1	Supplemental Information for "Mechanical genomics identifies diverse
2	modulators of bacterial cell-stiffness"
3	
4	George K. Auer ¹ , Timothy K. Lee ^{2,^} , Manohary Rajendram ^{3,^} , Spencer Cesar ⁴ ,
5	Amanda Miguel ² , Kerwyn Casey Huang ^{2,4,*} , and Douglas B. Weibel ^{1,3,5,*}
6	
7	1. Department of Biomedical Engineering, University of Wisconsin-Madison, Madison,
8	WI 53706, USA
9	2. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
10	3. Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706,
11	USA
12	4. Department of Microbiology and Immunology, Stanford University School of
13	Medicine, Stanford, CA 94305, USA
14	5. Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706,
15	USA
16	
17	[^] Equal contributions
18	
19	*To whom correspondence should be addressed: <u>weibel@biochem.wisc.edu</u> and
20	kchuang@stanford_edu

21 SUPPLEMENTAL FIGURES

_0	
24	embedded in 1% agarose, related to Figure 1.
25	(A) Optical density of <i>E. coli</i> BW25113 cells embedded in 1% agarose exhibits
26	an approximately linear increase with increasing cell density. Shaded
27	region represents one standard deviation above and below mean growth
28	curve ($n = 3$ curves).
29	(B) When <i>E. coli</i> BW25113 cells were treated with norfloxacin at three times
30	the minimum inhibitory concentration (MIC), we observed induction of
31	the SOS response in both liquid and agarose. Cells with a <i>sulA</i> promoter
32	fusion to GFP were grown in wells of a 96-well plate and fluorescence (λ_{ex}
33	= 485 nm, λ_{em} = 515 nm) was quantified using a plate reader. To normalize
34	fluorescence signal to cell density, the optical density was monitored at λ =
35	595 nm. Shaded regions represent one standard deviation above and
36	below mean growth curves ($n = 3$ biological replicates). A.U., arbitrary
37	units.
38	(C-I) SOS induction was negligible in both liquid and agarose for wild-type
39	cells and six mutants with large-magnitude GRABS scores. Optical density

and fluorescence was monitored as in (B).

40

Figure S1: Measurement of optical density and SOS response of *E. coli* cells 23

Figure S2: $\Delta mrcA$ and $\Delta mrcB$ cells have distinct mechanical properties, yet their growth rates in liquid and cell morphology in liquid and agarose are similar to each other, related to Figure 2.

49	B)	$\Delta mrcA$ and $\Delta mrcB$ cells have similar growth rates, with slight growth-
50		rate deficiencies relative to wild-type, in liquid LB. Growth curves
51		were measured by monitoring optical absorbance. Solid lines represent
52		the mean over $n = 3$ curves. Shaded regions represent one standard
53		deviation away from the mean. Maximum growth rates, obtained by
54		fitting to a Gompertz relation: (BW25113, 0.01 min ⁻¹ ; $\Delta mrcA$, 0.0072
55		\min^{-1} ; $\Delta mrcB$, 0.0077 \min^{-1}).
56	C)	Phase-contrast images of <i>E. coli</i> BW25113, $\Delta mrcA$, and $\Delta mrcB$ cells
57		grown in liquid LB. Scale bar: 5 μm.
58	D)	$\Delta mrcA$ and $\Delta mrcB$ cells have similar cellular dimensions as wild-type
59		cells ($n \ge 217$ cells for each strain). Error bars represent one standard
60		deviation from the mean.
61	E)	$\Delta mrcA$ cells have a GRABS score indicating that their stiffness is
62		similar to wild-type cells. By definition, wild-type cells have a GRABS
63		score of zero because all measurements are normalized to the wells
64		containing wild-type cells. Error bars are one standard deviation away
65		from the mean $(n = 4)$.

67	Figure S3: Distributions of GRABS scores over time for all Keio strains and
68	their correlation to cellular dimensions, related to Figure 2.
69	(A)Distribution of GRABS scores over time. GRABS scores were calculated as
70	described in the Extended Experimental Procedures, but with the time
71	point of the final OD measurement varied from $t = 3$ h to $t = 14$ h. Curves
72	are shown with variable shifts along the y -axis for visual clarity. The
73	largest range of GRABS scores occurred after ~8 h of growth.
74	(B) Distribution of OD values for agarose-embedded growth over time. Kan,
75	kanamycin.
76	(C) Distribution of OD values for liquid growth over time. Kan, kanamycin.
77	(D)GRABS scores are not significantly correlated with average cell width, $n \ge 1$
78	100 cells for each strain. (Extended Experimental Methods; $p = 0.075$)
79	(E) GRABS scores are not significantly correlated with average cell length, $n \ge 1$
80	100 cells for each strain. (Extended Experimental Methods; $p = 0.68$)

validate GRABS measurements of Keio strains, related to Figure 2.

A) Complementation of four genes that yielded large decreases in GRABS
 score (*mrcB*, *lpoB*, *hfq*, and *hscA*) and two genes that produced

86		essentially no stiffness change (<i>mrcA</i> and <i>lpoA</i>) resulted in recovery of
87		mechanical defects when the cells were embedded in 1% agarose.
88		Average growth curves (solid lines) of agarose-embedded E. coli
89		BW25113 cells with an empty vector (green) compared to growth
90		curves of Keio BW25113 mutants complemented in trans indicate 80-
91		100% recovery after 8 h in $\Delta mrcB$, $\Delta lpoB$, Δhfq , and $\Delta hscA$ and no
92		change in $\Delta mrcA$ and $\Delta lpoA$. Shaded regions represent one standard
93		deviation above and below mean growth curves ($n = 6$).
94	B)	We detected no mechanical phenotypes in deletions of genes
95		downstream of <i>hfq</i> in the operon containing <i>hfq</i> . <i>tsaE</i> is not included in
96		the Keio collection and therefore we did not test it.
97	C)	The phenotypes of <i>E. coli</i> MG1655 mutants embedded in agarose are
98		quantitatively similar to those of the corresponding BW25113 mutants
99		after 8 h. Mean agarose-embedded growth curves of <i>E. coli</i> MG1655
100		(green) and selected gene deletions in MG1655 (black) and BW25113
101		(blue). Shaded regions represent one standard deviation above and
102		below the mean $(n = 6)$.

104 Figure S5: Responses of *E. coli* mutants to external force, related to Figure 3

```
105 and Figure 4.
```

106 (A)Deflection of cells in microfluidic bending device. Greater deflection of 107 $\Delta mrcB$ cells relative to wild-type cells of the same length indicates a

108	decrease in cell stiffness. Circles represent deflection values along the flow
109	direction for individual cells ($n > 200$ cells, two independent experiments).
110	(B) $\Delta recA$ cells exhibit much slower growth in liquid than wild-type BW25113
111	cells. Solid lines are means of $n = 3$ growth curves; shaded regions
112	represent one standard deviation about the mean.
113	(C) $\Delta recA$ cells exhibit similar growth in agarose as wild-type BW25113 cells.
114	Solid lines are means of $n = 3$ growth curves; shaded regions represent one
115	standard deviation about the mean.
116	(D-G) Single-cell, microscopy-based measurements of elongation inhibition
117	agree with GRABS data. Average fractional elongation curves while
118	embedded in 1-4% agarose gels for wild-type and six deletion strains of <i>E</i> .
119	<i>coli</i> MG1655. The $\Delta mrcB$, $\Delta lpoB$, Δhfq , $\Delta hscA$ mutants consistently display
120	increased inhibition of elongation compared to wild-type, $\Delta mrcA$, and
121	$\Delta lpoA$ cells, as predicted by GRABS scores. L_0 , initial cell length; ΔL , the
122	change in length relative to $t = 0$. Curves are averages over single-cell
123	trajectories and were smoothed over a 5-min window. The number of cells
124	measured decreases over the course of the experiment as some cell
125	trajectories become difficult to track; the initial number of trajectories for a
126	given mutant and agarose concentration ranged from 26-79 across
127	experiments.

