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Web Table 1: Description of indirect/direct approaches for applying SIMEX to MSMs in single time interval setting 
λ = A vector of values used to control artificial error, e.g. {0.5, 1.0, 1.5, 2.0} 
X = A binary indicator variable of exposure status 
Y = A continuous response variable 
L = An error-free (“true”) continuous time-varying covariate 
L* = An error-prone (“observed”) continuous time-varying covariate, i.e. L* = L + error 
ε = Random error 
σδ
2  = Variance of measurement error 

Treatment model: logit P X =1 L*( )( ) =α0 +α1L
*   Outcome model: Y = β0 +β1X +ε  

Note: We describe a single time interval setting; the same general SIMEX approach is appropriate given two or more intervals. 

i. Direct Approach 
1) Add additional (artificial) error to time-varying covariate L* from normal distribution with mean of zero and variance λ ×σδ

2 . 
Compute IPT-weighted estimates using L* with additional error. Estimate the MSM parameter β̂ . 

2) Repeat step (1) a total of B times, and then average all B estimates to obtain 

€ 

ˆ β λ( ) . 
3) Repeat steps (1) and (2) for all values of λ.  
4) Fit chosen regression function f β̂ λ( )( ) , then extrapolate back to λ = −1  to obtain corrected β̂

SIMEX
λ = −1( ) . 

 
ii. Indirect Approach 

1) Add additional error to L* from normal distribution with µ = 0 and variance = λ ×σδ
2 . Estimate treatment model parameter α̂ . 

2) Repeat step (1) B times, and average all B estimates to obtain α̂ λ( ) .  

3) Repeat steps (1) and (2) for all values of λ. Compute 

€ 

ˆ α λ( ) and obtain 

€ 

ˆ α 
SIMEX

λ = −1( ).  

4) Fit chosen regression function f α̂ λ( )( ) , then extrapolate back to 

€ 

λ = −1 to obtain corrected α̂
SIMEX

λ = −1( ) . 

5) Use the corrected treatment parameter estimates obtained in step 4, to compute ŵSIMEX  as logit-1 α̂0
SIMEX

+α̂1
SIMEX

L*( )  for the 

treated, and 1-logit α̂0
SIMEX

+α̂1
SIMEX

L*( )( )
-1

 for the untreated (stabilizing if desired). 

6) Use ŵSIMEX  as the weights in a regression model to obtain MSM parameter estimates.  
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‡ For the secondary study (scenario corresponding to Figure 1c) in which exposure depends upon the error-prone covariate, X1 was 
generated using L1* (instead of L1), and X2 depended on L2* (instead of L2). 
 

Data-generating model for primary studies 
i. One-interval study (corresponds to Figure 1a)  ii. Two-interval study (corresponds to Figure 1b)‡ 
L ~ Uniform[-2, 3]  L1 ~ Uniform[-2, 3] 
L* ~ L + Norm(0, σδ

2 )  L1* ~ L1 + Norm(0, σδ
2 ) 

X ~ Bern < logit-1(0.25 + α1L) 
   where α1 ∈ {0.25, 0.50, 0.75} 

 X1 ~ Bern < logit-1(0.25 + α1L1) 
    where α1 ∈ {0.50, 0.75} 

Y ~ 0 + 1.0X + 1.25L + Norm(0, 1)  L2 ~ 0.3L1 + 1.25X1 + Norm(0, 1) 
   L2* ~ L2 + Norm(0, 

€ 

σδ
2) 

   X2 ~ Bern <  logit-1(0.25 + α1L2 -1.25X1) 
    where α1 ∈ {0.50, 0.75} 

   Y ~ 0 + 1.0X1 + 1.25X2 + 0.8L1 + 0.3L2 + Norm(0, 1) 
Summary of fitted models 
i. One-interval study First interval model for X  
 Treatment (denominator) logit(P(X = 1|L*)) = α0 + α1L*  
 Treatment (numerator) 1  
 Outcome Y = β0 + β1X + ε, ε ~ N(0,1) 
   
ii. Two-interval study‡ First interval model for X1 Second interval model for X2 
 Treatment (denominator) 
 
 

logit(P(X1 = 1|L1*)) = α0 + α1L1* logit(P(X2 = 1|X1 + L2*)) =  
                        α0 + α1X1 + α2L2* 

 Treatment (numerator) P(X1 = 1) = Mean(X1 ) logit(P(X2 = 1|X1)) = α0 + α1X1* 
 Outcome Y = β0 + β1X1 + β2X2 + η, η ~ N(0,1)  
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Web Appendix 1: Reasoning for extrapolation to λ = -1 

 

In the presence of additive error, the variance of the observed covariate L* is equivalent to the sum of the variances of the true covariate 

L and its measurement error. The expression below illustrates this relationship (measurement error denoted by δ): 

Var L*( ) =σ L
2 +σδ

2 + λ ×σδ
2( )  

It can be seen that this introduces bias most plainly in the linear regression setting, where the estimator is available in closed form.  

