAG and UAA reassignment trends seen in

Figure 1A. In all ciliates with reassigned UAG and UAA codons

andcompletemacronucleargenomes,both tRNAswithanticodon

complements of these codons are present (Aeschlimann et al.,

2014;Aury et al., 2006;Coyneet al., 2011; Eisen et al., 2006;Swart

et al., 2013). In the event that the first acquisition during codon re-

assignment was a tRNA(UUA), by the codon-anticodon wobble

rules UAAandUAGwould both be translated; however, as this re-

quires prior UAA stop codon disappearance, it is contrary to the

ciliatemutational tendencies. If codon reassignmentwere tooccur

after a tRNA(CUA) acquisition, only UAG codons would be trans-

lated, and under the codon capture hypothesis, genetic codes

with UAG reassignment alone should be common; however, this

is not observed. Therefore, codon capture alone cannot explain

the diversity of genetic codes in ciliates.

As eRF1 recognizes stop codons, this protein could be a

determinant of genetic code reassignments in ciliates. Previ-

ously it was hypothesized that particular eRF1 amino acid substi-

tutions are associated with each variant genetic code (Lozupone

et al., 2001). The additional ciliate genetic codes and eRF1 diver-

sity present in ciliates and other eukaryotes present multiple

contradictions to the reported concordances between eRF1

amino acid substitutions and variant genetic codes (Lozupone

et al., 2001) (Figure S7A). Because no obvious associations be-

tween single eRF1 substitutions and variant genetic codes are

evident, any possible associations between genetic codes and

eRF1 changes must be more complex than individual amino

acid changes. The existence of the ambiguous ciliate genetic co-

des is also a challenge to explain by this hypothesis.

Because ciliate genetic code diversity does not seem to be

adequately explained by codon capture or eRF1 changes, we

instead propose that it is due to past genetic code ambiguity

tolerance and resolution, as exemplified by C. magnum and

Parduczia sp. Conversely, the inability to resolve ambiguity

favors the ‘‘frozen’’ state of the genetic code in other eukaryotes.
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Figure 6. Terminal ‘‘Stop’’ Codon Decline

Close to C. magnum Stops

Stacked bar graphs of ‘‘stop’’ codon counts are for

the transcript regions upstream of poly(A) tails

(position 0). Transcript ends include 0, 1, or 2 nu-

cleotides of the poly(A) tail to complete the final

‘‘codon.’’ 30 UTRs occur in the region to the right of

the right-most dashed vertical line. Codons coun-

ted are those in the 1672 poly(A)-tailed single gene,

single isoform Trinity assembled transcripts.

(A–C) The top three subgraphs are drawn in

decreasing order of ordinate limits. Vertical line

at �39 nt indicates approximately where most

downstream ‘‘stops’’ are either stop codons or

‘‘codons’’ in 30 UTRs. Codons whose sense/stop

states have not been determined are indicated by

‘‘amino acid/*.’’ Transcripts with UGA codons up-

stream of �39 nt were visually classified based on

BLASTX searches. Upstream of �39 nt, UGA co-

dons predominantly code for tryptophan; down-

stream of �39 nt, UGA codons are predominantly

stops or codons in 30 UTRs downstream of primary

stops (both indicated by gray bars). In the genetic

codes of C. magnum and Parduczia sp. UGA is a

codon triality (codon duality is reviewed in Atkins

and Baranov, 2007), because in addition to being

interpreted as a tryptophan codon and a stop

codon, it also serves as a selenocysteine codon in

the context of SECIS elements. Pale gray bars

correspond to a transcript with an uncertain

C-terminal, as judged by BLAST.

(D) Standard glutamine and tryptophan sense

codon counts.

(E) Base frequencies are stable in the region of

‘‘stop’’ codon decline (��90 to �42 bases up-

stream of poly-As).

See also Figures S5 and S6.
The codons inC. magnum and Parduczia sp. that are recognized

either by tRNAs or eRF1 represent precisely the type of interme-

diate states with multiple meanings originally proposed to occur

in the hypothesis of genetic code evolution through ambiguous

translational intermediates (Schultz and Yarus, 1994). We

furthermore propose that the evolution of very short, AU-rich 30

UTRs and termination facilitated by poly(A) proximity have

enabled codon reassignment, as translational ambiguity due to
Figure 5. Extremely Short and Nonexistent 30 UTRs in Heterotrichs

(A) Ciliate 30 UTR length distributions (lengths exclude the stop codon and poly(A) tail) for representatives o

(B) Length distribution of C. magnum 30 UTRs. Lengths are from the putative primary stop in the 60 nt window

poly(A) tail lengths.

(C) A 30 UTR-less gene (synaptobrevin homolog). Poly(A) tail-ending reads mapped to the genomic region

extend beyond the poly(A) addition site. CDS, coding sequence (Data S1AI and S1AJ).

(D) RPFs mapped to a transcript of the gene in (C) (Data S1AK and S1AL).

See also Figure S6.
the acquisition of stop cognate tRNAs

could be suppressed at stops.

In light of the ambiguous genetic codes

presented here, it is worth reconsidering

the idea that the standard genetic

code is ‘‘one in a million’’ and is optimized
to minimize the effects of errors arising frommutations (Freeland

and Hurst, 1998) (although contested [Koonin and Novozhilov,

2009]). Naturally, organisms with only one or two stop codons

due to reassignments are more robust to sense premature

stop codon mutations than those with the standard genetic

code. Given that, other than in the vicinity of transcript ends,

‘‘stop’’ codons are translated by default, the genetic codes of

C. magnum and Parduczia sp. may confer very high resistance
f the ciliate genetic codes in Figure 1.

upstream of poly(A) sites and exclude the stop and

encoding this gene are shown, and no other reads
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Figure 7. Model for Distinguishing Stops

from Sense ‘‘Stops’’

Representative regions from the same transcript

(MMETSP0210: CAMNT_0008285195), with trans-

lation through a UAG sense codon and termination

at a UAG stop codon (codon state verified by ribo-

seq). CDS, coding sequence; 30 UTR, 30 UTR; eRF1,
eukaryotic release factor 1; eRF3, eukaryotic

release factor 3; PABP, poly(A)-binding protein;

standard amino acids are indicated by circles. Pu-

tative interaction between eRF3 and PABPs, as in-

ferred from experimental evidence in yeast (Cosson

et al., 2002), is indicated by a dotted bidirectional

arrow. Ribosome position and the protected mRNA

span are illustrated as inferred from C. magnum

RPFs and from estimates of other eukaryotic ribo-

somes (Chung et al., 2015).
to substitutions that would cause premature translation termina-

tion in the standard genetic code. A potential drawback of such

robustness is that large insertions at 30 transcript ends may

expose stops that were previously translated. However, large in-

sertions likely occur much less often than substitutions, and the

strong purifying selection governing non-protein-coding regions

in the heterotrich and karyorelict genomeswill inhibit progressive

transcript end lengthening.

