### **Online supplemental material**

The following pages show the supplemental online material. In addition to this, the dataset as a whole will be provided in an Excel sheet.

#### Appendix

#### References for prior reviews that were searched

- Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S.M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. *Psychonomic Bulletin & Review*, 22, 366-377. DOI: 10.3758/s13423-014-0699-x
- Conway, A. R. A., & Getz. S. J. (2010). Cognitive ability: Does working memory training enhance intelligence? *Current Biology*, 20, R362-R364. DOI: 10.1016/j.cub.2010.03.001
- Cortese,S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittmann, R.W., ... Sonuga-Barke,
  E. (2015). Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of
  clinical and neuropsychological outcomes from randomized controlled trials. *Journal of the American Academy of Child & Adolescent Psychiatry*, 54(3), 164-174. DOI:
  10.1016/j.jaac.2014.12.010
- Hindin, S., & Zelinski, E. M. (2012). Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: A meta-analysis. *Journal of American Geriatric Society*, 60, 136–141. DOI: 10.1111/j.1532-5415.2011.03761.x
- Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. *Psychological Science*, 25, 2027–2037. DOI: 10.1177/0956797614548725
- Karch, D., Albers, L., Renner, G., Lichtenauer, N., & von Kries, R. (2013) The efficacy of cognitive training programs in children and adolescents: A meta-analysis. *Deutches Artzeblatt International*, 110, 643-652. DOI: 10.3238/arztebl.2013.0643
- Karr, J. E., Areshenkoff, C. N., Rast, P., & Garcia-Barrera, M. A. (2014). An empirical comparison of the therapeutic benefits of physical exercise and cognitive training on the

executive functions of older adults: A meta-analysis of controlled trials.

Neuropsychology, 28, 1-17. DOI: 10.1037/neu0000101

- Kelly, M. E., Loughrey, D., & Lawlor, B., (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. *Ageing Research Reviews*, 15, 28-43. DOI: 10.1016/j.arr.2014.02.004
- Morrison, A., & Chein, J. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. *Psychonomic Bulletin & Review*, 18, 46-60. DOI: 10.3758/s13423-010-0034-0
- Peijnenborgh, J., Hurks, P. M., Aldenkamp, A. P., Vles, J.S., & Hendriksen, J.G. (2015). Efficacy of working memory training in children and adolescents with learning disabilities: A review study and meta-analysis. *Neuropsychological Rehabilitation: An International Journal*. DOI: 10.1080/09602011.2015.1026356
- Schwaighofer, M., Fischer, F., & Buhner, M. (2015). Does working memory training transfer? A meta-analysis including training conditions as moderators. *Educational Psychologist*, 50(2), 138–166. DOI: 10.1080/00461520.2015.1036274
- Shipstead, Z., Redick, T. S., & Engle, R.W. (2012). Is working memory training effective? *Psychological Bulletin*, 138(4), 628. DOI: 10.1037/a0027473
- Sitzer, D. I., Twamley, E. W., & Jeste, D. V. (2006). Cognitive training in Alzheimer's disease: A meta-analysis of the literature. *Acta Psychiatrica Scandinavica*, 114(2), 75-90. DOI: 10.1111/j.1600-0447.2006.00789.x
- Spencer-Smith, M., & Klingberg, T. (2015). Benefits of a working memory training program for inattention in daily life: A systematic review and meta-analysis. *PloS One*, *10*(3), e0119522. DOI: 10.1371/journal.pone.0119522

- Toril, P., Reales, J. M., & Ballesteros, S. (2014). Video game training enhances cognition of older adults: A meta-analytic study. *Psychology and Aging*, 29, 706–716. DOI: 10.1037/a0037507
- Uttal, D. H., Meadow, N. G., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. *Psychological Bulletin*, 139 (2), 352-402. DOI: 10.1037/a0028446
- von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: A review. *Psychological Research*, 78, 803-820. doi:10.1007/s00426-013-0524-6
- Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory – Is younger, better? *Developmental Review*, 32, 360-387. DOI: 10.1016/j.dr.2012.07.001
- Weicker, J., Villringer, A., & Thöne-Otto, A. (2015). Can impaired working memory functioning be improved by training? A meta-analysis with a special focus on brain injured patients. *Neuropsychology*. DOI: 10.1037/neu00002

## Table s1

# Characteristics of Working Memory Training Studies Included in the Meta-analysis

| Study name         | Comparison | Time point | Construct         | Outcome test                    | Hedge's | Sample<br>size<br>(t (c)) | Age<br>(t (c)) |
|--------------------|------------|------------|-------------------|---------------------------------|---------|---------------------------|----------------|
| Alloway 2012       | 1          | Posttest   | Arithmetic        | WOND                            | 0.57    | 8 (7)                     | 12.9 (13)      |
|                    |            |            | Verbal WM         | AWMA letters                    | 1.51    |                           |                |
|                    |            |            | Verbal reasoning  | WASI Vocab                      | 1.12    |                           |                |
| Alloway et al 2013 | 1          | Posttest   | Arithmetic        | WOND                            | -0.17   | 23 (32)                   | 11.2 (10.6)    |
| 2                  |            |            | Verbal reasoning  | WASI Vocab                      | 0.76    |                           |                |
|                    |            | Verbal WM  | AWMA composite    | 0.83                            |         |                           |                |
|                    |            | Visual WM  | AWMA Shape recall | 0.66                            |         |                           |                |
|                    | Posttest   | Arithmetic | WOND              | 0.17                            | 23 (39) | 11.2 (10.1)               |                |
|                    |            |            | Verbal reasoning  | WASI                            | 0.49    |                           |                |
|                    |            |            | Verbal WM         | AWMA composite                  | 1.04    |                           |                |
| 1                  |            | Visual WM  | AWMA Shape recall | 0.66                            |         |                           |                |
|                    | 1          | Follow up  | Arithmetic        | WOND                            | 0.34    | 11 (19)                   | 11.2 (10.6)    |
|                    |            |            | Verbal reasoning  | WASI                            | 0.63    |                           |                |
|                    |            |            | Verbal WM         | AWMA composite                  | 1.40    |                           |                |
|                    |            |            | Visual WM         | AWMA Shape recall               | 1.44    |                           |                |
|                    | 2          | Follow up  | Arithmetic        | WOND                            | 0.33    | 11 (24)                   | 11.2 (10.11)   |
|                    |            |            | Verbal reasoning  | WASI                            | 1.39    |                           |                |
|                    |            |            | Verbal WM         | AWMA composite                  | 1.27    |                           |                |
|                    |            |            | Visual WM         | AWMA Shape recall               | 1.64    |                           |                |
| Ang et al 2015     | 1          | Posttest   | Verbal WM 1       | Animal updating                 | 0.20    | 32 (28)                   | 7 (7)          |
|                    |            |            | Verbal WM 2       | Back letter recall              | 0.42    |                           |                |
|                    |            |            | Visual WM         | Letter rotation                 | 0.44    |                           |                |
|                    |            |            | Arithmetic 1      | Numerical Operations (WIAT-III) | 0.05    |                           |                |
|                    |            |            | Arithmetic 2      | Addition fluency (WIAT-III)     | 0.25    |                           |                |
|                    |            |            | Arithmetic 3      | Subtraction fluency (WIAT-III)  | 0.49    |                           |                |