 

Consider, for example, a simple linear regression of Y on L*; the unbiased regression parameter estimates are given by θ = 

Cov(Y,L)/Var(L) but, in the presence of measurement error, estimated by the empirical covariance of Y and L* (which is consistent for 

Cov(Y,L)) divided by the empirical variance of L*, which is larger than the variance of L (by exactly σδ
2 ). Thus, substituting -1 for the 

value of λ will cancel out the two measurement error variance terms, and the variance of the error-prone covariate is now equivalent to 

that of the true (unobserved) covariate.  

 

Consequently, extrapolating f(λ) to -1 yields the SIMEX estimator for the covariate in the absence of measurement error. While this 

result cannot be shown in closed form for estimators outside a linear regression setting, SIMEX has been used extensively in a variety 

of other applications (1-5). 
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Web Appendix 2: R code for direct and indirect SIMEX correction 

 
# Generate B datasets for SIMEX adjustment in apply_simex function 

# (requires foreach package) 

 

simex_data <- foreach(i = sqrt(lambda)) %do% replicate(B,  

            transform(indata, Lstar1 = Lstar1 + rnorm(n = nrow(indata),  

                mean = 0, sd = i * specerr), Lstar2 = Lstar2 +  

                rnorm(n = nrow(indata), mean = 0, sd = i * specerr))) 

 

# Apply both direct and indirect SIMEX methods to address measurement error 

# N.B. Implementation of the indirect SIMEX using R’s simex package is far 

#      more convenient; however, we wished to obtain direct SIMEX results, 

#      while reducing the execution time. For reference, our code is included 

#      below. 

 

apply_simex <- function (simex_data, lambda, B)  

{ 

    numlam <- length(lambda) 

    outcome_model_params <- replicate(numlam, list(matrix(data = NA,  

        ncol = B, nrow = 3))) 

    treatment_t1_params <- replicate(numlam, list(matrix(data = NA,  

        ncol = B, nrow = 2))) 

    treatment_t2_params <- replicate(numlam, list(matrix(data = NA,  

        ncol = B, nrow = 3))) 

    y_x1mat <- simex_data[[1]][["X1", 1]] 

    y_x2mat <- simex_data[[1]][["X2", 1]] 

    y_ymat <- simex_data[[1]][["Y", 1]] 

    x_x <- cbind(1, X1 = simex_data[[1]][["X1", 1]], X2 = simex_data[[1]][["X2", 1]]) 

    for (i in 1:numlam) { 

        for (j in 1:B) { 

            x_lstar1 <- cbind(1, Lstar1 = simex_data[[i]][[c("Lstar1"),  

                j]]) 

            x_lstar2n <- cbind(1, X1 = simex_data[[i]][["X1",  

                j]]) 

            x_lstar2 <- cbind(1, X1 = simex_data[[i]][["X1",  

                j]], Lstar2 = simex_data[[i]][["Lstar2", j]]) 

            model_err1 <- glm.fit(x = x_lstar1, y = y_x1mat,  
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                family = binomial()) 

            pred.model_err1 <- ifelse(y_x1mat == 1, model_err1$fitted.values,  

                1 - model_err1$fitted.values) 

            mod_werr1 <- (ifelse(simex_data[[i]][["X1", j]] ==  

                1, (mean(simex_data[[i]][["X1", j]] == 1))/(pred.model_err1),  

                (1 - mean(simex_data[[i]][["X1", j]] == 1))/(pred.model_err1))) 

            model_err2n <- glm.fit(x = x_lstar2n, y = y_x2mat,  

                family = binomial()) 

            model_err2 <- glm.fit(x = x_lstar2, y = y_x2mat,  

                family = binomial()) 

            pred.model_err2n <- ifelse(y_x2mat == 1, model_err2n$fitted.values,  

                1 - model_err2n$fitted.values) 