In summary, we propose that ambiguous ciliate genetic codes

are resolved by context-dependent translation termination, and

the reason why ciliates possess such diverse genetic codes is

that their ancestors had the ability to thrive for extended periods

with ambiguous genetic codes, as epitomized by C. magnum.

Together with the other variant genetic codes, these codes

show that the standard nuclear genetic code is not necessarily

an evolutionary dead end and that genetic codes can occasion-

ally be observed in a state of flux. As highlighted here, the ambig-

uous genetic codes of C. magnum and Parduczia sp. also have

ramifications for our understanding of the suppression of trans-

lational readthrough, as well as how nonsense-mediated decay

(NMD) and selenocysteine translation operate (conserved pro-

teins from both of these pathways are present in ciliates with

ambiguous genetic codes; see e.g., Figure S2E). To facilitate

future investigations concerning how sense is distinguished

from stop and related questions about codon disambiguation,

we have made a draft C. magnum macronuclear genome avail-

able under the accession number European Nucleotide Archive:

GCA_001499635.1.

EXPERIMENTAL PROCEDURES

See the Supplemental Experimental Procedures for additional detailed

protocols.

Transcriptomes Analyzed

Transcriptomes for C. magnum (MMETSP0210), Parduczia sp. (MMETSP1317),

and other eukaryotes assembled as part of MMETSP (Gentekaki et al., 2014;

Keeling et al., 2014))were used to identify genetic codes and analyze stop codon

usage.We also predicted genetic codes after de novo assembling the transcrip-

tomes of two peritrichous ciliates:Campanella umbellaria andCarchesium poly-

pinum (NCBI short read archive: SRR1768423 and SRR1768437, respectively;

data from a recent phylogenomic study) (Feng et al., 2015) with Trinity (Grabherr

et al., 2011) (default parameters, version: trinityrnaseq_r20140717).
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Prediction of Alternative Stop Codon Reassignments

To predict codon reassignments, we simplified and refined the key steps of a

method developed for such prediction (Dutilh et al., 2011), which identifies co-

dons aligned to conserved amino acids in hiddenMarkovmodels inferred from

multiple sequence alignments. Dutilh et al. (2011)maybeconsulted for a graph-

ical outline and more details of the method. This method builds upon and ad-

vances the classical method of inspecting conserved positions in multiple

sequence alignments of homologous protein sequences to infer codon reas-

signments. First, we generated a database of peptide sequences by translating

nucleotide sequences in all six frames with the standard genetic code,

recording standard stop codons as ‘‘X’’ (any amino acid). Next, we used

HMMER3.1b (http://hmmer.org) to search andalign thehiddenMarkovmodels

from thePfam-Aprotein domain database (release 27) (Finn et al., 2014) against

the translated sequences. Using a customPython script, the alignment outputs

were filtered at a conditional e-value threshold <1e-10.We then simultaneously

scanned through the Pfam consensus, aligned database match and its under-

lying coding sequence, recording the codon and consensus amino acid for

well-conserved amino acids at R50% frequency in columns of the multiple

sequence alignment used to build the Pfam model. From the resultant counts

of aligned amino acid/codon pairs (mi,j; i = 1..64 codons, j = 1..20 amino acids)

a 20 amino acid by 64 codonmatrix,M, was created, with each entry scaled by

the sumof the counts for each amino acid (i.e.,M=mi;j=
P

imi;j ). Thismatrix was

used to generate a sequence logowithWebLogo3.3 (Crooks et al., 2004) (com-

mand line switches: ‘‘–scale-width no -c chemistry -U probability -A protein’’).

Note that the lower frequency amino acids shown in the genetic code logos

generated by this procedure typically reflect the underlying codon mutational

space, but may also be subject to noise, and the focus for codon reassignment

prediction should be on the highest frequency amino acid. Genetic code

sequence logos for all MMETSP transcriptomes are provided as Data S1A (cil-

iates) and Data S1B (nonciliates). See Table S1 for a summary of the ciliate ge-

netic code predictions. An explanation of stop codon identification is provided

in the Supplemental Experimental Procedures.

Ribosome Profiling

Illumina’s TruSeq Ribo Profile (Mammalian) kit was used for ribosome profiling.

A total of 32,000 C. magnum cells (strain COL2) were isolated, gently pelleted

at 280 3 g for 2 min in 100 ml pear-shaped centrifuge tubes, then washed in

clean saline solution and centrifuged again at 280 3 g for 2 min to remove

excess algae. The cleaned C. magnum cell pellet was incubated in saline so-

lution with 0.1 mg/ml cycloheximide for 1 min. Cells were rinsed with 10 ml

PBS, 0.1 mg/ml cycloheximide, pelleted at 280 3 g, and excess liquid was

removed with a micropipette. Pelleted cells were lysed in TruSeq Ribo Profile

lysis buffer using a syringewith a 21G needle. The TruSeq Ribo Profile protocol

was followed for the remaining ribosome profiling steps. Three concentrations

of TruSeq Ribo Profile Nuclease (3 U, 10 U, and 30 U) were used to generate

ribosome-protected fragments (RPFs), which were purified with MicroSpin

S-400 columns. Ribo-Zero Gold Yeast rRNA depletion was performed on pu-

rified RPFs. DNA libraries isolated from 15 (10 U) or 17 (3 U, 10 U) cycle PCRs

http://hmmer.org


were multiplexed and sequenced on one lane of a HiSeq 2500 sequencer by

Fasteris SA (Switzerland). Ribosome profiling data are available from the Euro-

pean Nucleotide Archive: ERS1066482–ERS1066484. After adaptor trimming,

reads were mapped to 1,672 poly(A)-tailed, translation frame inferred Trinity

assembled transcripts (see the Supplemental Experimental Procedures)

with STAR (parameters:‘‘–alignIntronMin 12 –alignIntronMax 25’’). Reads

with 0 or 1 mismatches to the transcripts were used in ribo-seq analyses.
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The accession number for the draft of the C. magnum macronuclear genome

reported in this paper is European Nucleotide Archive: GCA_001499635.1.
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Figure S1. Predicted Codon Translations of Parduczia sp. and B. japonicum, Related to Figure 1

Stop codons in the standard genetic code are highlighted by orange rectangles. Coding sequence codon usage is listed below each codon in percentage.