| 2 | Posttest  | Verbal WM 1  | Animal updating                 | 0.05  | 32 (26) | 7 (7) |
|---|-----------|--------------|---------------------------------|-------|---------|-------|
|   |           | Verbal WM 2  | Back letter recall              | 0.44  |         |       |
|   |           | Visual WM    | Letter rotation                 | 0.53  |         |       |
|   |           | Arithmetic 1 | Numerical Operations (WIAT-III) | 0.16  |         |       |
|   |           | Arithmetic 2 | Addition fluency (WIAT-III)     | 0.24  |         |       |
|   |           | Arithmetic 3 | Subtraction fluency (WIAT-III)  | 0.08  |         |       |
| 3 | Posttest  | Verbal WM 1  | Animal updating                 | 0.19  | 25 (28) | 7 (7) |
|   |           | Verbal WM 2  | Back letter recall              | 0.67  |         |       |
|   |           | Visual WM    | Letter rotation                 | -0.09 |         |       |
|   |           | Arithmetic 1 | Numerical Operations (WIAT-III) | -0.29 |         |       |
|   |           | Arithmetic 2 | Addition fluency (WIAT-III)     | 0.00  |         |       |
|   |           | Arithmetic 3 | Subtraction fluency (WIAT-III)  | -0.15 |         |       |
| 4 | Posttest  | Verbal WM 1  | Animal updating                 | 0.04  | 25 (26) | 7 (7) |
|   |           | Verbal WM 2  | Back letter recall              | 0.69  |         |       |
|   |           | Visual WM    | Letter rotation                 | -0.05 |         |       |
|   |           | Arithmetic 1 | Numerical Operations (WIAT-III) | -0.21 |         |       |
|   |           | Arithmetic 2 | Addition fluency (WIAT-III)     | -0.04 |         |       |
|   |           | Arithmetic 3 | Subtraction fluency (WIAT-III)  | -0.61 |         |       |
| 1 | Follow up | Verbal WM 1  | Animal updating                 | 0.43  | 32 (28) | 7 (7) |
|   |           | Verbal WM 2  | Back letter recall              | 0.13  |         |       |
|   |           | Visual WM    | Letter rotation                 | 0.34  |         |       |
|   |           | Arithmetic 1 | Numerical Operations (WIAT-III) | 0.43  |         |       |
|   |           | Arithmetic 2 | Addition fluency (WIAT-III)     | 0.56  |         |       |
|   |           | Arithmetic 3 | Subtraction fluency (WIAT-III)  | 0.48  |         |       |
| 2 | Follow up | Verbal WM 1  | Animal updating                 | -0.08 | 32 (26) | 7 (7) |
|   |           | Verbal WM 2  | Back letter recall              | 0.14  |         |       |
|   |           | Visual WM    | Letter rotation                 | 0.23  |         |       |
|   |           | Arithmetic 1 | Numerical Operations (WIAT-III) | -0.08 |         |       |
|   |           | Arithmetic 2 | Addition fluency (WIAT-III)     | 0.53  |         |       |
|   |           | Arithmetic 3 | Subtraction fluency (WIAT-III)  | 0.56  |         |       |
| 3 | Follow up | Verbal WM 1  | Animal updating                 | 0.37  | 25 (28) | 7 (7) |
|   |           |              |                                 |       |         |       |

|                                 |   |           | Verbal WM 2           | Back letter recall              | 0.71  |           |                 |
|---------------------------------|---|-----------|-----------------------|---------------------------------|-------|-----------|-----------------|
|                                 |   |           | Visual WM             | Letter rotation                 | -0.29 |           |                 |
|                                 |   |           | Arithmetic 1          | Numerical Operations (WIAT-III) | 0.11  |           |                 |
|                                 |   |           | Arithmetic 2          | Addition fluency (WIAT-III)     | -0.07 |           |                 |
|                                 |   |           | Arithmetic 3          | Subtraction fluency (WIAT-III)  | 0.10  |           |                 |
|                                 | 4 | Follow up | Verbal WM 1           | Animal updating                 | -0.16 | 25 (26)   | 7 (7)           |
|                                 |   |           | Verbal WM 2           | Back letter recall              | 0.75  |           |                 |
|                                 |   |           | Visual WM             | Letter rotation                 | -0.42 |           |                 |
|                                 |   |           | Arithmetic 1          | Numer Operations (WIAT-III)     | -0.38 |           |                 |
|                                 |   |           | Arithmetic 2          | Addition fluency (WIAT-III)     | -0.19 |           |                 |
|                                 |   |           | Arithmetic 3          | Subtraction fluency (WIAT-III)  | 0.03  |           |                 |
| Anguera et al 2012 <sup>1</sup> | 1 | Posttest  | Nonverbal reasoning 1 | Card rotation                   | 0.24  | 22 (22)   | 19 (19)         |
|                                 |   |           | Verbal WM             | Operation span                  | 0.54  | 22 (22)   |                 |
|                                 |   |           | Visual WM 1           | 4-back objects                  | 0.84  | 22 (22)   |                 |
|                                 |   |           | Visual WM 2           | 3-back objects                  | 0.64  | 22 (22)   |                 |
|                                 |   |           | Verbal reasoning 1    | Analogies                       | 0     | 29 (27)   |                 |
|                                 |   |           | Verbal reasoning 2    | Letter Sets                     | -0.14 | 29 (27)   |                 |
|                                 |   |           | Nonverbal reasoning 2 | Raven advanced                  | -0.01 | 29 (27)   |                 |
|                                 |   |           | Nonverbal reasoning 3 | BOMAT                           | 0.11  | 29 (27)   |                 |
| Ashman-East 2015                | 1 | Posttest  | Verbal WM             | AWMA listening recall           | 1.19  | 15 (13)   | Fifth graders   |
|                                 |   |           | Visual WM             | AWMA spatial recall             | 0.38  |           |                 |
|                                 |   |           | Arithmetic            | Jamaica Grade 4 literacy test   | 0.56  |           |                 |
|                                 | 1 | Follow up | Arithmetic            | Jamaica Grade 4 literacy test   | 0.53  |           |                 |
| Bergman-Nutley &                | 1 | Deattast  |                       | add ana aut                     | 0.74  | 155 (275) | 11 1 (11 01)    |
| Kungberg 2014                   | 1 | Postiest  | V ISUAT WIN           | odd one out                     | 0.74  | 155 (275) | 11.1 (11.01)    |
| Bonolla et al 2014              | 1 | Deattast  | Crit                  | Matrix anon                     | 1.92  | 20 (20)   | 60.0 (60.55)    |
| Borella el al 2014              | 1 | Postiest  | Unit                  | Matrix span                     | 0.20  | 20 (20)   | 09.9 (09.33)    |
|                                 |   |           | Nonverbal reasoning   | CWMS                            | 1.04  |           |                 |
|                                 |   |           | Verual WM             | C w WIS                         | 1.94  |           |                 |
|                                 | 2 | Deetteet  |                       | Dackward Corst DIOCK            | 1.39  | 20 (20)   | $70 \in (70,7)$ |
|                                 | 2 | Posttest  | Crit                  | Matrix span                     | 1.55  | 20 (20)   | /9.0(/9./)      |

|                    |   |                        | Nonverbal reasoning | Cattell              | 0.07  |         |              |
|--------------------|---|------------------------|---------------------|----------------------|-------|---------|--------------|
|                    |   |                        | Verbal WM           | CWMS                 | 1.06  |         |              |
|                    |   | Visi<br>Follow up Crit | Visual WM           | Backward Corsi block | -0.20 |         |              |
|                    | 1 | Follow up              | Crit                | Matrix span          | 1.41  | 20 (20) | 69.9 (69.55) |
|                    |   |                        | Nonverbal reasoning | Cattell              | -0.07 |         |              |
|                    |   |                        | Verbal WM           | CWMS                 | 2.01  |         |              |
|                    |   |                        | Visual WM           | Backward Corsi block | 0.55  |         |              |
|                    | 2 | Follow up              | Crit                | Matrix span          | 0.96  | 20 (20) | 79.6 (79.7)  |
|                    |   |                        | Nonverbal reasoning | Cattell              | -0.09 |         |              |
|                    |   |                        | Verbal WM           | CWMS                 | 1.13  |         |              |
|                    |   |                        | Visual WM           | Backward Corsi       | -0.20 |         |              |
| Brehmer et al 2012 | 1 | Posttest               | Crit 1              | Span board fw        | 1.74  | 29 (26) | 26.2 (25.7)  |
|                    |   |                        | Crit 2              | Span board bw        | 1.70  |         |              |
|                    |   |                        | Crit 3              | Digit span fw        | 0.34  |         |              |
|                    |   |                        | Crit 4              | Digit span bw        | 1.16  |         |              |
|                    |   |                        | Nonverbal reasoning | Raven standard       | -0.12 |         |              |
|                    | 2 | Posttest               | Crit 1              | Span board fw        | 0.81  | 26 (19) | 63.9 (63.6)  |
|                    |   |                        | Crit 2              | Span board bw        | 1.29  |         |              |
|                    |   |                        | Crit 3              | Digit span fw        | 0.56  |         |              |
|                    |   |                        | Crit 4              | Digit span bw        | 0.34  |         |              |
|                    |   |                        | Nonverbal reasoning | Raven standard       | -0.36 |         |              |
|                    | 1 | Follow up              | Crit 1              | Span board fw        | 2.00  | 29 (26) | 26.2 (25.7)  |
|                    |   |                        | Crit 2              | Span board bw        | 1.34  |         |              |
|                    |   |                        | Crit 3              | Digit span fw        | 0.32  |         |              |
|                    |   |                        | Crit 4              | Digit span bw        | 1.03  |         |              |
|                    |   | ĩ                      | Nonverbal reasoning | Raven standard       | -0.15 |         |              |
|                    | 2 | Follow up              | Crit 1              | Span board fw        | 0.94  | 26 (19) | 63.9 (63.6)  |
|                    |   |                        | Crit 2              | Span board bw        | 1.61  |         |              |
|                    |   |                        | Crit 3              | Digit span fw        | 0.67  |         |              |
|                    |   |                        | Crit 4              | Digit span bw        | -0.08 |         |              |
|                    |   |                        | Nonverbal reasoning | Raven standard       | -0.28 |         |              |