            pred.model_err2 <- ifelse(y_x2mat == 1, model_err2$fitted.values,  

                1 - model_err2$fitted.values) 

            mod_werr2 <- (pred.model_err2n/(pred.model_err2)) 

            comb_werr <- mod_werr1 * mod_werr2 

            model_werr <- lm.wfit(x = x_x, y = y_ymat, w = comb_werr) 

            outcome_model_params[[i]][, j] <- model_werr$coeff 

            treatment_t1_params[[i]][, j] <- model_err1$coeff 

            treatment_t2_params[[i]][, j] <- model_err2$coeff 

        } 

    } 

    lambda_matrix <- cbind(1, lambda + 1, ((lambda + 1)^2)) 

    simex_dir_coefs_list <- lapply(outcome_model_params, rowMeans) 

    simex_dir_coefs_mat <- do.call(rbind, simex_dir_coefs_list) 

    simex_dir_int <- simex_dir_coefs_mat[, 1] 

    simex_dir_x1 <- simex_dir_coefs_mat[, 2] 

    simex_dir_x2 <- simex_dir_coefs_mat[, 3] 

    simex_dir_int_adj <- lm.fit(x = lambda_matrix, y = simex_dir_int) 

    simex_dir_x1_adj <- lm.fit(x = lambda_matrix, y = simex_dir_x1) 

    simex_dir_x2_adj <- lm.fit(x = lambda_matrix, y = simex_dir_x2) 

    simex_ind_t1_coefs_list <- lapply(treatment_t1_params, rowMeans) 

    simex_ind_t1_coefs_mat <- do.call(rbind, simex_ind_t1_coefs_list) 

    simex_ind_t1_int <- simex_ind_t1_coefs_mat[, 1] 

    simex_ind_t1_Lstar1 <- simex_ind_t1_coefs_mat[, 2] 

    simex_ind_t2_coefs_list <- lapply(treatment_t2_params, rowMeans) 

    simex_ind_t2_coefs_mat <- do.call(rbind, simex_ind_t2_coefs_list) 

    simex_ind_t2_int <- simex_ind_t2_coefs_mat[, 1] 
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    simex_ind_t2_x1 <- simex_ind_t2_coefs_mat[, 2] 

    simex_ind_t2_Lstar2 <- simex_ind_t2_coefs_mat[, 3] 

    simex_ind_t1_int_adj <- lm.fit(x = lambda_matrix, y = simex_ind_t1_int) 

    simex_ind_t1_Lstar1_adj <- lm.fit(x = lambda_matrix, y = simex_ind_t1_Lstar1) 

    simex_ind_t2_int_adj <- lm.fit(x = lambda_matrix, y = simex_ind_t2_int) 

    simex_ind_t2_x1_adj <- lm.fit(x = lambda_matrix, y = simex_ind_t2_x1) 

    simex_ind_t2_Lstar2_adj <- lm.fit(x = lambda_matrix, y = simex_ind_t2_Lstar2) 

    x_lstar1 <- cbind(1, Lstar1 = simex_data[[1]][[c("Lstar1"),  

        1]]) 

    x_lstar2 <- cbind(1, X1 = simex_data[[1]][["X1", 1]], Lstar2 = 

simex_data[[1]][["Lstar2",  

        1]]) 

    x_lstar2n <- cbind(1, X1 = simex_data[[1]][["X1", 1]]) 

    corrected.wts1 <- ifelse(y_x1mat == 1, (mean(simex_data[[1]][["X1",  

        1]] == 1))/inv.logit(x_lstar1 %*% rbind(simex_ind_t1_int_adj$coeff[1],  

        simex_ind_t1_Lstar1_adj$coeff[1])), (1 - mean(simex_data[[1]][["X1",  

        1]] == 1))/(1 - inv.logit(x_lstar1 %*% rbind(simex_ind_t1_int_adj$coeff[1],  

        simex_ind_t1_Lstar1_adj$coeff[1])))) 

    cw2.numerator <- ifelse(y_x2mat == 1, model_err2n$fitted.values,  

        1 - model_err2n$fitted.values) 

    cw2.denominator <- ifelse(y_x2mat == 1, inv.logit(x_lstar2 %*%  

        rbind(simex_ind_t2_int_adj$coeff[1], simex_ind_t2_x1_adj$coeff[1],  

            simex_ind_t2_Lstar2_adj$coeff[1])), 1 - (inv.logit(x_lstar2 %*%  

        rbind(simex_ind_t2_int_adj$coeff[1], simex_ind_t2_x1_adj$coeff[1],  

            simex_ind_t2_Lstar2_adj$coeff[1])))) 