(A) Parduczia sp.

(B) B. japonicum. Codon usage for Parduczia sp. and heterotrichs is provided in Data S1C.
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Figure S2. Sense and Stop Codons in C. magnum and Parduczia sp., Related to Figure 2

(A) Region of a multiple sequence alignment of fumarate hydratase coding sequences highlighting UAA and UAG stop codons. Sequence accessions from

GenBank are: NM_001184076 - S. cerevisiae; XM_001747580 -M. brevicolis; XM_002180443 - P. tricornutum; XM_002998645 - P. infestans; XM_005717962 -

C. crispus; XM_002952102 - V. carteri; CCKQ01008699 - S. lemnae. Parduczia sp. and C. magnum are transcripts MMETSP1317: CAMNT_0047611615 and

MMETSP0210: CAMNT_0008295093, respectively.

(B) A putative UAA terminated gene encoding a cyclophilin protein is shown with mapped poly(A)-tailed reads. Red A’s not matching the reference sequence

indicate the presence of untemplated poly(A) tails. The yellow arrow indicates a coding sequence (CDS) 30 end. Note that from multiple sequence alignments

alone it is uncertain which of the UAAs after the indicated CDS is a stop. A downstream transcript overlaps with the upstream transcript, but, as indicated by

paired-end reads, these transcripts are completely separate (Data S1S and S1T). Left transcript: MMETSP0210: CAMNT_0008294993; contig:

19477__len__16004 is shown; additional UAA ending CDSs are MMETSP0210: CAMNT_0008292199 and MMETSP0210: CAMNT_0008294929 (both CDSs are

in the +3 translation frame).

(C) RPFs mapped to the transcript corresponding to a transcript of the gene in (B) showing that termination exclusively occurs at the first of the two UAA codons.

This example also shows the characteristic translation terminating RPF 30 end locations, 11/12 nt downstream of primary UAA stop codon. Light blue graph

shows the coverage by RPFs, shown on a log scale. Data S1AM and S1AN.

(D) Ribo-seq read mapping to Trinity transcript c22364_g1_i1. Data S1AO,AP.

(E) Multiple sequence alignment of thioredoxin reductase homologs. MMETSP IDs are MMETSP0210: CAMNT_0008293887 for C. magnum and MMETSP1317:

CAMNT_0047591293 for Parduczia sp.; MMETSP1345: CAMNT_0049039981, MMETSP1397: CAMNT_0052074549, MMETSP1395: CAMNT_0049649177,

MMETSP1380: CAMNT_0042421825 for the remaining ciliates; Homo sapiens thioredoxin reductase is from GenBank NM_001093771. In mammals and other

eukaryotes the penultimate sense codon (1975-1977 in the multiple sequence alignment) encodes a catalytic selenocysteine (Lee et al., 2000). The position of the

thioredoxin selenocysteine codon inC. magnum and Parduczia sp. is shortly before the SECIS element, contrary to a model proposing the necessity of a minimal

distance of 51-111 nt between selenocysteine UGA codons and SECIS elements (Martin et al., 1996).
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Figure S3. Properties of Ribo-seq Data at Sense and Stop Codons, Related to Figure 3

(A and B) Distributions for 10U and 30U of TruSeq Ribo Profile nuclease used to produce RPFs. The peak RPF length is at 28 nt andmost RPF 50 starts and 30 ends
are in frame 1 as for Saccharomyces cerevisiae RPFs (Ingolia et al., 2009).

(C–H) Distribution of 30 nt RPFs for individual sense and stop UAG, UGA and UAA codons (positions 1 to 3) in Trinity assembled transcripts.

(I) 30 nt RPF coverage of UAA, UGA and UAA codons located 24-66 nucleotides upstream of their stops.

(J) RPF 30 end distribution around stop codons for 25-31 nt RPFs; frequencies of RPF ends are calculated for each RPF length.

(K) Stop codon readthrough. See the Supplemental Experimental Procedures for the manner in which readthrough was measured.
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Figure S4. Additional Predicted tRNAs, Related to Figure 4

(A) mitochondrial genome-encoded tRNATrp(UCA) found on Minia assembly mitochondrial contig 3__len__11145 (positions 198-128).

(B) macronuclear genome-encoded tryptophan tRNA found in the Minia assembly

(C) represents two macronuclear genome-encoded tryptophan tRNAs with CCA anticodons with a single base difference between the forms. Judging from our

assemblies there may be more than three C. magnum tRNATrp(CCA) paralogs.

(D) Predicted tRNA(UCA) with a low tRNAscan-SE score.

(E) Alternative tRNA structure predicted by ARAGORN for the same region as (D). Free energies calculated by RNAeval (default parameters) for the RNAfold

centroid structure and the ARAGORN structures for (D) and (E), are -21.3 and -15.6 kcal/mol, respectively.

(F) Selenocysteine tRNA(UCA) found by ARAGORN (Laslett and Canback, 2014). The selenocysteine tRNA is found in the draft C. magnum genome assembly

contig 24660__len__69094 (positions 7543-7626).
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Figure S5. Factors Responsible for Discrimination of Stop from Sense, Related to Figure 6

(A) Sequence logos of regions surroundingC. magnumUAA, UAG and UGA sense codons. For the central sense codon itself the underlying base frequencies are

shown, not bit scores as for the surrounding bases.

(B) Sequence logos of regions surrounding C. magnum UAA, UAG and UGA stop codons. For the central stop codon itself the underlying base frequencies are

shown.