| Bürki et al 2014                   | 1 | Posttest | Crit                  | Verbal 2 back                      | 0.56  | 22 (20) | 24.68 (24.35) |
|------------------------------------|---|----------|-----------------------|------------------------------------|-------|---------|---------------|
|                                    |   |          | Nonverbal reasoning   | Raven                              | 0.01  |         |               |
|                                    |   |          | Verbal WM 1           | Reading span                       | 0.09  |         |               |
|                                    |   |          | Verbal WM 2           | Number updating                    | 0.38  |         |               |
|                                    |   |          | Visual WM             | Spatial 2 back                     | 0.33  |         |               |
|                                    | 2 | Posttest | Crit                  | Verbal 2 back                      | 0.60  | 22 (21) | 24.68 (25.35) |
|                                    |   |          | Nonverbal reasoning   | Raven                              | -0.01 |         |               |
|                                    |   |          | Verbal WM 1           | Reading span                       | -0.14 |         |               |
|                                    |   |          | Verbal WM 2           | Number updating                    | 0.22  |         |               |
|                                    |   |          | Visual WM             | Spatial 2 back                     | 0.00  |         |               |
|                                    | 3 | Posttest | Crit                  | Verbal 2 back                      | 0.83  | 22 (20) | 67.64 (67.7)  |
|                                    |   |          | Nonverbal reasoning   | Raven                              | 0.13  |         |               |
|                                    |   |          | Verbal WM 1           | Reading span                       | 0.14  |         |               |
|                                    |   |          | Verbal WM 2           | Number updating                    | -0.37 |         |               |
|                                    |   |          | Visual WM             | Spatial 2 back                     | 0.45  |         |               |
|                                    | 4 | Posttest | Crit                  | Verbal 2 back                      | 0.60  | 22 (23) | 67.64 (68.61) |
|                                    |   |          | Nonverbal reasoning   | Raven                              | -0.09 |         |               |
|                                    |   |          | Verbal WM 1           | Reading span                       | 0.02  |         |               |
|                                    |   |          | Verbal WM 2           | Number updating                    | -0.55 |         |               |
|                                    |   |          | Visual WM             | Spatial 2 back                     | 0.44  |         |               |
| Chacko et al 2014                  | 1 | Posttest | Arithmetic            | WRAT math computation              | 0.10  | 44 (41) | 8.4 (8.4)     |
|                                    |   |          | Decoding 1            | WRAT word reading                  | -0.05 |         |               |
|                                    |   |          | Reading comp          | WRAT sentence comprehension        | 0.31  |         |               |
|                                    |   |          | Verbal WM             | AWMA Listening recall              | 0.29  |         |               |
|                                    |   |          | Visual WM             | AWMA Spatial recall                | 0.07  |         |               |
|                                    |   |          | Crit                  | AWMA Digit recall                  | 0.28  |         |               |
| Chein & Morrison 2010 <sup>2</sup> | 1 | Posttest | Crit                  | Verbal & Spatial CWM composite     | 1.39  | 22 (20) | 20.1 (20.6)   |
|                                    |   |          | Nonverbal reasoning   | Raven advanced                     | 0.06  |         |               |
|                                    |   |          | Reading comp          | Nelson Denny reading comprehension | 0.57  | 21 (19) |               |
| Chooi & Thompson $2012^3$          | 1 | Posttest | Nonverbal reasoning 1 | ETS Card Rotation                  | 0.24  | 9 (15)  | ~20 (~20)     |
|                                    |   |          | Nonverbal reasoning 2 | ETS Paper Folding                  | 0.71  |         |               |

|                  |   |          | Nonverbal reasoning 3 | Mental rotation        | -0.29 |         |               |
|------------------|---|----------|-----------------------|------------------------|-------|---------|---------------|
|                  |   |          | Nonverbal reasoning 4 | Raven advanced         | 0.10  |         |               |
|                  |   |          | Verbal WM             | Operation span         | 0.17  |         |               |
|                  |   |          | Verbal reasoning      | Mill Hill vocab        | 0.53  |         |               |
|                  | 2 | Posttest | Nonverbal reasoning 1 | ETS Card Rotation      | 0.43  | 9 (22)  | ~20 (~20)     |
|                  |   |          | Nonverbal reasoning 2 | ETS Paper Folding      | 0.45  |         |               |
|                  |   |          | Nonverbal reasoning 3 | Mental rotation        | -0.92 |         |               |
|                  |   |          | Nonverbal reasoning 4 | Raven advanced         | 0.43  |         |               |
|                  |   |          | Verbal WM             | Operation span         | 0.14  |         |               |
|                  |   |          | Verbal reasoning      | Mill Hill vocab        | 0.24  |         |               |
|                  | 3 | Posttest | Nonverbal reasoning 1 | ETS Card Rotation      | -0.31 | 13 (11) | ~20 (~20)     |
|                  |   |          | Nonverbal reasoning 2 | ETS Paper Folding      | -0.26 |         |               |
|                  |   |          | Nonverbal reasoning 3 | Mental rotation        | 0.11  |         |               |
|                  |   |          | Nonverbal reasoning 4 | Raven advanced         | 0.26  |         |               |
|                  |   |          | Verbal WM             | Operation span         | 0.12  |         |               |
|                  |   |          | Verbal reasoning      | Mill Hill vocab        | -0.15 |         |               |
|                  | 4 | Posttest | Nonverbal reasoning 1 | ETS Card Rotation      | -0.56 | 13 (23) | ~20 (~20)     |
|                  |   |          | Nonverbal reasoning 2 | ETS Paper Folding      | 0.19  |         |               |
|                  |   |          | Nonverbal reasoning 3 | Mental rotation        | 0.36  |         |               |
|                  |   |          | Nonverbal reasoning 4 | Raven advanced         | 0.15  |         |               |
|                  |   |          | Verbal WM             | Operation span         | 0.08  |         |               |
|                  |   |          | Verbal reasoning      | Mill Hill vocab        | -0.19 |         |               |
| Clouter 2013     | 1 | Posttest | Nonverbal reasoning   | Cattell                | 0.63  | 18 (18) | 20.39 (20.39) |
|                  |   |          | Visual WM             | Symmetry span          | -0.02 | 17 (18) |               |
|                  |   |          | Verbal WM             | Operation span         | 0.57  | 18 (18) |               |
| Colom et al 2013 | 1 | Posttest | Nonverbal reasoning 1 | Raven advanced         | 0.30  | 28 (28) | 18.0 (18.2)   |
|                  |   |          | Nonverbal reasoning 2 | DAT-Abstract Reasoning | 0.23  |         |               |
|                  |   |          | Verbal reasoning 1    | PMA-R                  | 0.05  |         |               |
|                  |   |          | Verbal reasoning 2    | DAT-Verbal Reasoning   | -0.31 |         |               |
|                  |   |          | Verbal reasoning 3    | PMA-V                  | -0.19 |         |               |
|                  |   |          | Arithmetic            | DAT-Number Reasoning   | 0.32  |         |               |