129 Figure S6: UPLC analysis of mutants shows no striking differences in

130 peptidoglycan composition between wildtype and several mutants with most

131 negative GRABS scores, related to Figure 3.

132	(A) Chromatograms of purified cell walls from <i>E. coli</i> MG1655, BW25113, and
133	six Keio mutants, including four with large, negative GRABS scores
134	$(\Delta mrcB, \Delta hscA, \Delta lpoB, and \Delta hfq)$ and two with GRABS scores close to zero
135	($\Delta mrcA$ and $\Delta lpoA$). Cell walls were purified and digested, and samples
136	were analyzed using UPLC (Extended Experimental Procedures).
137	Chromatograms were normalized to have the same integrated total
138	absorbance and overlaid with baselines staggered for easier comparison.
139	No substantial differences among the chromatograms were evident.
140	(B) Molar fractions of monomers, dimers, trimers, pentapeptides, and
141	anhydro peaks, as well as the glycan strand length computed from total
142	anhydro fraction, were quantified. The low abundance of anhydro species
143	typically leads to greater variability in the calculation of average strand
144	length.

Figure S7: Carbonyl cyanide *m*-chlorophenyl hydrazone (CCCP) generally
reduces growth rates and the relation of the GRABS score to maximal growth
rates in agarose, related to Figure 5 and Figure 2.

149 (A)Fractional growth-rate of Keio mutants treated with CCCP in liquid.

150 DMSO, dimethyl sulfoxide..

- (B) Fractional growth-rate of Keio mutants treated with CCCP in agarose is
- reduced compared to liquid as evidenced by the difference in slopes.
- 153 DMSO, dimethyl sulfoxide.
- 154 (C) GRABS scores are correlated with maximal growth rates in agarose.
- 155 Growth rates were obtained by fitting growth curves for encapsulated
- 156 cells with a Gompertz relation. The highly significant correlation ($p < 10^{-81}$)
- indicates that agarose growth rate is a reasonable proxy for GRABS score,
- 158 potentially simplifying experimental design and analysis, although this
- 159 simplification is less accurate for some mutants.

160 SUPPLEMENTAL TABLES

161

162 Table S1. Gene Ontology (GO) enrichment of GRABS hits, related to Figure 2

163 and Figure 3.

GO Term	Counts	Definition	
GO:0016226	3	iron-sulfur cluster assembly	
GO:0009242 2		colanic acid biosynthetic process	
		Gram-negative-bacterium-type cell outer membrane	
GO:0043165	2	assembly	
GO:0006457	3	protein folding	
GO:0043213	2	bacteriocin transport	
GO:0006260	3	DNA replication	
		nucleobase-containing small molecule	
GO:0015949	2	interconversion	
GO:0000162	1	tryptophan biosynthetic process	
GO:0006082	1	organic acid metabolic process	
GO:0006083	1	acetate metabolic process	
GO:0006085	1	acetyl-CoA biosynthetic process	
GO:0006105	1	succinate metabolic process	
GO:0006220	1	pyrimidine nucleotide metabolic process	
GO:0006226	1	dUMP biosynthetic process	
GO:0006229 1 dUTP biosynthetic process		dUTP biosynthetic process	
		pre-replicative complex assembly involved in	
GO:0006267	1	nuclear cell cycle DNA replication	
GO:0006542	1	glutamine biosynthetic process	
GO:0006568	1	tryptophan metabolic process	
GO:0006749	1	glutathione metabolic process	
GO:0007059	1	chromosome segregation	
GO:0009220	1	pyrimidine ribonucleotide biosynthetic process	
GO:0009399	1	nitrogen fixation	
GO:0009443	1	pyridoxal 5'-phosphate salvage	
GO:0010608	1	posttranscriptional regulation of gene expression	
GO:0015740	1	C4-dicarboxylate transport	
GO:0017013	1	protein flavinylation	
GO:0019395	1	fatty acid oxidation	

GO:0019413	1	acetate biosynthetic process	
GO:0019542	1	propionate biosynthetic process	
GO:0019676	1	ammonia assimilation cycle	
		positive regulation of DNA-dependent DNA	
GO:0032298	1	replication initiation	
GO:0033212	1	iron assimilation	
GO:0040033	1	negative regulation of translation, ncRNA-mediated	
GO:0042351	1	'de novo' GDP-L-fucose biosynthetic process	
GO:0042780	1	tRNA 3'-end processing	
GO:0042816	1	vitamin B6 metabolic process	
GO:0044092	1	negative regulation of molecular function	
GO:0045975	1	positive regulation of translation, ncRNA-mediated	
GO:0046080	1	dUTP metabolic process	
GO:0051050	1	positive regulation of transport	
		chaperone mediated protein folding requiring	
GO:0051085	1	cofactor	
GO:0051259	1	protein oligomerization	
GO:0060274	1	maintenance of stationary phase	
GO:0071932	1	replication fork reversal	
GO:0009073	2	aromatic amino acid family biosynthetic process	
GO:0009252	2	peptidoglycan biosynthetic process	
GO:0000271	1	polysaccharide biosynthetic process	
GO:0000725	1	recombinational repair	
GO:0006259	1	DNA metabolic process	
GO:0006269	1	DNA replication, synthesis of RNA primer	
GO:0008156	1	negative regulation of DNA replication	
GO:0015684	1	ferrous iron transport	
GO:0015920	1	lipopolysaccharide transport	
GO:0019740	1	nitrogen utilization	
		negative regulation of DNA-dependent DNA	
GO:0032297	1	replication initiation	
GO:0044237	1	cellular metabolic process	
GO:0050821	1	protein stabilization	
GO:0051205	1	protein insertion into membrane	
GO:0070417	1	cellular response to cold	
		ADP-L-glycero-beta-D-manno-heptose biosynthetic	
GO:0097171	1	process	
GO:0008360	2	regulation of cell shape	

GO:0042710	2	biofilm formation	
GO:0015031	2	protein transport	
		transcription initiation from bacterial-type RNA	
GO:0001123	1	polymerase promoter	
GO:0006261	1	DNA-dependent DNA replication	
GO:0006807	1	nitrogen compound metabolic process	
GO:0009117	1	nucleotide metabolic process	
GO:0017038	1	protein import	
GO:0044781	1	bacterial-type flagellum organization	
GO:0071973	2	bacterial-type flagellum-dependent cell motility	
GO:0006352	1	DNA-templated transcription, initiation	
GO:0008615	1	pyridoxine biosynthetic process	
GO:0006631	1	fatty acid metabolic process	
GO:0010468	1	regulation of gene expression	
GO:0006396	1	RNA processing	
GO:0006928	1	movement of cell or subcellular component	
GO:0045454	1	cell redox homeostasis	
GO:0009423	1	chorismate biosynthetic process	
GO:0006629	1	lipid metabolic process	
GO:0009244	1	lipopolysaccharide core region biosynthetic process	
GO:0008033	1	tRNA processing	
GO:0006508	1	proteolysis	
GO:0006310	1	DNA recombination	
GO:0006412	1	translation	
GO:0009408	1	response to heat	
GO:0008652	2	cellular amino acid biosynthetic process	
GO:0046677	1	response to antibiotic	
GO:0016310	2	phosphorylation	
GO:0006281	1	DNA repair	
GO:0009103	1	lipopolysaccharide biosynthetic process	
GO:0006974	3	cellular response to DNA damage stimulus	
GO:0005975	1	carbohydrate metabolic process	
GO:0008152	3	metabolic process	
GO:0055114	4	oxidation-reduction process	
GO:0006355	2	regulation of transcription, DNA-templated	
GO:0006810	4	transport	
GO:0006351	1	transcription, DNA-templated	