(C) Graphs like those of Figure 5 for Parduczia sp. Transcript ends begin, and include 0, 1, or 2 nucleotides of the poly(A) tail (position 0) tomaintain reading frame.

The top two subgraphs showing UAA, UAG and UGA counts are for the same data drawn to different scales.
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Figure S6. Codon Usage of mRNA 30 Ends, Related to Figures 5 and 6

Vertical line at 39 nt as in Figure 6 indicates approximately where stop codons begin (hence the frequency of 30 UTR sequences downstream of this increases up

to the poly(A) tail addition site (+1)).
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Figure S7. Evaluation of Alternative Hypotheses for Stop Codon Reassignments in Ciliates, Related to Figure 1

(A) Multiple sequence alignment underlying the phylogeny in Figure 1A; sequences obtained from UniProt; downloaded Feb 22, 2015. Only the N-terminal half of

the alignment is shown. The full alignment can be obtained from Data S1U. Stop codon reassignments are shown to the left of the figure. For clarity ambiguous

codons of C. magnum and Parduczia sp. only have the amino acid reassignment shown. Coordinates are according to those in Lozupone et al., 2001. Sites

marked with inverted triangles are those in Lozupone et al., 2001 that were proposed to distinguish the eRF1 of ciliates with UAR or UGA assignments from other

eRF1s, and to be sites of convergent evolution between Stylonychia/Oxytricha and Tetrahymena (*) or Euplotes and Blepharisma (x) (e.g., L123*FxI convergently

changed to F in Stylonychia/Oxytricha and Tetrahymena and to I in Euplotes and Blepharisma). For each of these sites there are exceptions to the hypothesis that

convergent amino acid changes in eRF1 have led to the independent evolution of the same genetic codes in different ciliate lineages; for example, L123F

substitutions are not found in multiple ciliates with UAR = glutamine reassignments.

(B) Stop codon usage of transcripts ending with poly(A) tails (one transcriptome per species, for species withR 50 identified stop codons; see Data S1W for exact

values for each species). UGA is rarely a stop in C. virens (5%) and F. salina (1%), and UAG is rarely a stop in F. salina (4%). Ciliates with standard genetic codes

from two other classes also have very skewed UAA stop codon usage: 85% in Litonotus pictus (class Litostomatea), and 98.5% in Nyctotheris ovalis (class

Clevelandellida) (Ricard et al., 2008). In B. japonicum, which translates UGA as tryptophan (Figure S1B), UAA (91%) is also strongly favored.

(C) Comparison of A and G composition of 4-fold synonymous sites (proxies for neutral site base composition) from ESTScan coding sequence predictions. Each

data point represents one MMETSP species. 4-fold synonymous sites forC. magnum are 34% A and 15%G; and for Parduczia sp., 27% A and 19%G. Note that

the transcriptomes underlying the data points are a combination of ciliate transcripts and transcripts from other sources (e.g., ciliate food); the latter transcripts

typically originate frommore GC rich genomes and so deflate the%A and inflate the%Gof the ciliate 4-fold sites. In certain transcriptomes, e.g., those belonging

to the genus Mesodinium, a large proportion of the transcripts are of non-ciliate origin (indicated in Table S1).

(D) Relationship of UAA usage to 4-fold synonymous site A usage. A linear regression is indicated with a dashed line, with its correlation coefficient and the two-

tailed p value for testing with the null hypothesis of a regression slope of zero below the line. Ciliates with variant codes, other thanBlepharisma japonicum, are not

indicated because their codes lead to widespread mispredictions of stop codons by ESTScan (in the case of B. japonicum, we removed all the predictions with

UGA stops as none of the stops appeared to be genuine).
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Supplemental Experimental Procedures 
 
Condylostoma magnum culturing 
Condylostoma magnum strain COL2 (500-550 μm longest dimension) was isolated in 2007 as a single cell from rocky seaside 
pools near the Accademia Navale in Livorno, Italy. Cells were kept at room temperature and fed regularly with Dunaliella 
tertiolecta and occasionally with Phaeodactylum tricornutum. To grow D. tertiolecta and P. tricornutum, a saline solution was 
made with the following: 37 g of Red Sea Salt (company: Red Sea), 1 ml of Walne’s solution (Walne, 1970) and 1 drop of 
multivitamin complex B (B1, B6, and B12; Bayer Benexol B12) made up to 1L with distilled water. Walne’s solution was 
prepared as: 100 g NaNO3, 45 g EDTA (disodium salt), 33.6 g H3BO3, 20 g NaH2PO4.H20, 0.36 g MnCl2, 1.8 g EDTA 
(disodium salt), 1 ml of TMS (Trace Metal Solution: 2.1 g ZnCl2, 2.0 g CoCl2.6H2O, 0.9 g (NH4)6Mo7O24.4H2O, 2.0 g 
CuSO4.5H2O, H2O to 100 ml; acidified with a few drops of concentrated HCl to clarity), made up to 1 L in distilled water. The 
microalgal culture was incubated at 19°C with a 12 h light/dark cycle (Osram Daylight lamp, 36W/10 and Osram Fluora lamp, 
40W/77). 
 
Checks for potential contaminating transcripts 
To check for possible contaminants (e.g. from the algal food source, Pheodactylum tricornutum) among the assembled C. 
magnum transcripts we examined sequence base composition and assembled rRNAs (MMETSP: CAMNT_0008266115, 
CAMNT_0008312561). Base composition is unimodal (mode 33% GC) and no rRNAs other than from C. magnum were found, 
suggesting that this data is predominantly comprised of C. magnum transcripts. C. magnum's food source, the diatom P. 
tricornutum (European Nucleotide Archive (ENA): GCA_000150955.2), has transcripts that are more GC rich (mode 50% GC) 
than those of C. magnum, and has the standard genetic code (Data S1F). As evidenced by the absence of Pfam domains (Finn et 
al., 2014) matching typical mitochondrially-encoded ciliate proteins (e.g. COX1, COX2, COB, NAD5) during HMMER3 (Eddy, 
2014) searches (default parameters, independent e-value < 1e-3) of the assembled C. magnum RNA-seq data, mitochondrial 
transcript levels are negligible. 
 