|                                 |   |           | Verbal WM 1         | Computation span                | -0.26 |         |               |
|---------------------------------|---|-----------|---------------------|---------------------------------|-------|---------|---------------|
|                                 |   |           | Verbal WM 2         | Reading span                    | 0.14  |         |               |
|                                 |   |           | Visual WM           | Dot matrix                      | 0.27  |         |               |
| Dahlin 2011 / 2013 <sup>4</sup> | 1 | Posttest  | Decoding 1          | Word decoding                   | 0.39  | 41 (15) | 10.7 (10.7)   |
|                                 |   |           | Decoding 2          | Orthographic verification       | -0.24 | 29 (15) |               |
|                                 |   |           | Reading comp        | PIRLS & IEA RSL narrative texts | 0.56  | 41 (15) |               |
|                                 |   |           | Arithmetic 1        | Addition                        | 0.43  | 42 (15) | 10.7 (10.7)   |
|                                 |   |           | Arithmetic 2        | Subtraction                     | 0.00  | 42 (15) |               |
|                                 |   |           | Arithmetic 3        | Basic number screening test     | 0.24  | 42 (15) |               |
| Dahlin et al 2008               | 1 | Posttest  | Crit                | Letter working memory task      | 0.98  | 15 (11) | 23.67 (24.09) |
|                                 |   |           | Verbal WM 1         | Digit span backward             | -0.13 |         |               |
|                                 |   |           | Verbal WM 2         | 3-back digit                    | 0.50  |         |               |
|                                 |   |           | Verbal WM 3         | Computation span                | -0.42 |         |               |
|                                 |   |           | Nonverbal reasoning | Raven advanced                  | 0.29  |         |               |
|                                 | 2 | Posttest  | Crit                | Letter working memory task      | 1.12  | 13 (16) | 68.38 (68.25) |
|                                 |   |           | Verbal WM 1         | Digit span backward             | 0.59  |         |               |
|                                 |   |           | Verbal WM 2         | 3-back digit                    | -0.19 |         |               |
|                                 |   |           | Verbal WM 3         | Computation span                | 0.11  |         |               |
|                                 |   |           | Nonverbal reasoning | Raven advanced                  | 0.06  |         |               |
|                                 | 1 | Follow up | Crit                | Letter working memory task      | 1.01  | 11 (7)  | 23.67 (24.09) |
|                                 |   |           | Verbal WM 1         | Digit span backward             | -0.01 |         |               |
|                                 |   |           | Verbal WM 2         | 3-back digit                    | 0.57  |         |               |
|                                 |   |           | Verbal WM 3         | Computation span                | 0.19  |         |               |
|                                 |   |           | Nonverbal reasoning | Raven advanced                  | -0.14 |         |               |
|                                 | 2 | Follow up | Crit                | Letter working memory task      | 1.59  | 13 (7)  | 68.38 (68.25) |
|                                 |   |           | Verbal WM 1         | Digit span backward             | 0.25  |         |               |
|                                 |   |           | Verbal WM 2         | 3-back digit                    | -0.15 |         |               |
|                                 |   |           | Verbal WM 3         | Computation span                | 0.17  |         |               |
|                                 |   |           | Nonverbal reasoning | Raven advanced                  | 0.28  |         |               |
| Dunning et al $2013^5$          | 1 | Posttest  | Arithmetic 1        | WOND math reasoning             | -0.10 | 33 (29) | 8.42 (8.42)   |
|                                 |   |           | Arithmetic 2        | WOND number operations          | -0.21 | 33 (29) |               |

|                            |   |           | Decoding 1          | WORD basic reading            | 0.22  | 34 (17) |             |
|----------------------------|---|-----------|---------------------|-------------------------------|-------|---------|-------------|
|                            |   |           | Decoding 2          | NARA reading accuracy         | 0.01  | 30 (28) |             |
|                            |   |           | Decoding 3          | NARA reading rate             | 0.03  | 29 (27) |             |
|                            |   |           | Nonverbal reasoning | WASI Performance IQ composite | -0.36 | 34 (27) |             |
|                            |   |           | Reading comp        | NARA reading comprehension    | 0.21  | 30 (28) |             |
|                            |   |           | Verbal reasoning    | WASI Verbal IQ composite      | 0.16  | 34 (26) |             |
|                            |   |           | Verbal WM           | AWMA verbal composite         | 1.56  | 34 (30) |             |
|                            |   |           | Visual WM           | AWMA visuo-spatial composite  | 1.05  | 34 (30) |             |
|                            | 2 | Posttest  | Arithmetic 1        | WOND math reasoning           | -0.15 | 33 (30) | 9.25 (9.5)  |
|                            |   |           | Arithmetic 2        | WOND number operations        | -0.13 | 33 (30) |             |
|                            |   |           | Decoding 1          | WORD basic reading            | -0.23 | 34 (30) |             |
|                            |   |           | Decoding 2          | NARA reading accuracy         | 0.04  | 30 (28) |             |
|                            |   |           | Decoding 3          | NARA reading rate             | 0.23  | 29 (27) |             |
|                            |   |           | Nonverbal reasoning | WASI Performance IQ composite | -0.30 | 24 (30) |             |
|                            |   |           | Reading comp        | NARA reading comprehension    | 0.22  | 30 (28) |             |
|                            |   |           | Verbal reasoning    | WASI Verbal IQ composite      | -0.14 | 24 (30) |             |
|                            |   |           | Verbal WM           | AWMA composite                | 2.24  | 34 (30) |             |
|                            |   |           | Visual WM           | AWMA composite                | 1.07  | 34 (30) |             |
|                            | 1 | Follow up | Arithmetic 1        | WOND math reasoning           | -0.13 | 15 (16) |             |
|                            |   |           | Decoding 1          | WORD basic reading            | -0.06 | 14 (17) |             |
|                            |   |           | Decoding 2          | NARA reading accuracy         | -0.18 | 14 (17) |             |
|                            |   |           | Decoding 3          | NARA reading rate             | -0.67 | 14 (17) |             |
|                            |   |           | Nonverbal reasoning | WASI matrix reasoning         | -0.22 | 14 (17) |             |
|                            |   |           | Reading comp        | NARA reading comprehension    | -0.09 | 14 (17) |             |
|                            |   |           | Verbal reasoning    | WASI similarities             | -0.10 | 14 (17) |             |
|                            |   |           | Verbal WM           | AWMA backward digit recall    | 1.30  | 15 (19) |             |
|                            |   |           | Visual WM           | AWMA Mr X                     | 0.21  | 15 (19) |             |
| Egeland et al 2013 / Hovik | 1 |           | A 1/1 /1            |                               | 0.07  | 22 (24) | 10.5 (10.2) |
| <i>et al 2013</i> °        | 1 | Posttest  | Arithmetic          | Key math                      | 0.27  | 33 (34) | 10.5 (10.3) |
|                            |   |           | Decoding 1          | LOGOS decoding quality        | 0.55  |         |             |
|                            |   |           | Decoding 2          | LOGOS decoding speed          | -0.32 |         |             |