165 Table S2. Clusters of Orthologous Groups (COGs) for GRABS hits, related to

COG code	Counts	Definition
А	1	RNA processing and modification
С	8	Energy production and conversion
Е	4	Amino acid transport and metabolism
F	2	Nucleotide transport and metabolism
G	1	Carbohydrate transport and metabolism
Н	1	Coenzyme transport and metabolism
J	1	Translation, ribosomal structure, and biogenesis
K	2	Transcription
L	6	Replication, recombination, and repair
М	9	Cell wall, membrane, and envelope biogenesis
Ν	3	Cell motility
0	3	Posttranslational modification and metabolism
Р	1	Inorganic ion transport and metabolism
R	1	General function prediction only
S	3	Function unknown
Т	3	Signal transduction mechanisms
U	3	Intracellular trafficking, secretion, and vesicular
		transport
V	1	Cytoskeleton

Figure 2 and Figure 3.

- 168 Table S3: Chemical-genomics conditions with the largest-magnitude positive
- 169 Pearson correlation coefficients with stiffness scores. Related to Figure 5.
- 170 GRABS scores were correlated with S-scores from the chemical genomics dataset
- in (Nichols et al., 2011). SDS, sodium dodecyl sulfate.

Condition	Correlation coefficient
Chloropromazine, 12.0 µg/mL	0.092
Calcofluor	0.079
Chloropromazine, 3.0 µg/mL	0.079
Ceftazidime, 0.05 µg/mL	0.078
Cefsulodin, 12.0 µg/mL	0.076
SDS, 3.0%	0.075
Cefsulodin, 6.0 μg/mL	0.075
Cefoxitin, 1.0 μg/mL	0.07
Chloropromazine, 6.0 µg/mL	0.07
Trimethoprim, 0.4 μg/mL	0.068
Dibucaine, 0.8 μg/mL	0.068
Cefaclor, 2.0 µg/mL	0.068
Nigericin, 0.1 μg/mL	0.065
Ampicillin, 8.0 μg/mL	0.065
SDS, 2.0%	0.064
Doxorubicin, 1.0 μg/mL	0.063
Bacitracin, 300 μg/mL	0.063
Ultraviolet light, 18 s	0.061
Cefoxitin, 0.75 µg/mL	0.059
pH 4	0.059

- 173 Table S4: Chemical-genomics conditions with the largest-magnitude negative
- 174 Pearson correlation coefficients with stiffness scores. Related to Figure 5.
- 175 GRABS scores were correlated with S-scores from the chemical genomics dataset
- in (Nichols et al., 2011). MMS, methyl methanesulfonate; CCCP, carbonyl
- 177 cyanide *m*-chlorophenyl hydrazone.

Condition	Correlation coefficient
Amoxicillin, 0.5 μg/mL	-0.081
Amoxicillin, 0.25 μg/mL	-0.069
Thiolactomycin, 5.0 µg/mL	-0.062
MMS, 0.05%	-0.060
Tetracycline, 1.0 μg/mL	-0.057
Gentamycin, 0.1 µg/mL	-0.056
Tetracycline, 0.75 μg/mL	-0.056
Thiolactomycin, 1.0 µg/mL	-0.053
СССР, 0.5 µg/mL	-0.053
CHIR-090, 0.02 μg/mL	-0.053
Nitrofurantoin, 0.5 µg/mL	-0.052
Oxacillin, 5.0 μg/mL	-0.051
Theophylline, 100.0 μg/mL	-0.051
Oxacillin, 0.5 μg/mL	-0.050
High nickel, 0.1 μg/mL	-0.050
Norfloxacin, 0.01 µg/mL	-0.049
Nitrofurantoin, 1.0 µg/mL	-0.048
СССР, 2.0 µg/mL	-0.046
СССР, 0.1 µg/mL	-0.046
High nickel, 1.0 μg/mL	-0.046

- 179 Table S5: Liquid growth-curve data for Keio strains in the absence of
- 180 **kanamycin. Related to Figure 2.** Optical density ($\lambda = 595$ nm) was measured as a
- 181 function of time. Growth data are included as a separate text file.

Strain	Description	Reference/source
MG1655	E. coli K-12 wildtype	CGSC #6300
BW25113	E. coli (Keio collection parent)	(Baba <i>et al.,</i> 2006a)
	Single deletion mutants (numbered	
Keio collection	JW####)	(Baba <i>et al.,</i> 2006a)
	F–endA1 glnV44 thi-1 recA1 relA1	
	gyrA96 deoR nupG Φ 80dlacZ Δ M15	
	$\Delta(lacZYA-argF)$ U169, hsdR17(rK–	
DH5a	mK+)	Invitrogen
	F–endA1 glnV44 thi-1 recA1 relA1	
	$gyrA96 \ deoR \ nupG \ \Phi 80 \ dlac Z \Delta M15$	
	$\Delta(lacZYA-argF)$ U169, hsdR17(rK-	T '1
$DH5\alpha(\Lambda pir)$	$mK+$) Λ ::pir	Invitrogen
	MG1655, RP4-2-1C::[\DMU1::aac(3)]V-	(Formionos et al
MEDnin	$\Delta den A ::(erm pin) A rec A$	(Ferrieres et u., 2010)
	∆dupA(erm-pit) ∆recA	
нісі	MG1655 AmrcB	This study
HTC2	MG1655 $\Delta lpoB$	This study
HTC3	MG1655 $\Delta mrcA$	This study
HTC4	MG1655 ΔlpoA	This study
HTC5	MG1655 $\Delta hscA$	This study
HTC6	MG1655 Δhfq	This study
BW25113-E1	BW25113 pBAD33 c280	This study
JW3359-E1	BW25113 <i>mrcA</i> : kan pBAD33c280	This study
JW3116-E1	BW25113 <i>lpoA</i> : kan pBAD33c280	This study
JW5157-E1	BW25113 <i>lpoB</i> : kan pBAD33c280	This study
JW2510-E1	BW25113 <i>hscA</i> : kan pBAD33c280	This study
JW4130-E1	BW25113 <i>hfq</i> : kan pBAD33c280	This study
	BW25113 mrcA : kan pBAD33c280-	
JW3359-C	mrcA	This study
	BW25113 <i>lpoA</i> : kan pBAD33c280-	
JW3116-C	lpoA	This study
	BW25113 <i>lpoB</i> : kan pBAD33c280-	
JW5157-C	ІроВ	This study
JW2510-C	BW25113 <i>hscA</i> : kan pBAD33c280-	This study