Shotgun proteomics and verification of translation of UGA as tryptophan 
200 μl of C. magnum cells (> 30,000 cells) were lysed in 1 ml of protein loading buffer (from a 10 ml stock of 2 ml 10% SDS; 
1.2 ml 0.5 M Tris-Cl pH 6.8; 4.8 ml 50% glycerol; 1.2 mg Bromophenol blue; 500 μl β-Mercaptoethanol; 1.5 ml ddH20) and 
stored at -20˚C until further processing. 5 μl of this sample was incubated at 95˚C for 5 minutes. SDS-PAGE was used to 
separate the proteins with a 5% stacking gel (2.2 ml ddH20; 0.67 ml 30% acrylamide/Bis solution (Bio-Rad); 1 ml Tris-Cl (0.5 
M, pH 6.8); 0.04 ml 10% SDS; 0.04 ammonium persulfate; 4 μl TEMED) on top of a 10% resolving gel (5.9 ml ddH20; 5.0 ml 
30% acrylamide/Bis solution (Bio-Rad); 3.8 ml Tris-Cl (0.5 M, pH 6.8); 0.15 ml 10% SDS; 0.15 ammonium persulfate; 6 μl 
TEMED) an electrophoresis buffer (3.2 g Tris; 14.4 g glycine; 1 g SDS made up to 1 L with ddH20). After staining the gel with 
InstantBlue (Expedeon) and destaining in a 10% acetic acid, 25% methanol solution, 10 slices of ~1 mm width were cut from 
the resolving gel, and diced into six ~1 mm3 cubes which were stored in 20% ethanol at -20˚C before further processing.  
 
Gel cubes were washed with 50 mM Tris/HCl pH 8 (Tris buffer) and Tris buffer/acetonitrile (LC-MS grade, Fluka, Buchs, 
Switzerland) 50/50 before protein reduction with 50 mM DTT (Fluka, Buchs, Switzerland) in Tris buffer for 30 min at 37°C, 
and alkylation with 50 mM iodoacetamide (Fluka, Buchs, Switzerland) in Tris buffer for 30 min at 37°C in the dark. The gel 
cubes were then soaked with trypsin solution (10 ng/ml trypsin (Promega) in 20 mM Tris/HCl pH 8, 0.01% ProteaseMax 
(Promega)) for 30 min on ice, then covered by 5–10 ml 20 mM Tris/HCl before digestion for 60 min at 50°C. A 5 μl injection of 
the protein digest was then analyzed by liquid chromatography-tandem mass spectrometry (LC)-MS/MS (DIONEX Ultimate 
coupled to a QExactive mass spectrometer, ThermoFisher Scientific). Peptides were trapped on an Acclaim PepMap100 C18 
pre-column (3 μm, 100 Å, 75 μm×2 cm, ThermoFisher Scientific, Reinach, Switzerland) and separated by backflush on a C18 
column (5 μm, 100 Å, 75 μm×15 cm, Magic C18) by applying a 60 minute gradient of 5% to 40% acetonitrile in water and 0.1% 
formic acid, at a flow rate of 400 nl/min. The full-scan method was set with resolution at 70,000 with an automatic gain control 
(AGC) target of 1e06 and maximum ion injection time of 50 ms. The data-dependent method for precursor ion fragmentation 
was applied with the following settings: resolution 17,500, AGC of 1e05, maximum ion time of 110 milliseconds, mass window 
2 m/z, collision energy 27, underfill ratio 1%, charge exclusion of unassigned and 1+ ions, and peptide match preferred, 
respectively. A database of six-frame translations of the C. magnum transcriptome assembly, translated with UAR=glutamine, 
UGA=tryptophan, was used as input for in silico peptide fragmentation and peptide identification by EasyProt (Gluck et al., 
2013) (default parameters: 1% false discovery rate and two peptides for acceptance of a protein identification).  
  
To verify tryptophan translation at UGA codons, we examined each of the peptides identified by mass spectrometry containing a 
tryptophan translated from a UGA codon (25 total; Data S1D). 22 of these peptides were in the same reading frame as the best 
BLASTX match of their transcript to O. trifallax predicted proteins (using the BLAST server at oxy.ciliate.org (Stover et al., 
2012; Swart et al., 2013); e-value < 1e-6), and each of the remaining three peptides had no BLASTX matches to the transcript 
from which it was derived. 
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Codon usage prediction 
To determine codon usage (Figure 1B and Figure S1) we extracted best BLASTX matching regions (-query_gencode 6; e-value 
< 1e-20) of coding sequences from poly(A) tailed MMETSP transcripts used as queries to an O. trifallax predicted protein 
database (Swart et al., 2013). For ciliates with the standard genetic code (e.g. the heterotrichs Climacostomum virens and Fabrea 
salina), our codon usage estimates for UAA, UAG and UGA codons are 0-0.008%, and appear to represent algorithmic errors 
(e.g. "stops" located close to the ends of BLAST matches, which may occur when the local alignment extends beyond true 
protein ends), and selenocysteine codons. Codon usage of the ciliates examined in this manuscript is provided as Data S1C. 
 
Stop codon and 3' UTR identification 
To predict the stops of C. magnum coding sequences in poly(A)-terminated transcripts (possessing a terminal poly(A) ≥ 7 nt), 
we visually inspected BLASTX (Camacho et al., 2009) results of C. magnum transcripts vs. proteins from O. trifallax (Swart et 
al., 2013) (local BLASTX; best BLASTX match; e-value < 1e-6; query genetic code 6); T. thermophila (Stover et al., 2012) and 
GenBank's nr (nonredundant) database were also used when there was uncertainty about the match ends from the O. trifallax 
BLASTX matches. The stop codon was chosen as the first UAA, UAG, or UGA codon downstream of the BLASTX match 
closest to the C-terminal end of the O. trifallax or T. thermophila proteins. Sequences where the top matches terminated close 
(~6 amino acids) to the predicted query stop codons were then selected. This procedure annotated 150 putative C. magnum 3' 
UTRs, and the coding sequence (CDS) regions upstream to the beginning of the best BLASTX matches (Data S1R). With the 
appropriate query genetic code and stop codons, this procedure was also used to annotate 50 3' UTRs from B. japonicum, 
Climacostomum virens, Euplotes crassus and Pseudokeronopsis sp., and 70 3' UTRs from Parduczia. sp. (Data S1R). Note that 
UAA terminated coding sequences are underrepresented in the resultant C. magnum data set (0% of transcripts) relative to those 
automatically inferred from the Trinity transcriptome (11%) described in the next paragraph. In our inspection of Parduczia sp. 
transcripts (by means of BLASTX matches to ciliates and other eukaryotes) we found no examples of coding sequences 
terminated by either UAG or UAA as stops. 
 