|                    |   |           | Verbal WM 1           | Digit span fw and bw               | 0.59  |           |               |
|--------------------|---|-----------|-----------------------|------------------------------------|-------|-----------|---------------|
|                    |   |           | Visual WM             | Leiter span fw and bw              | 0.66  |           |               |
|                    |   |           | Verbal WM 2           | Let-Num Sequence and Sentence span | 0.72  |           |               |
|                    | 1 | Follow up | Arithmetic            | Key math                           | 0.23  | 33 (34)   | 10.5 (10.3)   |
|                    |   |           | Decoding 1            | LOGOS decoding quality             | 0.62  |           |               |
|                    |   |           | Decoding 2            | LOGOS decoding speed               | -0.15 |           |               |
|                    |   |           | Verbal WM 1           | Digit span fw and bw               | 0.47  |           |               |
|                    |   |           | Visual WM             | Leiter span fw and bw              | 1.13  |           |               |
|                    |   |           | Verbal WM 2           | Let-Num Sequence and Sentence span | 0.25  |           |               |
| Estrada et al 2015 | 1 | Posttest  | Nonverbal reasoning 1 | Raven advanced                     | -0.01 | 170 (193) | 20.3 (20.3)   |
|                    |   |           | Nonverbal reasoning 2 | DAT-Abstract Reasoning             | -0.04 |           |               |
|                    |   |           | Nonverbal reasoning 3 | DAT-Spatial Reasoning              | -0.14 |           |               |
|                    |   |           | Verbal reasoning      | DAT-Verbal Reasoning               | 0.04  |           |               |
| Everts et al 2015  | 1 | Posttest  | Verbal WM             | WISC-IV Letter-Number Sequence     | 0.40  | 22(23)    | 9.45 (9.34)   |
|                    |   |           | Visual WM             | BASIC MLT Spatial positioning      | 0.15  |           |               |
|                    |   |           | Nonverbal reasoning   | WISC-IV Matrices                   | -0.07 |           |               |
|                    |   |           | Decoding              | ELFE Sentence Reading              | -0.26 |           |               |
|                    |   |           | Arithmetic            | WISC-IV Arithmetic                 | 0.04  |           |               |
|                    | 1 | Follow up | Verbal WM             | WISC-IV Letter-Number Sequence     | 0.27  | 22(23)    |               |
|                    |   |           | Visual WM             | BASIC MLT Spatial positioning      | 0.02  |           |               |
|                    |   |           | Nonverbal reasoning   | WISC-IV Matrices                   | -0.19 |           |               |
|                    |   |           | Decoding              | ELFE Sentence Reading              | -0.43 |           |               |
|                    |   |           | Arithmetic            | WISC-IV Arithmetic                 | -0.36 |           |               |
| Feiyue et al 2009  | 1 | Posttest  | Nonverbal reasoning   | Raven standard                     | 1.54  | 8 (10)    | 24.25 (24.15) |
| Foster et al 2014  | 1 | Posttest  | Visual WM 1           | Reading span with images           | 0.28  | 20 (18)   | 18-35 (18-35) |
|                    |   |           | Visual WM 2           | Rotation span                      | 0.46  | 20 (18)   |               |
|                    |   |           | Visual WM 3           | Running shape span                 | 0.01  | 20 (18)   |               |
|                    |   |           | Visual WM 4           | Running icons span                 | -0.11 | 20 (18)   |               |
|                    |   |           | Visual WM 5           | Change detection orientation       | -0.12 | 20 (18)   |               |
|                    |   |           | Verbal WM             | Keep Track                         | 0.11  | 20 (18)   |               |
|                    |   |           | Nonverbal reasoning 1 | Matrix reasoning                   | -0.11 | 20 (18)   |               |

|                     |   |          | Nonverbal reasoning 2 | Paper Folding                 | -0.21 | 20 (18) |               |
|---------------------|---|----------|-----------------------|-------------------------------|-------|---------|---------------|
|                     | 2 | Posttest | Visual WM 1           | Reading span with images      | 0.70  | 20 (19) | 18-35 (18-35) |
|                     |   |          | Visual WM 2           | Rotation span                 | 1.73  | 20 (19) |               |
|                     |   |          | Visual WM 3           | Running shape span            | 0.60  | 20 (19) |               |
|                     |   |          | Visual WM 4           | Running icons span            | 0.16  | 20 (19) |               |
|                     |   |          | Visual WM 5           | Change detection orientation  | -0.28 | 20 (19) |               |
|                     |   |          | Verbal WM             | Keep Track                    | -0.01 | 20 (19) |               |
|                     |   |          | Nonverbal reasoning 1 | Matrix reasoning              | -0.11 | 20 (19) |               |
|                     |   |          | Nonverbal reasoning 2 | Paper Folding                 | 0.05  | 20 (19) |               |
|                     | 3 | Posttest | Visual WM 1           | Reading span with images      | 0.10  | 19 (18) | 18-35 (18-35) |
|                     |   |          | Visual WM 2           | Rotation span                 | -0.29 | 19 (18) |               |
|                     |   |          | Visual WM 3           | Running shape span            | -0.33 | 19 (18) |               |
|                     |   |          | Visual WM 4           | Running icons span            | -0.07 | 19 (18) |               |
|                     |   |          | Visual WM 5           | Change detection orientation  | 0.12  | 19 (18) |               |
|                     |   |          | Verbal WM             | Keep Track                    | 0.07  | 19 (18) |               |
|                     |   |          | Nonverbal reasoning 1 | Matrix reasoning              | 0.22  | 19 (18) |               |
|                     |   |          | Nonverbal reasoning 2 | Paper Folding                 | -0.05 | 19 (18) |               |
|                     | 4 | Posttest | Visual WM 1           | Reading span with images      | 0.51  | 20 (19) | 18-35 (18-35) |
|                     |   |          | Visual WM 2           | Rotation span                 | -0.20 | 20 (19) |               |
|                     |   |          | Visual WM 3           | Running shape span            | 0.07  | 20 (19) |               |
|                     |   |          | Visual WM 4           | Running icons span            | -0.17 | 20 (19) |               |
|                     |   |          | Visual WM 5           | Change detection orientation  | 0.09  | 20 (19) |               |
|                     |   |          | Verbal WM             | Keep Track                    | -0.15 | 20 (19) |               |
|                     |   |          | Nonverbal reasoning 1 | Matrix reasoning              | -0.19 | 20 (19) |               |
|                     |   |          | Nonverbal reasoning 2 | Paper Folding                 | 0.10  | 20 (19) |               |
| Gray et al $2012^7$ | 1 | Posttest | Decoding 1            | WRAT word reading             | 0.04  | 31 (21) | 14.2 (14.4)   |
|                     |   |          | Reading comp          | WRAT sentence comprehension   | -0.09 |         |               |
|                     |   |          | Verbal WM             | WISC digit span backward      | 0.82  |         |               |
|                     |   |          | Visual WM 1           | CANTAB spatial span fw and bw | -0.05 |         |               |
|                     |   |          | Visual WM 2           | CANTAB spatial WM errors      | 0.17  |         |               |
| Gropper et al 2014  | 1 | Posttest | Arithmetic 1          | WAIS-IV arithmetic            | 0.15  | 39 (23) | 28-30 (28-30) |

|                     |   |           | Arithmetic 2        | W-J applied problems               | -0.06 |         |               |
|---------------------|---|-----------|---------------------|------------------------------------|-------|---------|---------------|
|                     |   |           | Crit 1              | CANTAB spatial span                | 0.73  |         |               |
|                     |   |           | Crit 2              | WAIS-IV digit span                 | 0.33  |         |               |
|                     |   |           | Reading comp        | Nelson Denny reading comprehension | -0.14 |         |               |
|                     |   |           | Verbal WM 1         | PASAT a                            | -0.27 |         |               |
|                     |   |           | Verbal WM 2         | PASAT b                            | 0.12  |         |               |
|                     |   |           | Visual WM 1         | CANTAB spatial WM errors           | -0.20 |         |               |
|                     |   |           | Visual WM 2         | CANTAB spatial strategy            | 0.23  |         |               |
|                     | 1 | Follow up | Arithmetic 1        | WAIS-IV arithmetic                 | 0.29  | 24 (21) | 28-30 (28-30) |
|                     |   |           | Arithmetic 2        | W-J applied problems               | -0.07 |         |               |
|                     |   |           | Crit 1              | CANTAB spatial span                | 1.46  |         |               |
|                     |   |           | Crit 2              | WAIS-IV digit span                 | 0.59  |         |               |
|                     |   |           | Reading comp        | Nelson Denny reading comprehension | -0.24 |         |               |
|                     |   |           | Verbal WM 1         | PASAT a                            | -0.22 |         |               |
|                     |   |           | Verbal WM 2         | PASAT b                            | 0.13  |         |               |
|                     |   |           | Visual WM 1         | CANTAB spatial WM errors           | -0.05 |         |               |
|                     |   |           | Visual WM 2         | CANTAB spatial strategy            | 0.57  |         |               |
| Hanson 2013         | 1 | Posttest  | Crit 2              | AWMA digit recall                  | -0.09 | 17(9)   | 12.35 (11.14) |
|                     |   |           | Crit 1              | AWMA dot matrix                    | 0.69  |         |               |
|                     |   |           | Verbal WM 1         | AWMA listening recall              | -0.01 |         |               |
|                     |   |           | Visual WM           | AWMA spatial recall                | -0.24 |         |               |
|                     |   |           | Verbal WM 2         | WISC-IV Digit span/Let num seq     | 0.55  |         |               |
|                     |   |           | Reading comp 1      | GORT comprehension                 | 0.29  |         |               |
|                     |   |           | Reading comp 2      | W-J comprehension                  | -0.19 |         |               |
| Harrison et al 2013 | 1 | Posttest  | Crit 1              | Running letter span                | 0.82  | 21 (17) | undergrads    |
|                     |   |           | Crit 2              | Running matrix span                | 1.15  |         |               |
|                     |   |           | Nonverbal reasoning | Raven advanced                     | 0.19  |         |               |
|                     |   |           | Verbal reasoning 1  | Letter sets                        | 0.03  |         |               |
|                     |   |           | Verbal reasoning 2  | Number series                      | -0.13 |         |               |
|                     |   |           | Verbal WM 1         | Reading span                       | 1.08  |         |               |
|                     |   |           | Verbal WM 2         | Keep track                         | 0.73  |         |               |