182 Table S6: Strains and plasmids used in this study. Related to Figures 1–5.

	hscA	
JW4130-C	BW25113 <i>hfq</i> : kan pBAD33c280- <i>hfq</i>	This study
BW25113-E2	BW25113 pAM238	This study
JW0145-E2	BW25113 <i>mrcB</i> : kan pAM238	This study
JW5157-E2	BW25113 <i>lpoB</i> : kan pAM238	This study
JW1045-C	JW0145 psK12	This study
HTC7	JW0145 psK12-R190D	This study
HTC8	JW0145 psK12-D163A/E166A	This study
HTC9	JW0145 psK12-E233Q (*GT)	This study
HTC10	JW0145 psK12-S510A (*TP)	This study
	JW0145 psK12-D163A/E166A/E187A/	
HICH	N188A/R190A/Q191A (6UB2H)	This study
HTC12	JW0145 psK12-(*TP/*GT)	This study
HTC13	JW0145 psK12-(*6UB2H/*TP)	This study
HTC14	JW0145 psK12-(*6UB2H/*GT)	This study
HTC15	JW0145 psK12-(*6UB2H/*TP/*GT)	This study
BW25113-sulA	BW25113 pDB192	This study
JW3359-sulA	BW25113 <i>mrcA</i> : kan pDB192	This study
JW3116-sulA	BW25113 <i>lpoA</i> : kan pDB192	This study
JW1045-sulA	BW25113 <i>mrcB</i> : kan pDB192	This study
JW5157-sulA	BW25113 <i>lpoB</i> : kan pDB192	This study
JW2510-sulA	BW25113 <i>hscA</i> : kan pDB192	This study
JW4130-sulA	BW25113 <i>hfq</i> : kan pDB192	This study
JW4216-sulA	BW25113 <i>holC</i> : kan pDB192	This study
JW2512-sulA	BW25113 <i>iscA</i> : kan pDB192	This study
JW2050-sulA	BW25113 <i>dcd</i> : kan pDB192	This study
JW1075-sulA	BW25113 <i>rpmF</i> : kan pDB192	This study
JW1065-sulA	BW25113 <i>flgG</i> : kan pDB192	This study
JW0891-sulA	BW25113 aroA : kan pDB192	This study
JW2669-sulA	BW25113 <i>recA</i> : kan pDB192	This study
BW25113-E3	BW25113 PUA66	This study
JW1045-E3	BW25113 <i>mrcB</i> : frt pUA66	This study
JW5157-E3	BW25113 <i>lpoB</i> : frt pUA66	This study
JW2510-E3	BW25113 <i>hscA</i> : frt pUA66	This study
JW4130-E3	BW25113 <i>hfq</i> : frt pUA66	This study

JW2512-E3	BW25113 <i>iscA</i> : frt pUA66	This study
JW2669-E3	BW25113 <i>recA</i> : frt pUA66	This study
BW25113-sulA-R	BW25113 PUA66-sulA-GFP	This study
JW1045-sulA-R	BW25113 mrcB : frt pUA66-sulA-GFP	This study
JW5157-sulA-R	BW25113 lpoB : frt pUA66-sulA-GFP	This study
JW2510-sulA-R	BW25113 hscA : frt pUA66-sulA-GFP	This study
JW4130-sulA-R	BW25113 hfq : frt pUA66-sulA-GFP	This study
JW2512-sulA-R	BW25113 iscA : frt pUA66-sulA-GFP	This study
JW2669-sulA-R	BW25113 recA : frt pUA66-sulA-GFP	This study
Plasmid	Description	Reference/source
		(Phillipe <i>et al.,</i>
pDS132	R6K ori, sacB, MCS, cat, CmR	(Phillipe <i>et al.,</i> 2004)
pDS132	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS,	(Phillipe <i>et al.,</i> 2004)
pDS132 pBAD33 c280	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS, <i>cat</i> , CmR	(Phillipe <i>et al.,</i> 2004) (Lee <i>et al.,</i> 2007)
pDS132 pBAD33 c280	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS, <i>cat</i> , CmR	(Phillipe <i>et al.,</i> 2004) (Lee <i>et al.,</i> 2007) (Gonzalez <i>et al.,</i>
pDS132 pBAD33 c280 pAM238	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS, <i>cat</i> , CmR pSC101 ori, pLac, SpecR	(Phillipe <i>et al.,</i> 2004) (Lee <i>et al.,</i> 2007) (Gonzalez <i>et al.,</i> 2010)
pDS132 pBAD33 c280 pAM238	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS, <i>cat</i> , CmR pSC101 ori, pLac, SpecR	(Phillipe <i>et al.,</i> 2004) (Lee <i>et al.,</i> 2007) (Gonzalez <i>et al.,</i> 2010) (Ranjit and
pDS132 pBAD33 c280 pAM238 pSK12	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS, <i>cat</i> , CmR pSC101 ori, pLac, SpecR pAM238- <i>mrcB</i>	(Phillipe <i>et al.,</i> 2004) (Lee <i>et al.,</i> 2007) (Gonzalez <i>et al.,</i> 2010) (Ranjit and Young, 2013)
pDS132 pBAD33 c280 pAM238 pSK12 pDB195	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS, <i>cat</i> , CmR pSC101 ori, pLac, SpecR pAM238- <i>mrcB</i> <i>sulA</i> , pLac, AmpR, CarbR	(Phillipe <i>et al.,</i> 2004) (Lee <i>et al.,</i> 2007) (Gonzalez <i>et al.,</i> 2010) (Ranjit and Young, 2013) (Amir <i>et al.,</i> 2014)
pDS132 pBAD33 c280 pAM238 pSK12 pDB195 pUA66	R6K ori, <i>sacB</i> , MCS, <i>cat</i> , CmR pACYC ori, pBAD promoter, MCS, <i>cat</i> , CmR pSC101 ori, pLac, SpecR pAM238- <i>mrcB</i> <i>sulA</i> , pLac, AmpR, CarbR gfpmut2, KanR	(Phillipe <i>et al.,</i> 2004) (Lee <i>et al.,</i> 2007) (Gonzalez <i>et al.,</i> 2010) (Ranjit and Young, 2013) (Amir <i>et al.,</i> 2014) GE Dharmacon

Primer (pBAD33 c280)	Sequence
mrcA_C-Fwd	CATGTCTAGATTACGCCAGACGCGGGTTAA
mrcA_C-Rev	CATGTCTAGAGTGAAGTTCGTAAAGTATTTTT
lpoA_C-Fwd	CATGTCTAGAATGGTACCCTCAACATTTTCTCG
lpoA_C-Rev	CATGTCTAGATTAACTGACGGGGACTACCTGA
	CATGTCTAGAATGACAAAAATGAGTCGCTAC
lpoB_C-Fwd	GC
lpoB_C-Rev	CATGTCTAGATTATTGCTGCGAAACGGCACCT
	CATGTCTAGAATGGCCTTATTACAAATTAGTG
hscA_C-Fwd	AACCT
hscA_C-Rev	CATGTCTAGATTAAACCTCGTCCACGGAATG
	CATGTCTAGAATGGCTAAGGGGCAATCTTTAC
hfq_C-Fwd	A
hfq_C-Rev	CATGTCTAGATTATTCGGTTTCTTCGCTGTCCT
Primer (pSK12)	Sequence
	CGTCAATATGGAGAACAACGATCAGTTCGGTT
mrcB_R190D_Fwd	TCTTCCG
	CGGAAGAAACCGAACTGATCGTTGTTCTCCAT
mrcB_R190D_Rev	ATTGACG
	CCGTTTGATTTCCCGGCCAGTAAAGCAGGACA
mrcB_D163A/E166A_Fwd	GGTGCGCGCG
	CGCGCGCACCTGTCCTGCTTTACTGGCCGGGA
mrcB_D163A/E166A_Rev	AATCAAACGG
	CGTCAATATGGCGGCCAACGCTGCGTTCGGTT
mrcB_R190A/Q191A_Fwd	TCTTCCG
	CGGAAGAAACCGAACGCAGCGTTGGCCGCCA
mrcB_R190A/Q191A_Rev	TATTGACG
	CGTCAATATGGCGGCCAACCGTCAGTTCGGTT
mrcB_E187A/N188A_Fwd	TCTTCCG
	CGGAAGAAACCGAACTGACGGTTGGCCGCCA
mrcB_E187A/N188A_Rev	TATIGACG
	GCGTCGTTCGATTGGTGCCCTTGCAAAACCAG
mrcB_S510A_Fwd	
	CGCIGGITTIGCAAGGGCACCAATCGAACGAC
mrcB_S510A_Rev	
	GGATACITIGCIGGCGACACAAGACCGTCATT
mrcB_E233Q_Fwd	ITTACG

Table S7. Primers used in this study (5' to 3'). Related to Figure 4.