    corrected.wts2 <- cw2.numerator/cw2.denominator 

    comb_werr <- corrected.wts1 * corrected.wts2 

    ind_msm <- lm.wfit(x = x_x, y = y_ymat, w = comb_werr) 

    return(list(int_dir = simex_dir_int_adj$coeff[1], x1_dir = 

simex_dir_x1_adj$coeff[1],  

        x2_dir = simex_dir_x2_adj$coeff[1], int_ind = ind_msm$coeff[1],  

        x1_ind = ind_msm$coeff[2], x2_ind = ind_msm$coeff[3])) 

} 
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Web Appendix 3: Additional analyses comparing direct and indirect SIMEX  

Because	there	is	no	closed	form	solution	for	MSM	estimators	found	using	a	SIMEX	correction,	whether	
direct	or	 indirect,	a	 theoretical	proof	of	unbiasedness	 is	 infeasible.	This	 is	 the	case	 for	adaptations	of	
SIMEX	to	generalized	linear	models	(3),	non-linear	regression	models	(2),	quantile	regression	models	(5),	
accelerated	 failure	 time	models	 (9),	 and	 generalized	 linear	mixed	models	 (1).	We	describe	 additional	
analyses	we	conducted	to	explore	and	compare	performance	of	both	SIMEX	approaches	(Web	Figures	1	
and	2),	and	our	choice	of	extrapolant	function	(Web	Figure	3).	
	
Web	 Figure	 1:	 Simulations	 using	 Canadian	 Co-infection	 Cohort	 data	 (2003-2014).	We	 explored	 the	
impact	of	 increasing	measurement	error	on	the	performance	of	the	two	approaches	using	simulations	
based	on	a	real	dataset,	which	we	also	used	 in	 the	case	study.	Here	we	assume	that	 the	naïve	model	
from	that	analysis	is	the	“true”	model,	and	contaminate	the	measures	of	GGT	with	random	error	drawn	
from	an	N(0,σδ )	distribution,	with	standard	deviations	σδ 	equal	to	0.25x,	0.5x,	0.75x	and	1	x	0.247,	the	
measurement	 error	 of	GGT	applied	 in	our	previous	 analysis.	 Estimates	 are	based	on	300	datasets	 for	
each	specified	measurement	error	variance.	
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Given	the	figure	above,	the	results	for	the	two	SIMEX	approaches	remain	nearly	unbiased	when	the	ratio	

of	the	specified	versus	original	measurement	error	variance	is	less	than	1.0,	while	the	naïve	MSM	

exhibits	up	to	20%	bias	relative	to	the	“true”	model.	

	

Web	 Figure	 2:	 Pairwise	 correlations	 between	 SIMEX	 and	 naïve	 estimates.	 We	 computed	

pairwise	 correlations	 for	 the	 direct	 and	 indirect	 SIMEX,	 indirect	 SIMEX	 and	 naïve	MSM,	 and	

direct	SIMEX	and	naïve	MSM	across	all	27	 scenarios	described	 in	Table	1	and	Supplementary	

Table	1c.	As	seen	in	the	figure	below,	correlation	between	direct	and	indirect	SIMEX	estimates	

remained	consistently	high	(ρ	≥	0.95)	regardless	of	the	degree	of	specified	measurement	error.		
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Web	Figure	3:	 Evaluating	 the	accuracy	of	 the	quadratic	extrapolation.	 To	better	understand	 the	
impact	of	measurement	error	on	estimates	from	the	naïve	model	(without	any	SIMEX	correction),	
we	modeled	the	functional	relationship	between	β(λ)	and	λ	for	the	direct	SIMEX,	and	α(λ)	and	λ	
for	 the	 indirect	 SIMEX.	 Given	 21	 gradually	 decreasing	 values	 of	 measurement	 error	 standard	
deviation	 (ranging	 from	1.50	 to	0.00),	we	produced	plots	 for	β(λ)	 from	the	outcome	model	and	
α(λ)	 from	 the	 treatment	 model	 versus	 λ.	 For	 each	 round	 of	 simulations,	 we	 generated	 100	
datasets	containing	5000	observations	each,	with	α0	=	0.25,	and	α1	=	0.50.		
	