|                                |   |          | Visual WM 1           | Rotation span               | 1.39  |         |               |
|--------------------------------|---|----------|-----------------------|-----------------------------|-------|---------|---------------|
|                                |   |          | Visual WM 2           | Change detection            | -0.18 | 21 (16) |               |
|                                | 2 | Posttest | Crit 1                | Running letter span         | 0.96  | 17 (17) | undergrads    |
|                                |   |          | Crit 2                | Running matrix span         | 0.96  |         |               |
|                                |   |          | Nonverbal reasoning   | Raven advanced              | 0.24  |         |               |
|                                |   |          | Verbal reasoning 1    | Letter sets                 | -0.12 |         |               |
|                                |   |          | Verbal reasoning 2    | Number series               | -0.49 |         |               |
|                                |   |          | Verbal WM 1           | Reading span                | 0.31  |         |               |
|                                |   |          | Verbal WM 2           | Keep track                  | 0.89  |         |               |
|                                |   |          | Visual WM 1           | Rotation span               | 0.18  |         |               |
|                                |   |          | Visual WM 2           | Change detection            | -0.09 | 17 (16) |               |
| Heffernan 2014                 | 1 | Posttest | Nonverbal reasoning   | Cattell                     | 0.18  | 9(10)   | 22.1 (21.7)   |
|                                |   |          | Verbal WM             | Operation span              | 0.25  |         |               |
|                                |   |          | Visual WM             | Symmetry span               | 0.01  |         |               |
|                                |   |          | Visual WM 1           | Move span                   | 0.57  |         |               |
| Heinzel et al 2014             | 1 | Posttest | Verbal WM             | Digit span backward         | -0.06 | 15 (15) | 25.9 (25.6)   |
|                                |   |          | Nonverbal reasoning 1 | LPS Figural Relations       | 0.28  | 14 (15) |               |
|                                |   |          | Nonverbal reasoning 2 | Raven standard              | 0.59  |         |               |
|                                | 2 | Posttest | Verbal WM             | Digit span backward         | 0.60  | 15 (15) | 66.07 (65.6)  |
|                                |   |          | Nonverbal reasoning 1 | LPS Figural Relations       | 0.33  |         |               |
|                                |   |          | Nonverbal reasoning 2 | Raven standard              | 0.18  |         |               |
| Holmes et al 2009 <sup>8</sup> | 1 | Posttest | Arithmetic            | WOND mathematical reasoning | -0.11 | 22 (20) | 10.08 (9.75)  |
|                                |   |          | Verbal WM             | AWMA verbal WM composite    | 2.39  |         |               |
|                                |   |          | Decoding              | WORD basic reading          | -0.09 |         |               |
|                                |   |          | Nonverbal reasoning   | WASI performance IQ         | -0.19 |         |               |
|                                |   |          | Verbal reasoning      | WASI verbal IQ              | 0.29  |         |               |
|                                |   |          | Visual WM             | AWMA visuospatial WM        | 0.85  |         |               |
| Horvat 2014                    | 1 | Posttest | nonverbal reasoning   | Raven standard              | 0.62  | 14(15)  | 14.07 (13.67) |
| Jaeggi et al 2008 <sup>9</sup> | 1 | Posttest | Nonverbal reasoning   | Raven advanced              | 0.59  | 8 (7)   | 24.48 (24.48) |
|                                |   |          | Verbal WM             | Digit span backward         | 0.48  |         |               |
|                                | 2 | Posttest | Nonverbal reasoning   | Raven advanced              | -0.05 | 8 (8)   | 24.48 (24.48) |

|                   |   |                     | Verbal WM             | Digit span backward        | 0.31  |         |               |
|-------------------|---|---------------------|-----------------------|----------------------------|-------|---------|---------------|
|                   | 3 | Posttest            | Nonverbal reasoning   | BOMAT                      | 0.62  | 11 (11) | undergrads    |
|                   | 4 | Posttest            | Nonverbal reasoning   | BOMAT                      | 0.88  | 8 (8)   | 26.1 (27.8)   |
|                   | 5 | 5 Posttest No<br>Ve | Nonverbal reasoning   | BOMAT                      | 0.88  | 7 (8)   | 25.5 (25.13)  |
|                   |   |                     | Verbal WM 1           | Digit span backward        | 2.02  |         |               |
|                   |   |                     | Verbal WM 2           | Reading span               | 1.05  |         |               |
|                   |   |                     | Visual WM             | Visuospatial span backward | -0.47 |         |               |
| Jaeggi et al 2011 | 1 | Posttest            | Nonverbal reasoning 1 | Raven standard             | 0.13  | 32 (30) | 9.25 (8.83)   |
|                   |   |                     | Nonverbal reasoning 2 | TONI                       | 0.00  |         |               |
|                   | 1 | Follow up           | Nonverbal reasoning 1 | Raven standard             | -0.04 |         |               |
|                   |   |                     | Nonverbal reasoning 2 | TONI                       | -0.04 |         |               |
| Jaeggi et al 2014 | 1 | Posttest            | Nonverbal reasoning 1 | BOMAT                      | 0.16  | 25 (27) | 25.21 (25.21) |
|                   |   |                     | Nonverbal reasoning 2 | Cattell                    | 0.20  |         |               |
|                   |   |                     | Nonverbal reasoning 3 | Raven advanced             | -0.07 |         |               |
|                   |   |                     | Nonverbal reasoning 4 | ETS Surface development    | 0.21  |         |               |
|                   |   |                     | Nonverbal reasoning 5 | ETS Form board             | 0.54  |         |               |
|                   |   |                     | Nonverbal reasoning 6 | ETS Space relations        | 0.17  |         |               |
|                   |   |                     | Reading comp          | AFOQT Reading comp         | 0.10  |         |               |
|                   |   |                     | Verbal reasoning 1    | AFOQT Verbal analogies     | 0.11  | 24 (27) |               |
|                   |   |                     | Verbal reasoning 2    | ETS Inferences             | -0.11 |         |               |
|                   | 2 | Posttest            | Nonverbal reasoning 1 | BOMAT                      | 0.55  | 26 (27) | 25.21(25.21)  |
|                   |   |                     | Nonverbal reasoning 2 | Cattell                    | 0.20  |         |               |
|                   |   |                     | Nonverbal reasoning 3 | Raven advanced             | 0.16  |         |               |
|                   |   |                     | Nonverbal reasoning 4 | ETS Surface development    | 0.08  |         |               |
|                   |   |                     | Nonverbal reasoning 5 | ETS Form board             | 0.29  |         |               |
|                   |   |                     | Nonverbal reasoning 6 | ETS Space relations        | 0.39  |         |               |
|                   |   |                     | Reading comp          | AFOQT Reading comp         | 0.37  |         |               |
|                   |   |                     | Verbal reasoning 1    | AFOQT Verbal analogies     | 0.38  |         |               |
|                   |   |                     | Verbal reasoning 2    | ETS Inferences             | -0.37 |         |               |
|                   | 1 | Follow up           | Nonverbal reasoning 1 | BOMAT                      | 0.26  | 17(23)  | 25.21 (22.79) |
|                   |   |                     | Nonverbal reasoning 2 | Cattell                    | 0.27  |         |               |