	CGTAAAAATGACGGTCTTGTGTCGCCAGCAAA
mrcB_E233Q_Rev	GTATCC
Primer (pDS132)	Sequence
lpoA_Del_N_term_Fwd	GCATGCAGCGCATCACGGCGGCCT
	TGGTACTCTAGCCATAATGTATCCAGTGATAT
lpoA_Del_N_term_Rev	TTTTTTACGCAATGCTCAATATTAAATCGGC
	ATCACTGGATACATTATGGCTACAGTACCAAC
lpoA_Del_C_term_Fwd	AAG
lpoA_Del_C_term_Rev	ATTGAGCAGAGACTGAAC
lpoB_Del_N_term_Fwd	TTGCCGAAGATGGCTATC
	GCTGCGAAACGGCACCAAGATTCACCCCTTAC
lpoB_Del_N_term_Rev	AAATATAG
	AAGGGGTGAATCTTGGTGCCGTTTCGCAGCAA
lpoB_Del_C_term_Fwd	Т
lpoB_Del_C_term_Rev	CTGACGCGCTATGCACTAAATTTC
mrcA_Del_N_term_Fwd	AGTAAGCAGCGTTGCCAG
	GAAGCGCCT
mrcA_Del_N_term_Rev	TTTTAATGGAAATTTCCCATTTAGTTTCATTTG
	AATGGGAAATTTCCATTAAAAAGGCGCTTCGG
mrcA_Del_C_term_Fwd	С
mrcA_Del_C_term_Rev	ATCCTGATCCGCGAATAC
mrcB_Del_N_term_Fwd	AAATCACTCGACATTTATCAGG
	TTTCACGCTTAGATGGCTTTTTCTCCGCAATAT
mrcB_Del_N_term_Rev	TC
	TTGCGGAGAAAAAGCCATCTAAGCGTGAAAT
mrcB_Del_C_term_Fwd	ACCG
mrcB_Del_C_term_Rev	TCAGGTGGTCATAGGTGTTG
hscA_Del_N_term_Fwd	ATGGATTACTTCACCCTC
	ACAATCTTTGGCATAGTTTAGCTTCCAGAAAT
hscA_Del_N_term_Rev	ТАААААТС
	TTCTGGAAGCTAAACTATGCCAAAGATTGTTA
hscA_Del_C_term_Fwd	TTTTGCCTCATCAGG
hscA_Del_C_term_Rev	GCCAACGCATCTGCGGCG
hfq_Del_N_term_Fwd	CTTCAGGAGGTAGATCCG
	AAACAGCCCGAAACCTCTCTCTTTTCCTTATAT
hfq_Del_N_term_Rev	GCTTATTTG
-	TAAGGAAAAGAGAGAGGTTTCGGGCTGTTTTT
hfq_Del_C_term_Fwd	TTAC
hfq_Del_C_term_Rev	CATGCGTACGCCTTTCTGTCTTTCAAGGTG

186 EXTENDED EXPERIMENTAL PROCEDURES

187

188	Strain and plasmid construction
189	Table S6 lists the strains and plasmids used in this study for cloning. Primers are
190	described in Table S7. Screening was performed using the Keio collection of non-
191	essential single-gene deletion mutants (Baba et al., 2006). We used allele
192	exchange to individually delete genes in frame in <i>E. coli</i> MG1655 without leaving
193	a scar on the chromosome after excision (Philippe et al., 2004).
194	
195	Growth of bacterial cultures for screening
196	Individual 2-mL cultures were inoculated from a freezer stock and grown
197	overnight in lysogeny broth (LB) at 37 °C with shaking until saturation (~16 h).
198	For this initial overnight culture, Keio mutants were grown in the presence of 30
199	μ g/mL kanamycin for selection of the Keio mutant. Strains containing plasmid
200	pBAD33 c280 or plasmid pAM238/pSK12 were grown overnight in 30 μ g/mL
201	chloramphenicol or 30 µg/mL spectinomycin, respectively.
202	
203	Preparation of GRABS 96-well plates
204	The absorbance values (λ = 600 nm) of 1:10 dilutions in LB of saturated overnight

205 cultures of 48 strains grown in tubes were determined using a spectrophotometer

206	(Amersham Biosciences, Buckinghamshire, UK). Cells were spun down at 800 x g
207	for 10 min, the supernatants were removed, and the pellets were resuspended in
208	1 mL LB to a final density of 0.32 × optical density (OD). To prepare for agarose
209	encapsulation, 48 microstirrers (V&P Scientific, San Diego, CA, USA) were
210	sterilized with 70% ethanol and placed into individual wells in columns 1-6 of a
211	96-well microplate (Thermo Scientific Nunc, Waltham, MA, USA). The
212	microplate was covered with a lid and sterilized with ultraviolet light for 20 min.
213	After sterilization, the microplate was placed onto our custom magnetic surface
214	composed of two magnets (BZ0Z02-N52; KJ Magnetics, Pipersville, PA, USA)
215	mounted in plastic casing, and a new sterile microplate was inverted on top. The
216	two plates were turned over and placed onto the magnetic surface to draw the
217	microstirrers into the new sterile plate. Finally, a sterile lid was placed onto the
218	new microplate, which was transferred to a 50 °C hotplate to warm the plate and
219	magnets for at least 20 min prior to the addition of agarose. This warming step
220	ensured that the agarose remained in solution after being added to the plate.
221	
222	Agarose was prepared as a solution of 1% w/v UltraPure agarose (Invitrogen
223	Corporation, Carlsbad, CA, USA) in 20 mL LB. The solution was heated in a
224	microwave until the agarose dissolved completely and the solution was visually

homogeneous. The hot agarose solution was placed in a 65 $^{\circ}$ C water bath for 30 s

226	while air bubbles rose to the surface. To prepare the final plate for growth-curve
227	measurements, we maintained the microplate at 50 °C and pipetted 150 μL LB
228	into the wells in columns 7-12 (these wells lacked magnets) and let the LB warm
229	for >20 min. Using a positive displacement pipette (Eppendorf, Hamburg,
230	Germany), we added 150 μL of agarose prepolymer from a 2.5-mL tip into each
231	well that contained a magnetic stirrer. Antibiotics were added as necessary and
232	the cultures were mixed with magnetic stirrers for ~10 s. The microplate was
233	transferred to a second hotplate set to 37 °C and cooled for 15-20 s. We aliquoted
234	$5~\mu\text{L}$ of each cell suspension using a multichannel pipette into one well with LB
235	and one well with agarose prepolymer to yield an OD ~0.01 and mixed the
236	resulting cultures with magnetic stirrers for ~10 s.
237	
238	We then took the microplate off the hotplate, removed the microplate lid, and
239	rapidly applied the magnetic lid to extract the stirrers out of the wells. We

removed the magnetic lid and quickly popped any bubbles on the surface of the

241 agarose gel with a sterile pipette tip to ensure that the gel surface was smooth to

enable accurate absorbance readings. The lid was again placed on the microplate,

which was incubated at room temperature for 5 min while the agarose solidified.