The	dotted	line	on	each	plot	shows	the	fit	provided	by	a	quadratic	smoother.	A	comparison	of	the	
two	 fitted	 lines	 suggests	 that	 while	 the	 quadratic	 extrapolant	 may	 not	 provide	 a	 perfect	 fit,	 it	
offers	a	reasonable	approximation	to	the	observed	relationship.	
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Web Table 2: Single time interval simulation results for error-free L and error-prone L* 

	
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario     Model using error-free L  Model using error-prone L* 
  Values  Bias MSE MCSE 95% Boot Cov.   Bias MSE MCSE 95% Boot Cov. 
  N α1 σδ   β1     β1    

A 100 0.25 0.25  -0.003 0.042 0.206 0.953  0.012 0.048 0.219 0.950 
B   0.75       0.127 0.089 0.271 0.930 
C   1.25       0.267 0.173 0.319 0.883 
              

D 500  0.25  0.008 0.009 0.095 0.930  0.026 0.010 0.099 0.937 
E   0.75       0.145 0.036 0.123 0.800 
F   1.25       0.286 0.104 0.149 0.453 
              

G 1000  0.25  0.003 0.005 0.071 0.923  0.020 0.006 0.075 0.927 
H   0.75       0.135 0.027 0.092 0.623 
I   1.25       0.272 0.085 0.106 0.223 
              
J 100 0.50 0.25  -0.006 0.057 0.239 0.953  0.029 0.062 0.248 0.957 
K   0.75       0.253 0.148 0.290 0.890 
L   1.25       0.528 0.387 0.330 0.667 
              

M 500  0.25  0.006 0.013 0.113 0.920  0.039 0.015 0.116 0.917 
N   0.75       0.260 0.085 0.134 0.457 
O   1.25       0.534 0.309 0.153 0.077 
              

P 1000  0.25  -0.001 0.006 0.08 0.920  0.031 0.008 0.084 0.917 
Q   0.75       0.250 0.073 0.099 0.217 
R   1.25       0.524 0.287 0.112 0.003 
              

S 100 0.75 0.25  0.022 0.105 0.323 0.923  0.071 0.111 0.326 0.920 
T   0.75       0.383 0.274 0.357 0.763 
U   1.25       0.778 0.741 0.370 0.443 
              

V 500  0.25  0.002 0.020 0.14 0.930  0.044 0.022 0.143 0.887 
W   0.75       0.355 0.151 0.156 0.343 
X   1.25       0.754 0.597 0.167 0.017 
              

Y 1000  0.25  0.003 0.009 0.096 0.940  0.045 0.012 0.099 0.907 
Z   0.75       0.354 0.137 0.111 0.113 

AA   1.25       0.751 0.578 0.120 0.000 
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Web Table 3: Summary of two-interval simulation study results for four scenarios (rows), varying the coefficient for the confounder L 
(α1), and the standard deviation of measurement error 

€ 

σδ  for models including an error-free L and uncorrected error-prone L*. Bootstrap 
coverage was obtained using the percentiles approach. Mean squared error abbreviated as MSE, Monte Carlo standard error 
abbreviated as MCSE. Sample size of N = 1000 used for all simulations. 
 

 

Scenario    Model using error-free L1, L2 Model using error-prone L1*, L2* 
 Values  Bias MSE MCSE 95% 

Bootstrap 
Coverage 

  Bias MSE 
 

MCSE 95% 
Bootstrap 
Coverage 

 α1 σδ   β1 β2 β1 β2 β1 β2 β1, β2  β1 β2 β1 β2 β1 β2 β1, β2 

1 0.50 0.25  -0.004 0.009 0.009 0.011 0.094 0.106 0.910, 0.973  0.025 0.03 0.009 0.012 0.094 0.106 0.917, 0.957 
2  1.25  -0.004 0.009 0.009 0.011 0.094 0.106 0.907, 0.970  0.411 0.238 0.179 0.067 0.097 0.103 0.010, 0.400 
                   

3 0.75 0.25  0.006 0.013 0.014 0.018 0.12 0.135 0.930, 0.927  0.045 0.044 0.016 0.02 0.121 0.133 0.903, 0.927 
4  1.25  0.001 -0.001 0.014 0.019 0.118 0.138 0.940, 0.947  0.561 0.319 0.325 0.115 0.098 0.116 0.000, 0.233 
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Web Appendix 4: Additional details related to case study analyses of CCC data 

We consulted trace line plots to assess convergence of imputation models, given 10 iterations and 30 imputations per iteration; we 

specified these values based on advice provided by Bodner (6). We imputed missing values for continuous variables using predictive 

mean matching, and applied logistic regression to impute missing indicators of treatment status, as suggested by van Buuren et al. (7, 

8). Censoring models included all time-varying covariates except for GGT, which did not strongly predict censoring. 