|                                  | 2 | Follow up | Nonverbal reasoning 1 | BOMAT                           | 0.19  | 14 (23) | 25.21 (22.79) |
|----------------------------------|---|-----------|-----------------------|---------------------------------|-------|---------|---------------|
|                                  |   |           | Nonverbal reasoning 2 | Cattell                         | 0.03  |         |               |
| Jaeggi et al 2010                | 1 | Posttest  | Visual WM             | N-back object                   | 1.32  | 25 (41) | 19.1 (19.4)   |
|                                  |   |           | Nonverbal reasoning 1 | BOMAT                           | 0.29  | 25 (43) |               |
|                                  |   |           | Nonverbal reasoning 2 | Raven advanced                  | 0.78  | 25 (43) |               |
|                                  |   |           | Verbal WM             | Operation span                  | -0.27 | 25 (40) |               |
|                                  | 2 | Posttest  | Visual WM             | N-back object                   | 1.12  | 20 (41) | 19.0 (19.4)   |
|                                  |   |           | Nonverbal reasoning 1 | BOMAT                           | 0.54  | 21 (43) |               |
|                                  |   |           | Nonverbal reasoning 2 | Raven advanced                  | 0.50  | 21 (43) |               |
|                                  |   |           | Verbal WM             | Operation span                  | -0.41 | 21 (40) |               |
| Jaušovec & Jaušovec 2012         | 1 | Posttest  | Nonverbal reasoning 1 | Paper folding                   | 0.26  | 14 (15) | 20.25 (20.25) |
|                                  |   |           | Verbal reasoning      | Word analogies                  | 0.29  |         |               |
|                                  |   |           | Nonverbal reasoning 2 | Raven standard/advanced         | 0.54  |         |               |
|                                  |   |           | Verbal WM             | Digit span backward             | 0.38  |         |               |
| Karbach et al 2014 <sup>10</sup> | 1 | Posttest  | Crit                  | Farm/Safari span                | 0.78  | 14 (14) | 8.4 (8.4)     |
|                                  |   |           | Visual WM             | Color span                      | 0.65  |         |               |
|                                  |   |           | Arithmetic            | German Mathematics test         | -0.26 |         |               |
|                                  | 1 | Follow up | Visual WM             | Color span                      | 1.21  | 14 (12) | 8.4 (8.4)     |
|                                  |   |           | Arithmetic            | German Mathematics test         | 0.07  |         |               |
| Klingberg et al 2002             | 1 | Posttest  | Crit                  | Visuospatial WM                 | 3.18  | 7 (7)   | 11.0 (11.4)   |
|                                  |   |           | Nonverbal reasoning   | Raven colored                   | 2.18  |         |               |
|                                  |   |           | Visual WM             | Span board forward and backward | 1.66  |         |               |
| Klingberg et al 2005             | 1 | Posttest  | Nonverbal reasoning   | Raven colored                   | 0.23  | 20 (24) | 9.75 (9.67)   |
|                                  |   |           | Visual WM             | Span board forward and backward | 0.77  |         |               |
|                                  |   | Follow up | Nonverbal reasoning   | Raven colored                   | 0.05  | 18 (24) | 9.75 (9.67)   |
|                                  |   |           | Visual WM             | Span board forward and backward | 0.79  |         |               |
| Kundu et al 2013 <sup>11</sup>   | 1 | Posttest  | Nonverbal reasoning   | Raven advanced                  | -0.01 | 10 (10) | 20.9 (20.9)   |
|                                  |   |           | Verbal WM             | Operation span                  | -0.36 | 13 (13) |               |
|                                  |   |           | Visual WM             | Color-in-location task          | 0.22  | 13 (15) |               |
|                                  | 2 | Posttest  | Nonverbal reasoning   | Raven advanced (full)           | 0.00  | 3 (3)   | 20.9 (20.9)   |
| Lange & Süß 2015                 | 1 | Posttest  | Crit 1                | Operation span                  | 0.53  | 31 (31) | 66.85 (68.23) |

|                        |   |          | Crit 2              | Dot span                  | 0.76  |         |               |
|------------------------|---|----------|---------------------|---------------------------|-------|---------|---------------|
|                        |   |          | Crit 3              | Memory updating numerical | 0.90  |         |               |
|                        |   |          | Crit 4              | Running figural span      | 1.16  |         |               |
|                        |   |          | Verbal WM 1         | Reading span              | 0.01  |         |               |
|                        |   |          | Verbal WM 2         | Swaps                     | 0.00  |         |               |
|                        |   |          | Verbal WM 3         | Running numerical span    | 0.32  |         |               |
|                        |   |          | Verbal reasoning 1  | BIS-4 verbal reasoning    | -0.06 |         |               |
|                        |   |          | Verbal reasoning 2  | BIS-4 numerical reasoning | -0.21 |         |               |
|                        |   |          | Nonverbal reasoning | BIS-4 figural analogies   | -0.15 |         |               |
|                        | 2 | Posttest | Crit 1              | Operation span            | 0.33  | 31 (29) | 66.85 (68.69) |
|                        |   |          | Crit 2              | Dot span                  | 0.87  |         |               |
|                        |   |          | Crit 3              | Memory updating numerical | 0.55  |         |               |
|                        |   |          | Crit 4              | Running figural span      | 0.91  |         |               |
|                        |   |          | Verbal WM 1         | Reading span              | 0.28  |         |               |
|                        |   |          | Verbal WM 2         | Swaps                     | 0.11  |         |               |
|                        |   |          | Verbal WM 3         | Running numerical span    | 0.78  |         |               |
|                        |   |          | Verbal reasoning 1  | BIS-4 verbal reasoning    | 0.14  |         |               |
|                        |   |          | Verbal reasoning 2  | BIS-4 numerical reasoning | -0.46 |         |               |
|                        |   |          | Nonverbal reasoning | BIS-4 figural analogies   | 0.31  |         |               |
| Lee 2014 <sup>12</sup> | 1 | Posttest | Verbal WM           | Digit span back           | 0.21  | 25 (25) | 9.2 (9.2)     |
|                        |   |          | Visual WM           | Visual 2-back correct     | -0.39 |         |               |
|                        |   |          | Decoding 1          | R-CBM                     | 0.36  |         |               |
|                        |   |          | Decoding 2          | W-J III Reading fluency   | -0.11 |         |               |
|                        |   |          | Decoding 3          | Maze-CBM                  | 0.58  |         |               |
|                        |   |          | Reading comp 1      | W-J III Passage comp      | 0.33  |         |               |
|                        |   |          | Reading comp 2      | Gates-MacGinitie          | 0.13  |         |               |
|                        |   |          | Nonverbal reasoning | TONI                      | -0.03 |         |               |
| Lindeløv et al 2014    | 1 | Posttest | Verbal WM 1         | Wechsler WM index         | 0.15  | 9 (9)   | 29.2 (29.4)   |
|                        |   |          | Nonverbal reasoning | Raven advanced            | 0.17  |         |               |
|                        |   |          | Verbal WM 2         | Operation Span            | 0.02  |         |               |
|                        | 2 | Posttest | Verbal WM 1         | Wechsler WM index         | 0.29  | 8 (9)   | 56.1 (56.1)   |