244 The lid was removed and the plate was sealed with a transparent polymer film

245 (Excel Scientific, Victorville, CA, USA). To reduce condensation on the film, we

246	made ~0.25-0.5 cm cuts with a razor blade sterilized with 70% ethanol on
247	opposite sides of each well near its edge. Finally, we placed the microplate into a
248	preheated 37 °C M1000 plate reader (Tecan, Mannedorf, Switzerland) and
249	acquired growth curves at 37 °C by measuring absorbance at 595 nm. The orbital
250	and linear shaking durations were 30 s and 15 s, respectively, and the shaking
251	amplitude was 2 mm. Readings were taken for 16 h at 1-min intervals. The Tecan
252	M1000 plate reader was driven using i-control v. 1.9.17.0 (Tecan), which was
253	used to collect and export data for further analysis.
254	
255	GRABS measurements in variable agarose concentrations
255 256	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grown
255 256 257	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grownovernight at 37 °C in a shaking incubator. We measured the absorbance ($\lambda = 600$
255 256 257 258	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grownovernight at 37 °C in a shaking incubator. We measured the absorbance (λ = 600nm) of a 1:10 dilution in LB of the overnight culture and calculated the volume of
255 256 257 258 259	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grownovernight at 37 °C in a shaking incubator. We measured the absorbance (λ = 600nm) of a 1:10 dilution in LB of the overnight culture and calculated the volume ofculture needed for resuspension in 1 mL of fresh medium for a final absorbance
255 256 257 258 259 260	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grownovernight at 37 °C in a shaking incubator. We measured the absorbance (λ = 600nm) of a 1:10 dilution in LB of the overnight culture and calculated the volume ofculture needed for resuspension in 1 mL of fresh medium for a final absorbanceof 2. This volume of cells was spun down at 800 x g for 10 min, the supernatant
255 256 257 258 259 260 261	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grownovernight at 37 °C in a shaking incubator. We measured the absorbance (λ = 600nm) of a 1:10 dilution in LB of the overnight culture and calculated the volume ofculture needed for resuspension in 1 mL of fresh medium for a final absorbanceof 2. This volume of cells was spun down at 800 x g for 10 min, the supernatantwas removed, and the pellet was resuspended in 1 mL LB. The cells were stored
255 256 257 258 259 260 261 262	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grownovernight at 37 °C in a shaking incubator. We measured the absorbance (λ = 600nm) of a 1:10 dilution in LB of the overnight culture and calculated the volume ofculture needed for resuspension in 1 mL of fresh medium for a final absorbanceof 2. This volume of cells was spun down at 800 x g for 10 min, the supernatantwas removed, and the pellet was resuspended in 1 mL LB. The cells were storedat 37 °C until use (within 5 min).
255 256 257 258 259 260 261 262 263	GRABS measurements in variable agarose concentrations <i>E. coli</i> BW25113 was inoculated from a freezer stock into 2 mL LB and grown overnight at 37 °C in a shaking incubator. We measured the absorbance ($\lambda = 600$ nm) of a 1:10 dilution in LB of the overnight culture and calculated the volume of culture needed for resuspension in 1 mL of fresh medium for a final absorbance of 2. This volume of cells was spun down at 800 x <i>g</i> for 10 min, the supernatant was removed, and the pellet was resuspended in 1 mL LB. The cells were stored at 37 °C until use (within 5 min).

agarose into 65 mL LB and placing the solution in a 70 °C water bath. Twenty-

266	milliliter working solutions of 0.25-5% (w/v) agarose were prepared in 50-mL
267	conical tubes by diluting the appropriate volume of 5% (w/v) agarose in
268	preheated LB. These solutions were also placed into the 70 °C water bath. Using
269	a positive displacement pipette, 2 mL of the agarose working solutions were
270	aliquoted into individual preheated glass test tubes and kept at 65 $^\circ C$ in a water
271	bath. Individual tubes were subsequently removed from the 70 °C water bath
272	and allowed to cool in a 37 °C water bath for ~20 s. Ten microliters of the cell
273	suspension were added to each test tube, yielding a final cell density in solution
274	of 0.01 (λ = 600 nm), and the tube was vigorously shaken to ensure homogenous
275	incorporation of the cells into the agarose solution. Using a positive displacement
276	pipette, 150 μ L of the agarose cell solution were pipetted into a 96-well
277	microplate in replicate ($n \ge 3$). This process was repeated for each agarose
278	concentration. We also monitored growth in liquid LB in order to determine the
279	percent inhibition of each gel compared to liquid. The liquid control was
280	prepared at room temperature with the same cell suspension used for the
281	agarose growth curves. The plate was placed on the bench at room temperature
282	for ~3 min in order to allow the agarose wells to solidify. Growth was monitored
283	with a plate reader.

285 GRABS data analysis

286	Growth data were collected over 16 h for Keio mutants in both agarose and
287	liquid medium. To reduce the growth curve to a scalar value, we first normalized
288	the growth data in liquid and agarose by subtracting the minimum OD reading
289	(in agarose and liquid) for each mutant. Next, we averaged the 10 min of growth
290	before the 8 h time point, which is approximately when BW25113 cells begin to
291	enter stationary phase in liquid medium (Figure S3A-C). Cells tend to reach
292	saturation at later time points when embedded in agarose (Figure S3A-C), and
293	thus our mechanical phenotype is sensitive to the time point of measurement; $t =$
294	8 h was selected because it provided the largest dynamic range of values (Figure
295	S3A-C). We then determined a percent growth value for each mutant compared
296	to wildtype. The GRABS score is a relative percentage of wild-type OD,
297	calculated as ((ODmutant,agarose/ODWT,agarose) - (ODmutant,liquid/ODWT,liquid)). A positive
298	growth value indicates an increase in GRABS score, and a negative growth score
299	indicates a decrease in GRABS score. Note that this GRABS score is a measure of
300	cell mechanics that is complementary, but not identical, to the Young's modulus.
301	For our screen in kanamycin, we normalized all mutant data to an average of
302	several wild-type growth curves in liquid and agarose. In our secondary screen
303	in LB, we used the wild-type control on each plate to normalize the data.
304	

305 Analysis of cell morphology

306	To estimate the average cell morphology across the Keio collection, images from
307	the National BioResource Project were segmented with a custom MATLAB
308	software package (Ursell et al., 2014). At least 100 cells were included in the
309	calculation of average cell width and length for each Keio mutant.
310	
311	Correlation with chemical-genomics data
312	To compare GRABS scores against colony growth data from a variety of chemical
313	conditions, we calculated the Pearson correlation coefficient between the GRABS
314	scores for all tested mutants and the S-scores for the equivalent mutants in the
315	chemical condition from Ref. (Nichols et al., 2011). The significance of the
316	correlation for each condition was estimated by comparing the correlation score
317	against the correlation of 1000 random permutations of S-scores.
318	
319	Complementation and deletion assays for GRABS hits and PBP1b mutants
320	Keio-complementation and wild-type control strains were streaked out from
321	freezer stock onto LB agar plates with appropriate antibiotics to obtain
322	individual colonies. Individual colonies were inoculated into 2 mL LB with
323	appropriate antibiotics and grown overnight at 37 °C. Saturated overnight
324	cultures were diluted 1:100 into 2 mL fresh LB (without antibiotics) and grown to
325	an absorbance of ~0.6 (λ = 600 nm). Microplates were prepared as described