To generate larger data sets to analyze stop codons, Trinity (default parameters) was used to asssemble new transcriptomes from 
both the C. magnum and Parduczia sp. MMETSP RNA-seq data (Data S1X and Data S1Y, respectively). BLASTX searches 
(best matches; e-value < 1e-20; query genetic code 6) of poly(A)-tailed transcripts from C. magnum and Parduczia sp. vs. O. 
trifallax proteins were used to infer reading frame, excluding cases where the BLAST match was to the reverse complement of 
the strand possessing the poly(A). Poly(A) tails were trimmed down to 0, 1 or 2 nucleotides to maintain the reading frame when 
counting codons back from the transcript ends (position 0 in Figure 6; Figure S5 and S6). From these transcripts, single gene 
(Trinity classification), single isoform transcripts were selected for "stop" codon and ribo-seq analysis (yielding 1672 transcripts 
for C. magnum and 455 for Parduczia sp.; Data S1Z and S1AA).  
 
Based on our analysis of the 3' UTR length distributions of the curated MMETSP transcripts, we generated a data set of 
transcripts with only a single possible stop in the region 60 nt upstream of the poly(A)-tailed Trinity assembled transcripts 
(excluding the poly(A) tail length), yielding 294 transcripts (Data S1AB). For C. magnum transcripts with only a single possible 
stop, the frequencies of UAG, UGA and UAA stops are 62%, 25% and 13%, respectively. Scanning downstream from 60 nt 
upstream of the poly(A) tail to identify the first downstream "stop" codon, i.e. the putative primary stop, 1378 (82%) transcripts 
have additional possible stop codons downstream of the putative primary stop. As judged from ribosome profiling data, this 
procedure correctly classifies the bulk of primary stop codons (with little readthrough; Figure 3D and Figure S3D-H). The 
overall length distribution of the 3' UTRs downstream of the Trinity transcript putative primary stops is similar to that of the 
manually curated 3' UTRs (peaking around 18-21 nt). 12 of 39 (31%) 3' UTRs with UAA as the primary stop are of length 0. 
For zero nt 3' UTRs, 8 of 12 are consistent with the positions of stops in other organisms, as judged by BLASTX searches, 
and/or by RPFs ending 11/12 nt downstream of the UAA (compared to 17 of the 27 3' UTRs > 0 nt long assessed by the same 
criteria); no evidence suggests that the remaining four zero nt 3' UTRs are incorrect predictions. 
 
Stop codon readthrough detection and estimation 
The fraction of readthrough, r = covstop ÷ (covstop + covdownstream), is measured relative to the stop (positions +1 to +3) for 
transcripts with at least twenty 30 nt RPF 3' ends at positions +12 to +14 (the positions corresponding to the characteristic 
termination signal, as in Figure 3D). covstop = (30 nt RPF 3' end counts at positions +12 to +14) ÷ 3; covdownstream = (30 nt RPF 3' 
end counts from positions +17 to the 3' UTR end, excluding the poly(A) tail) ÷ (number of positions in 3' UTR at which 30 nt 3' 
RPF ends were counted). Note that due to the counting of only covered positions in the denominator of covdownstream, readthrough 
will be overestimated (if all the positions in the 3' UTR were used instead, readthrough would be underestimated). Transcripts 
are considered to be read through if r > 0. 
  
Stop codon usage estimation 
For the 670 MMETSP transcriptomes we downloaded, stop codon usage was estimated for poly(A)-ending (≥ 7 nt) contigs from 
the MMETSP ESTScan (Iseli et al., 1999) coding sequence predictions (Keeling et al., 2014) ending on TAA, TAG, or TGA. 
Transcriptomes with ≥ 50 putative stop codons were used for stop codon usage estimation, excluding ciliates with non-standard 
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genetic codes except B. japonicum. Note that UAA stop codon usage is underestimated for transcriptomes with a significant 
proportion of non-ciliate transcripts (often originating from the sources indicated in Table S1). A table of stop codon counts for 
these transcriptomes is provided in Data S1W. 
 
Sequence logos of regions flanking C. magnum sense and stop codons 
Sequence logos were created with WebLogo 3.3 (Crooks et al., 2004). For 3' UTRs, sequence logos use a compositional 
adjustment of 3' UTR base frequencies, excluding the stop codon and poly(A) tail (e.g. for C. magnum: A=39%, C=5%, G=13%, 
U=43%). For coding sequence (CDS) positions immediately upstream of the stop, a compositional adjustment is done frame-
wise for each of the three reading frames, based on manually curated coding sequence base frequencies (frame 1: A=32%, 
C=14%, G=33%, U=21%; frame 2: A=35%, C=19%, G=18%, U=28%; frame 3: A=31%, C=16%, G=19%, U=33%). 
 
Multiple sequence alignments 
MAFFT 7.017 (Katoh and Standley, 2013) was used for all multiple sequence alignments. The default parameters in Geneious 
7.1.4 (Kearse et al., 2012) were used for both alignment methods. 
 
dN/dS estimation 
dN/dS values were estimated using codeml version 4.7b (Yang, 2007) for a pairwise alignment of C. magnum tryptophan-tRNA 
ligase (CAMNT_0008287141) and Oxytricha tryptophan-tRNA ligase (GenBank: EJY83191.1). 
 