 
Web Figure 4: Participant flow diagram for Case Study using Canadian Co-infection Cohort Study data 
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Web Table 4: Characteristics of 186 participants in the Canadian Co-infection Cohort Study (2003-2014) with at least one visit 

following hepatitis C virus (HCV) therapy and known sustained virologic response status at second visit 

 

 SVR attained at 12 weeks  

P value† Variable Yes 

(n = 111) 

No 

(n = 75) 

Age in years (mean (SD)) 

 

45.85 (8.72) 47.27 (7.90) 0.25 

Female (%) 18 (16) 10 (13) 0.59 

 

Duration of HCV infection in years (mean (SD)) 

 

16.52 (11.10) 

 

19.79 (10.52) 

 

0.04 

 

HCV genotype of 2/3/4 (%) 

 

42 (38) 

 

18 (24) 

 

0.048 

 
† Computed from t-test for continuous variables, and chi-square test for categorical variables. 
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Baseline characteristics and standardized differences prior to and subsequent to weighting 

 

Web Table 5: Comparison of baseline characteristics between those attaining or not attaining SVR12 prior to weighting, and 

subsequent to weighting using naïve model with quadratic terms for GGT and HIV RNA levels.  

 
 
 

Prior to weighting 
 

Weighted using naïve weights, with 
quadratic log10(GGT), log10(HIV RNA) terms 

  
SVR12 

 
 

Standardized 
difference 

 
SVR12 

 
 

Standardized 
difference 

 
 
Variable 

No 
 

N=75 

Yes 
 

N=111 

No 
 

N=181.63 

Yes 
 

N=188.79 
       
log10(GGT) 1.94 (0.36) 1.58 (0.35) 1.01 1.74 (0.39) 1.73 (0.40) <0.01 
       
BMI 24.84 (3.63) 25.83 (6.85) 0.18 24.79 (3.41) 25.17 (5.83) 0.08 
       
log10(HIV RNA) 2.03 (0.99) 1.87 (0.80) 0.18 1.96 (1.40) 2.14 (1.43) 0.09 
       
Time since 
stopping HCV 
therapy 

 
125.41 (146.57) 

 
106.44 (123.56) 

 
0.14 

 
101.10 (10.06) 

 

 
106.92 (10.34) 

 
0.05 

       
IDU in past 6 
months 

14 
(19%) 

15 
(20%) 

0.14 24.41 
(13%) 

26.57 
(14%) 

0.02 

       
Any alcohol use 
in past 6 months 

 
36 

(48%) 

 
62 

(56%) 

 
0.16 

 
79.51 
(44%) 

 
97.79 
(52%) 

 
0.16 

       
Currently 
receiving HIV 
anti-retroviral 
therapy 

 
67 

(89%) 

 
101 

(91%) 

 
0.06 

 
157.72 
(87%) 

 
160.93 
(85%) 

 
0.05 

  
 

     

N.B. Mean (standard deviation) reported for continuous variables, while N (%) is reported for dichotomous variables.
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Web Table 6: Distribution of missingness prior to imputation. Percentages based on N of uncensored individuals at each visit. 

 HCV 

genotype 
γ-glutamyl 

transferase 

 BMI  HIV RNA  Any IDU in 

past 6 months 

 Any alcohol 

use in past 6 

months 

 Currently on anti-

retroviral therapy 

 APRI 

  Visit 1 Visit 2  Visit 1 Visit 2  Visit 1 Visit 2  Visit 1 Visit 2  Visit 1 Visit 2  Visit 1 Visit 2  Visit 3 

Missing 

(%) 

22 

(9%) 

22  

(9%) 

57  

(31%) 

 25 

(10%) 

60 

(32%) 

 11 

(4%) 

43 

(23%) 

 2 

(1%) 

35 

(19%) 

 6 

(2%) 

43 

(23%) 

 0 

(0%) 

34 

(18%) 

 7 

(4%) 

                    

N.B. We did not impute SVR12; for reference, the number of participants with missing SVR status is available in Web Figure 4 above.  
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