326	above. For complementation assays, antibiotics were not added to microplate
327	wells so as to not influence the growth of the cells. Five microliters of a 2.5 mM
328	arabinose stock solution were added to the wells containing strains with plasmid
329	pBAD33 c280; the final arabinose gel concentration was 0.08 mM. Strains with
330	wildtype or mutant PBP1b under the control of isopropyl β -D-1-
331	thiogalactopyranoside were not induced; the basal level of expression from the
332	lac operon was sufficient for full complementation of the stiffness defect (Figure
333	S4A). Growth curves were compared to curves for the appropriate empty
334	vector/native PBP1b controls to confirm recovery or loss of cell stiffness when the
335	proteins were expressed in <i>trans</i> .
336	
337	<i>E. coli</i> MG1655 mutants ($\Delta mrcB$, $\Delta mrcA$, $\Delta lpoB$, $\Delta lpoA$, $\Delta hscA$, and Δhfq) were
338	streaked out from freezer stocks onto LB agar plates to obtain individual
339	colonies. Individual colonies were inoculated into 2 mL LB and grown overnight
340	at 37 °C. Wild-type and mutant strains were screened for stiffness changes as
341	described above and compared to the corresponding BW25113 mutants.
342	
343	Confirmation of chemical effectors of GRABS measurements
344	E. coli BW25113 and 45 additional Keio strains were grown overnight from

346	chlorophenyl hydrazone (CCCP, Sigma-Aldrich) stock was prepared by
347	dissolving CCCP into dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO,
348	USA). CCCP was diluted into 1 mL LB to yield a 64 μ g/mL working solution. The
349	GRABS plate and cells were prepared as described above. During preparation of
350	the GRABS plate, 5 μL CCCP were added to each well. The final concentrations
351	of CCCP and DMSO in the plate were 2 $\mu g/mL$ and ~0.1%, respectively.
352	Appropriate DMSO-only controls were performed to confirm that DMSO did not
353	affect the GRABS score. The percent growth values were determined as
354	described, using the BW25113 (DMSO+) and (CCCP+) wells to normalize data
355	from the mutants.
356	

357 Microscopy-based stiffness measurements

Single-cell measurements of encapsulated cell growth were performed in 1-4% 358 (w/v) agarose as described previously (Tuson et al., 2012). Briefly, bacteria were 359 grown in liquid LB without antibiotics to an absorbance ($\lambda = 000 00$) of ~0.6. Cells 360 were diluted 1:100 and spotted onto 2% agarose pads. Elongation was monitored 361 362 on a Nikon Eclipse Ti inverted microscope (Nikon, Tokyo, Japan) equipped with a heated stage (Okolab, Pozzuoli, Italy) and objective heater (Bioptechs, Butler, 363 PA, USA) at 37 °C. Images were collected over a 30-min period at 1-min intervals 364 using a CoolSNAP HQ2 camera (Photometrics, Munich, Germany). Cell length 365

371	Microfluidic-based stiffness measurements
370	
369	all single cells (Tuson et al., 2012).
368	We calculated the fractional elongation over time for each mutant, averaged over
367	(Sliusarenko et al., 2011). Length measurements were halted after cells divided.
366	was measured for each mutant and wild-type strain using MicrobeTracker

372 Keio mutants and wild-type strains were transformed with a plasmid (pDB192)

373 containing *sulA* under an isopropyl β -D-1-thiogalactopyranoside-inducible

374 promoter. The strains were grown overnight in 2 mL LB containing $30 \mu g/mL$

kanamycin and 50 μg/mL ampicillin. We fabricated and applied a microfluidic

device to the determination of cellular bending rigidity and Young's modulus as

described previously (Amir et al., 2014). As an alternative means of causing cells

to filament, we applied 1 µg/mL aztreonam (MP Biomedicals, CA, USA).

379 Deflection of cells under fluid flow was monitored on a Zeiss Axiovert 100

microscope (Zeiss, Oberkochen, Germany) equipped with a 60X oil objective.

³⁸¹ Images were collected with an Andor iXon 3 EMCCD (Andor, Belfast, UK) using

³⁸² µManager v. 1.4.16 (Edelstein et al., 2010). Deflection of the cells was determined

using a custom Igor Pro (WaveMetrics Inc.) image analysis algorithm.

385	To account for changes in the diameter of mutant cells compared to wild-type
386	cells after filamentation, we collected static images on a Nikon Eclipse Ti
387	inverted microscope equipped with a 60X oil objective (Nikon) using a
388	CoolSNAP HQ2 camera (Photometrics). Cell width was measured using
389	MicrobeTracker (Sliusarenko et al., 2011). These measurements were used to
390	calculate the Young's modulus from the flexural rigidity, in which the moment of
391	inertia (I) of a cross-section is dependent on cell radius (r) and thickness of the
392	cell wall (<i>h</i>) according to $I = \pi r^3 h$.

394 Cell death in 1% agarose and liquid

The GRABS assay for Keio mutants and wild-type strains was carried out as 395 described above. One hundred and fifty microliters of liquid LB and agarose 396 (prior to gelling) were pipetted out of the 96-well plate and transferred to an 8-397 well LAB-TEK II chambered coverglass #1.5 (Nunc, NY, USA). The agarose was 398 399 allowed to solidify at room temperature. LAB-TEK II chambers were placed into 400 a 37 °C incubator with shaking for 8 h, at which point the GRABS score was 401 determined. After 8 h, cells were removed from the 37 °C incubator and labeled via the LIVE/DEAD BacLight Viability Kit (L7007, Invitrogen) at room 402 403 temperature. For staining of cells grown in liquid, cells were diluted 1:20 in fresh LB and stained in the dark for 20 min according to the manufacturer's guidelines. 404

405	For staining of cells grown in agarose, 25 μ L of a stock solution (100 μ L
406	component A (1.67 mM SYTO 9, 1.67 mM Propidium iodide) + 1.5 μ L component
407	B (1.67 mM SYTO 9, 18.3 mM Propidium iodide)) were pipetted onto the agarose
408	surface and allowed to diffused through the gel in the dark for 30 min. Cells
409	were imaged with epifluoresence using a Nikon Ti inverted microscope
410	equipped with a CoolSNAP HQ2 camera (Photometrics) and a 100X oil objective
411	(Nikon).
412	
413	Purification of sacculi and ultra performance liquid chromatography (UPLC)
414	of peptidoglycan composition
415	Overnight cultures of <i>E. coli</i> BW25113 or Keio strains were diluted 1:100 in LB
416	and grown at 37 °C to an OD $_{600}$ of 0.7. The cultures were then harvested by
417	centrifugation at 5,000 × g for 10 min at room temperature and resuspended in 3
418	mL LB. Cell suspensions were lysed by boiling in sodium dodecyl sulfate, and
419	insoluble material was collected by several rounds of ultracentrifugation at
420	400,000 × g for 20 min at room temperature. Samples were prepared for UPLC as
421	previously described (Brown et al., 2012) and injected onto a Waters H Class
422	UPLC system equipped with a BEH C18 1.7- μ m column (Waters, MA, USA),
423	using elution conditions previously described (Desmarais et al., 2014). Peaks
424	were quantified and identified as particular muropeptide species using the

425	software package Chromanalysis (Desmarais et al., 2015), from which the
426	crosslinking density and strand length were calculated (Ottolenghi et al., 1993;
427	Pisabarro et al., 1985).