Genome sequencing, assembly and read mapping 
A NucleoSpin Plant II kit (MACHEREY-NAGEL) was used to isolate total DNA from a 0.1 ml of C. magnum cells pelleted 
from a 2 L culture. We assembled a draft C. magnum macronuclear genome using the Minia genome assembler (Chikhi and 
Rizk, 2013) with default parameters and a k-mer size of 85. An additional assembly produced by the IDBA_UD assembler 
(Peng et al., 2012) was also examined in some cases (e.g. tRNA searches). Over the larger C. magnum contigs we examined, we 
observe reasonably even sequence coverage (mean ~140×). As is typical of ciliates, C. magnum has a micronuclear genome in 
addition to its macronuclear genome. In this assembly, micronuclear sequences are likely to be minimal since macronuclear 
DNA is typically highly amplified in large ciliates (> 1000×) (Prescott, 1994). We were also able to assemble a large portion 
(29.9 kb) of the C. magnum mitochondrial genome (contigs 3__len__11145, 0__len__6198, 1__len__11219 and, 2__len__1536; 
identified by BLAST searches vs. other ciliate mitochondrial genomes). Due to C. magnum's unusual genetic code, an accurate 
automated gene prediction method still needs to be developed, and so we provide just the raw macronuclear genome assembly at 
present (European Nucleotide Archive accession: ERS696421). Paired-end reads were mapped to the draft C. magnum assembly 
using BWA (Li and Durbin, 2009) (default parameters). 
  
Computational tRNA identification 
tRNAscan-SE (Lowe and Eddy, 1997) with default parameters was initially used to predict tRNAs in the C. magnum Minia 
genome assembly. In our draft C. magnum genome assembly tRNAscan-SE did not detect a selenocysteine tRNA, but 
ARAGORN (default parameters) did (Figure S4F). 
 
BLASTN searches (word size of 4) of the draft C. magnum genome detected no additional paralogs of tRNATrp(CCA) beyond 
those identified by tRNAscan-SE. No reads among those mapped to C. magnum tRNATrp(CCA) genes with STAR ((Dobin et al., 
2013); default parameters) suggested the presence of unassembled sequences from undetected close tryptophan tRNA paralogs. 
ARAGORN (Laslett and Canback, 2004) searches (default parameters) found no C. magnum tRNATrp(UCA)'s at the read level, 
other than the mitochondrial and selenocysteine tRNAs (Figure S4A and S4F, respectively; Data S1H).  
 
Reducing tRNAscan-SE's Cove cutoff score to 10 allowed the discovery of a single putative tRNA(UCA) with a Cove score of 
11.51 (Figure S4D; Data S1G; on contig 14671__len__38937). This tRNA has an unusual eight base anticodon with a potential 
UCA anticodon complementary to the UGA codon and falls in a region with no mapped MMETSP RNA-seq reads (using 
STAR; Data S1I,J). For the same sequence plus one base, a leucine tRNA with a CAA anticodon is predicted by ARAGORN 
(Laslett and Canback, 2004) (Figure S4E; default parameters), making the anticodon recognized by the lower scoring 
tRNAscan-SE prediction doubtful. Only one other tRNA (Cove score 12.54) was found below the default scoring threshold of 
20, and had no possible UCA anticodon. This tRNA also falls in a region with no mapped MMETSP RNA-seq reads (Data 
S1M,N). Expression of these candidate tRNAs is supported by tRNA-derived sRNA-seq reads, including reads with CCA tails 
characteristic of mature tRNAs (see next section; Data S1K,N).  
 
sRNA-seq for tRNA identification and searches for tRNATrp(CCA) anticodon editing 
Total RNA was isolated from > 1000 cells using an miRNAeasy Mini kit (Qiagen). 60-100 nt RNAs were size-selected on an 
electrophoretic gel and paired-end RNA-seq libraries (125 bp reads, only one direction was provided) were prepared using 
standard Illumina protocols by Fasteris (Geneva, Switzerland). After quality control and adaptor trimming by Fasteris there were 
1.9 million 10-99 bp reads. Raw reads were deposited in the European Nucleotide Archive (accession numbers: ERS744875 and 
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ERS744876). 30-89 bp reads were mapped to the entire tRNA-encoding contigs using BWA (Li and Durbin, 2009) with default 
parameters.  
 
To facilitate ease of viewing we extracted all the reads mapping to tRNATrp(CCA) genes in our assembly and mapped them back 
to a representative tRNA on contig 27450__len__809 with the Geneious read mapper and default maximum sensitivity 
parameters (Data S1P). None of the 164 reads mapping through or up to the first codon of the tRNATrp(CCA) anticodons had 
evidence of 1st position anticodon C→U editing (Data S1P,Q). 
 
Searches for tRNATrp(CCA) anticodon editing by RT-PCR and Sanger sequencing  
To search for CCA→UCA anticodon editing we performed either single cell RT-PCR (Trp1 and Trp2 primer combinations 
described later in this paragraph) or RT-PCR on RNA isolated from 15 C. magnum cells with the miRNAeasy Mini kit (Qiagen) 
in 30 ul of nuclease free water (Trp2_f and Trp2_rM primer). Single cells were isolated with a Gilson pipette and washed 
several times in saline water (33 g/L NaCl) followed by a single wash in distilled water. Individual cells in 2 ul of water, or 2 ul 
of purified RNA, were combined with 1 ul of reverse transcription primers, 1 ul dNTPs and 6 ul of nuclease free water. Cells 
were lysed at 65°C for 5 min. Reverse transcription was performed using Superscript III reverse transcriptase (Life 
Technologies). The following primers were used (primer names with "_r" suffixes were used for cDNA synthesis): Trp1_f: 
GGGGCTATAGCTCAGCGGAAG, Trp1_r: GTGAGGCTAGAGCGATTTGAACG, Trp2_f: 
GGGGCTATAGCTCAATGGTAGAG, Trp2_r: GTGAGGCTAGAGCGATTCGAAC, Trp2_rM: 
TGGTGAGGCTAGAGCGATTC. PCR products purified with the Wizard SV Gel and PCR Cleanup Kit (Promega) were 
cloned into pGEM-T easy vectors (Promega). Plasmids containing the RT-PCR products were isolated with the Wizard Plus SV 
Miniprep DNA Purification kit (Promega) before being Sanger sequenced by Microsynth (Switzerland).  
 