429 Shape of agarose-embedded cells

430 The GRABS assay for Keio mutants and wild-type strains was carried out as

431 previously described. One hundred and fifty milliliters of agarose (prior to

432 gelling) were pipetted out of the 96-well plate and transferred to an 8-well LAB-

433 TEK II chambered coverglass #1.5 w/cover (Nunc, NY, USA). The agarose was

allowed to solidify at room temperature. LAB-TEK II chambers were placed into

a 37 °C incubator with shaking for 8 h (at which point the GRABS score is

436 typically determined). After 8 h, cells were removed from the incubator and

437 labeled with FM 4-64 FX (Invitrogen). For staining, 25∞µL of a 100 ∞g∞∞L stock

438 were pipetted onto the surface of the agarose and allowed to diffuse through the

439 gel, in the dark, for 30 min. Cells were imaged using phase contrast and

440 epifluoresence microscopy.

441

442 Cell density versus OD measured by plate reader

443 A saturated overnight culture of *E. coli* BW25113 was diluted 1:100 into 60 mL of

444 fresh LB and grown in a 37 °C incubator with shaking until an absorbance of 3.0

445	(λ = 600 nm). We calculated the volume of the culture needed for resuspension in
446	$200\ \mu\text{L}$ of fresh LB medium for a final absorbance of 248 OD. This volume of cells
447	was spun down at 800 × g for 10 min, the supernatant was removed, and the
448	pellet was resuspended in fresh LB media. A 2-fold dilution series was made
449	from 240 OD to 0.007 OD. Five microliters of diluted culture were inoculated
450	into agarose for a final cell density in the plate of 8 OD-0.0004 OD. The OD (λ =
451	595 nm) was measured immediately using a Tecan M200 PRO plate reader.
452	

453 Measurement of SOS using a promoter-fusion assay

To measure SOS induction we used the plasmids pUA66-*sulA* promoter-GFP (p*SulA*-GFP) and the empty vector control pUA66-GFP (pUA66) transformed in the Keio parent strain *E.coli* BW25113 and the Keio strains ($\Delta mrcB$, $\Delta lpoB$, $\Delta hscA$, Δhfq , $\Delta iscA$, $\Delta recA$). Three biological replicates of wildtype cells and Keio strains containing p*SulA*-GFP and pUA66 were inoculated from a plate of overnight cultures in LB and grown at 37 °C in an incubator with shaking. The GRABS

- assay was carried out as described above. As a positive control to test the effects
- 461 of inducing the SOS response, norfloxacin was added at three times the
- 462 minimum inhibitory concentration (30 ng/mL) to wild-type cells grown in liquid
- and embedded in agarose. OD was measured at λ = 595 nm and GFP

464	fluorescence was measured with excitation at 485 nm and emission at 515 nm
465	using a Tecan M200 PRO plate reader at 10 min intervals for 8 h.
466	

467	Analysis of SOS induction was performed by first normalizing the data to
468	fluorescence intensity per cell for p $SulA$ -GFP and pUA66 at each time point (t)
469	using the ratio (fluorescence intensity(t)/optical density(t)). We corrected for
470	basal GFP expression by subtracting normalized fluorescence values of pUA66
471	from $psulA$ -GFP at each time point: ($pSulA$ -GFP _{normalized} (t) – $pUA66_{normalized}(t)$). 3
472	biological replicates were averaged at each time point. We subtracted average
473	fluorescence values at $t = 0$ from each subsequent time point to monitor changes
474	in SOS induction for 1% agarose and liquid.

475 Supplemental References

477	Amir, A., Babaei	ipour, F., McIı	ntosh, D.B., Nelse	on, D.R., an	d Jun, S. ((2014).
-----	------------------	-----------------	--------------------	--------------	-------------	---------

- 478 Bending forces plastically deform growing bacterial cell walls. Proceedings of the
- 479 National Academy of Sciences of the United States of America 111, 5778-5783.
- 480 Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko,
- 481 K.A., Tomita, M., Wanner, B.L., and Mori, H. (2006). Construction of Escherichia
- 482 coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst
- 483 Biol 2, 2006 0008.
- 484 Brown, P.J., de Pedro, M.A., Kysela, D.T., Van der Henst, C., Kim, J., De Bolle, X.,
- 485 Fuqua, C., and Brun, Y.V. (2012). Polar growth in the Alphaproteobacterial order
- 486 Rhizobiales. Proc Natl Acad Sci USA 109, 1697-1701.
- 487 Desmarais, S.M., Cava, F., de Pedro, M.A., and Huang, K.C. (2014). Isolation and
- 488 preparation of bacterial cell walls for compositional analysis by ultra
- 489 performance liquid chromatography. J Vis Exp, e51183.
- 490 Desmarais, S.M., Tropini, C., Miguel, A., Cava, F., Monds, R.D., de Pedro, M.A.,
- and Huang, K.C. (2015). High-throughput, Highly Sensitive Analyses of Bacterial
- 492 Morphogenesis Using Ultra Performance Liquid Chromatography. The Journal
- 493 of biological chemistry *290*, 31090-31100.

- 494 Edelstein, A., Amodaj, N., Hoover, K., Vale, R., and Stuurman, N. (2010).
- 495 Computer control of microscopes using microManager. Current protocols in
- 496 molecular biology / edited by Frederick M Ausubel [et al] *Chapter 14*, Unit14 20.
- 497 Nichols, R.J., Sen, S., Choo, Y.J., Beltrao, P., Zietek, M., Chaba, R., Lee, S.,
- 498 Kazmierczak, K.M., Lee, K.J., Wong, A., et al. (2011). Phenotypic landscape of a
- 499 bacterial cell. Cell 144, 143-156.
- 500 Ottolenghi, A.C., Caparros, M., and de Pedro, M.A. (1993). Peptidoglycan
- 501 tripeptide content and cross-linking are altered in Enterobacter cloacae induced
- to produce AmpC beta-lactamase by glycine and D-amino acids. J Bacteriol 175,
- 503 1537-1542.
- ⁵⁰⁴ Philippe, N., Alcaraz, J.P., Coursange, E., Geiselmann, J., and Schneider, D.
- 505 (2004). Improvement of pCVD442, a suicide plasmid for gene allele exchange in
- 506 bacteria. Plasmid *51*, 246-255.
- 507 Pisabarro, A.G., de Pedro, M.A., and Vazquez, D. (1985). Structural modifications
- in the peptidoglycan of Escherichia coli associated with changes in the state of
- growth of the culture. J Bacteriol *161*, 238-242.

510	Sliusarenko, O., Heinritz, J., Emonet, T., and Jacobs-Wagner, C. (2011). High-
511	throughput, subpixel precision analysis of bacterial morphogenesis and
512	intracellular spatio-temporal dynamics. Mol Microbiol 80, 612-627.
513	Tuson, H.H., Auer, G.K., Renner, L.D., Hasebe, M., Tropini, C., Salick, M., Crone,
514	W.C., Gopinathan, A., Huang, K.C., and Weibel, D.B. (2012). Measuring the
515	stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity.
516	Mol Microbiol <i>84,</i> 874-891.
517	Ursell, T.S., Nguyen, J., Monds, R.D., Colavin, A., Billings, G., Ouzounov, N.,
518	Gitai, Z., Shaevitz, J.W., and Huang, K.C. (2014). Rod-like bacterial shape is
519	maintained by feedback between cell curvature and cytoskeletal localization.
520	Proceedings of the National Academy of Sciences of the United States of America
521	<i>111,</i> E1025-1034.