In total 77 tRNATrp sequences were obtained (20 - "Trp1" and 37 - "Trp2" and 20 – “Trp2M”; Data S1O). Just one of 77 
sequenced clones had a C→T substitution at the 1st anticodon position (Data S1O,Q); however, since none of the 164 reads 
obtained from Illumina sRNA-seq had this substitution it seems more likely that it is an RTase or PCR error rather than a 
genuine editing event. 
 
Detection of selenocysteine UGA codons 
In Figure 6 and Figure S5 counts of a few UGA codons in selenogenes can be seen. The C. magnum and Parduczia sp. 
transcriptomes both encode selenogenes with the necessary SECIS (selenocysteine insertions sequence) elements for 
selenocysteine translation. As an example of these selenogenes, both transcriptomes encode a thioredoxin gene whose single 
catalytic selenocysteine is encoded by a UGA codon, just one codon upstream of its stop (also UGA; Figure S2E). 
 
eRF1 phylogeny 
To create an eRF1 phylogeny 16 representitive, manually annotated ciliate eRF1 protein sequences from MMETSP transcripts 
were chosen. Two additional predicted protein sequences for Oxytricha trifallax and Tetrahymena thermophila, were obtained 
from www.ciliate.org, and a human eRF1 protein sequence was obtained from UniProt (accession:P62495). Carchesium 
polypinum eRF1 was obtained from a manually annotated transcript from its Trinity transcriptome assembly. All the eRF1 
sequences were then aligned using MAFFT (default parameters in Geneious 7.1.4). This alignment can be seen in Figure S7. To 
produce the phylogeny, a conserved block of 429 amino acids was manually selected as the input alignment for PhyML 
(Guindon et al., 2010) (substitution model LG, 100 bootstrap replicates, default parameters in Geneious 7.1.4). 
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Supplemental Tables 
 
Table S1. Ciliate genetic codes. Related to Figure 1. 

ID "Stop" assignments Class Family Bionomial name Strain Food/host 
Contami
-nation 

  UAA UAG UGA             

MMETSP0127 * * * Colopdea Platyophryidae Platyophrya macrostoma WH 

Bodo caudatus, 
Enterobacter 
aerogenes yes  

MMETSP1317 Q Q W/* Karyorelictea Geleiidae Parduczia sp. NA ? no 
MMETSP1395 * * W Heterotrichea Blepharismidae Blepharisma japonicum Stock R1072 bacteria low 
MMETSP1345 * * * Heterotrichea Climacostomidae Fabrea salina Unknown bacteria low 
MMETSP1397 * * * Heterotrichea Climacostomidae Climacostomum virens Stock W-24 bacteria no 

MMETSP0210 Q/* Q/* W/* Heterotrichea Condylostomatidae Condylostoma magnum COL2 
Phaeodactylum 
tricornutum no 

MMETSP0209 * * * Litostomatea Litonotidae Litonotus pictus P1 
Euplotes 
crassus no 

MMETSP0467 Y Y * Litostomatea Mesodiniidae Mesodinium pulex SPMC105 

Heterocapsa 
rotundata 
MMETSP0503 yes 

MMETSP0798 Y Y * Litostomatea Mesodiniidae Mesodinium rubra CCMP2563 
Geminigera 
cryophila yes 

MMETSP1018 Q Q * Oligohymenophorea Orchitophryidae Anophryoides haemophila AH6 lobster no 
MMETSP1019 Q Q * Oligohymenophorea Orchitophryidae Anophryoides haemophila AH6 lobster low 

MMETSP0125 Q Q * Oligohymenophorea Unknown Aristerostoma sp. ATCC 50986 
Klebsiella, 
other bacteria no 

MMETSP0018 Q Q * Oligohymenophorea Uronematidae Uronema sp. Bbcil ? no 

MMETSP0472 Q Q * Prostomatea Colepidae Tiarina fusus LIS 
Rhodomonas 
lens yes 

MMETSP0205 * * C Spirotrichea Euplotidae Euplotes focardii TN1 
Dunaliella 
tertiolecta low 

MMETSP0206 * * C Spirotrichea Euplotidae Euplotes focardii TN1 
Dunaliella 
tertiolecta yes 

MMETSP0213 * * C Spirotrichea Euplotidae Euplotes harpa FSP1.4 

Dunaliella 
salina and 
Dunaliella 
tertiolecta no 

MMETSP1380 * * C Spirotrichea Euplotidae Euplotes crassus CT5 
Dunaliella 
tertiolecta low 

MMETSP0216 * * * Spirotrichea Protocruziidae Protocruzia adherens Boccale 
Dunaliella 
tertiolecta no 

MMETSP0211 Q Q * Spirotrichea Pseudokeronopsidae Pseudokeronopsis sp. OXSARD2 
Phaeodactylum 
tricornutum ? 

MMETSP1396 Q Q * Spirotrichea Pseudokeronopsidae Pseudokeronopsis sp. Brazil 

bacteria, 
Phaeodactylum 
tricornutum no 

MMETSP0123 Q Q * Spirotrichea Ptychocylididae Favella ehrenbergii Fehren 1 

Heterocapsa 
triquetra, 
Mantoniella 
squamata, 
Isochrysis 
galbana no 

MMETSP0434 Q Q * Spirotrichea Ptychocylididae Favella taraikaensis 

Fe 
Narragansett 
Bay 

Heterosigma 
akashiwo 
CCMP3107 no 

MMETSP0436 Q Q * Spirotrichea Ptychocylididae Favella taraikaensis 

Fe 
Narragansett 
Bay 

Heterocapsa 
triquetra, 
CCMP 448 no 

MMETSP0208 Q Q * Spirotrichea Strombidiidae Strombidium inclinatum S3 
Dunaliella 
tertiolecta no 

MMETSP0449 Q Q * Spirotrichea Strombidiidae 
Strombidium  
rassoulzadegani ras09 

Tetraselmis 
chui PLY429 no 

MMETSP0126 Q Q * Spirotrichea Strombidinopsidae 
Strombidinopsis  
acuminatum SPMC142 

Heterocapsa 
triquetra, 
Rhodomonas 
sp. (CCMP 
755), 
Mantoniella 
squamata, 
Isochrysis 
galbana yes 

MMETSP0463 Q Q * Spirotrichea Strombidinopsidae Strombidinopsis sp. SopsisLIS2011 
Rhodomonas 
lens low 
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