|                                       |   |          | Nonverbal reasoning   | Raven advanced                  | -0.24 |         |               |
|---------------------------------------|---|----------|-----------------------|---------------------------------|-------|---------|---------------|
|                                       |   |          | Verbal WM 2           | Operation Span                  | 0.01  |         |               |
| Loosli et al 2012 <sup>13</sup>       | 1 | Posttest | Decoding 1            | Salzburger Lesetest psuedowords | -0.06 | 20 (20) | 9.97 (10.02)  |
|                                       |   |          | Decoding 2            | Salzburger Lesetest words       | 0.28  |         |               |
|                                       |   |          | Decoding 3            | Salzburger Lesetest text        | 0.39  |         |               |
|                                       |   |          | Nonverbal reasoning   | TONI                            | 0.12  |         |               |
| Mansur-Alves & Flores-                | 1 | Destand  | NT                    | De la standard                  | 0.07  | 27 (20) | 11 17 (11 17) |
| Menaoza 2015                          | 1 | Posttest | Nonverbal reasoning   | Raven standard                  | 0.07  | 27 (26) | 11.17 (11.17) |
| 14                                    |   |          | Arithmetic            | BPR5 numerical reasoning        | -0.12 |         |               |
| Mansur-Alves et al 2013 <sup>14</sup> | 1 | Posttest | Nonverbal reasoning 1 | Raven standard                  | 0.06  | 8 (8)   | 8.75 (8.75)   |
|                                       |   |          | Nonverbal reasoning 2 | TNVRI                           | 0.37  |         |               |
| Minear et al 2012                     | 1 | Posttest | Arithmetic 1          | ETS Mathematics aptitude        | 0.09  | 31 (26) | 19.9 (19.8)   |
|                                       |   |          | Arithmetic 2          | ETS Arithmetic aptitude         | 0.00  |         |               |
|                                       |   |          | Nonverbal reasoning 1 | Raven standard                  | -0.51 |         |               |
|                                       |   |          | Nonverbal reasoning 2 | Cattell                         | 0.06  |         |               |
|                                       |   |          | Reading comp          | LSAT reading comp               | -0.16 |         |               |
|                                       |   |          | Verbal reasoning 1    | Inferences                      | -0.05 |         |               |
|                                       |   |          | Verbal reasoning 2    | Nonsense syllogisms             | 0.05  |         |               |
|                                       |   |          | Verbal WM 1           | Letter n-back                   | 1.06  |         |               |
|                                       |   |          | Verbal WM 2           | Operation span                  | 0.30  |         |               |
|                                       |   |          | Verbal WM 3           | Letter-number span              | -0.07 |         |               |
|                                       |   |          | Verbal WM 4           | Reading span                    | -0.23 |         |               |
|                                       |   |          | Visual WM 1           | Object n-back                   | 0.52  |         |               |
|                                       |   |          | Visual WM 2           | Symmetry span                   | 0.13  |         |               |
|                                       |   |          | Visual WM 3           | Rotation span                   | 0.53  |         |               |
|                                       |   |          | Visual WM 4           | Alignment span                  | -0.17 |         |               |
|                                       | 2 | Posttest | Arithmetic 1          | ETS Mathematics aptitude        | 0.06  | 32 (26) | 19.7 (19.8)   |
|                                       |   |          | Arithmetic 2          | ETS Arithmetic aptitude         | 0.35  |         |               |
|                                       |   |          | Nonverbal reasoning 1 | Raven standard                  | -0.35 |         |               |
|                                       |   |          | Nonverbal reasoning 2 | Cattell                         | -0.30 |         |               |
|                                       |   |          | Reading comp          | LSAT reading comp               | 0.01  |         |               |

|                   |   |          | Verbal reasoning 1    | Inferences               | 0.17  |         |               |
|-------------------|---|----------|-----------------------|--------------------------|-------|---------|---------------|
|                   |   |          | Verbal reasoning 2    | Nonsense syllogisms      | 0.31  |         |               |
|                   |   |          | Verbal WM 1           | Letter n-back            | 0.12  |         |               |
|                   |   |          | Verbal WM 2           | Operation span           | 0.46  |         |               |
|                   |   |          | Verbal WM 3           | Letter-number span       | -0.29 |         |               |
|                   |   |          | Verbal WM 4           | Reading span             | -0.13 |         |               |
|                   |   |          | Visual WM 1           | Object n-back            | 0.06  |         |               |
|                   |   |          | Visual WM 2           | Symmetry span            | -0.12 |         |               |
|                   |   |          | Visual WM 3           | Rotation span            | 0.73  |         |               |
|                   |   |          | Visual WM 4           | Alignment span           | 0.05  |         |               |
|                   | 3 | Posttest | Arithmetic 1          | ETS Mathematics aptitude | 0.02  | 27 (26) | 19.6 (19.8)   |
|                   |   |          | Arithmetic 2          | ETS Arithmetic aptitude  | 0.47  |         |               |
|                   |   |          | Nonverbal reasoning 1 | Raven standard           | -0.23 |         |               |
|                   |   |          | Nonverbal reasoning 2 | Cattell                  | -0.23 |         |               |
|                   |   |          | Reading comp          | LSAT reading comp        | -0.02 |         |               |
|                   |   |          | Verbal reasoning 1    | Nonsense syllogisms      | 0.26  |         |               |
|                   |   |          | Verbal reasoning 2    | Inferences               | 0.05  |         |               |
|                   |   |          | Verbal WM 1           | Letter n-back            | 0.75  |         |               |
|                   |   |          | Verbal WM 2           | Operation span           | 0.27  |         |               |
|                   |   |          | Verbal WM 3           | Letter-number span       | -0.30 |         |               |
|                   |   |          | Verbal WM 4           | Reading span             | -0.04 |         |               |
|                   |   |          | Visual WM 1           | Object n-back            | 0.61  |         |               |
|                   |   |          | Visual WM 2           | Symmetry span            | 0.03  |         |               |
|                   |   |          | Visual WM 3           | Rotation span            | 0.73  |         |               |
|                   |   |          | Visual WM 4           | Alignment span           | 0.08  |         |               |
| Minear et al 2013 | 1 | Posttest | Nonverbal reasoning   | Raven advanced           | 0.04  | 42 (23) | undergrads    |
|                   |   |          | Nonverbal reasoning   | Raven standard           | 0.06  |         |               |
|                   |   |          | Verbal WM             | Reading span             | 0.16  |         |               |
| Moreau et al 2015 | 1 | Posttest | Nonverbal reasoning 1 | Surface development      | -0.08 | 21 (22) | 29.73 (29.73) |
|                   |   |          | Nonverbal reasoning 2 | Form board               | 0.04  |         |               |
|                   |   |          | Nonverbal reasoning 3 | Mental rotation          | 0.19  |         |               |

|                                     |   |           | Nonverbal reasoning 4 | Paper folding            | 0.16  |         |               |
|-------------------------------------|---|-----------|-----------------------|--------------------------|-------|---------|---------------|
|                                     |   |           | Verbal WM 1           | Backward digit span      | 0.36  |         |               |
|                                     |   |           | Verbal WM 2           | Letter number sequencing | 0.49  |         |               |
| Nussbaumer et al 2013 <sup>15</sup> | 1 | Posttest  | Arithmetic 1          | Mental arithmetics       | 0.39  | 29 (27) | 23.7 (23.7)   |
|                                     |   |           | Arithmetic 2          | Mathematik-test          | -0.23 |         |               |
|                                     |   |           | Nonverbal reasoning   | Raven advanced           | 0.38  |         |               |
|                                     |   |           | Verbal WM             | Operation span           | -0.07 |         |               |
|                                     | 2 | Posttest  | Arithmetic 1          | Mental arithmetics       | 0.51  | 27 (27) | 23.7 (23.7)   |
|                                     |   |           | Arithmetic 2          | Mathematik-test          | 0.18  |         |               |
|                                     |   |           | Nonverbal reasoning   | Raven advanced           | 0.48  |         |               |
|                                     |   |           | Verbal WM             | Operation span           | -0.21 |         |               |
|                                     | 1 | Follow up | Arithmetic            | Mathematik-test          | 0.43  | 29 (27) | 23.7 (23.7)   |
|                                     |   |           | Nonverbal reasoning   | Raven advanced           | 0.13  |         |               |
|                                     |   |           | Verbal WM             | Operation span           | -0.15 |         |               |
|                                     | 2 | Follow up | Arithmetic            | Mathematik-test          | 0.40  | 27 (27) | 23.7 (23.7)   |
|                                     |   |           | Nonverbal reasoning   | Raven advanced           | 0.00  |         |               |
|                                     |   |           | Verbal WM             | Operation span           | 0.00  |         |               |
| Nutley et al 2011                   | 1 | Posttest  | Verbal WM             | Odd one out              | 0.89  | 24 (25) | 4.27 (4.27)   |
|                                     |   |           | Nonverbal reasoning 1 | Raven colored Set A      | -0.10 |         |               |
|                                     |   |           | Nonverbal reasoning 2 | Raven colored Set AB     | -0.10 |         |               |
|                                     |   |           | Nonverbal reasoning 3 | Raven colored Set B      | -0.56 |         |               |
|                                     |   |           | Nonverbal reasoning 4 | WPPSI Block design       | 0.11  |         |               |
| Oelhafen et al 2013                 | 1 | Posttest  | Crit                  | Dual n-back              | 3.27  | 14 (15) | 25.2 (25.2)   |
|                                     |   |           | Nonverbal reasoning   | BOMAT                    | -0.05 |         |               |
|                                     |   |           | Verbal WM             | Reading span             | -0.11 |         |               |
|                                     | 2 | Posttest  | Crit                  | Dual n-back              | 0.20  | 14 (15) | 25.2 (25.2)   |
|                                     |   |           | Nonverbal reasoning   | BOMAT                    | 0.00  |         |               |
|                                     |   |           | Verbal WM             | Reading span             | 0.03  |         |               |
| Payne 2014                          | 1 | Posttest  | Crit                  | Reading span             | 0.59  | 22(19)  | 67.68 (68.11) |
|                                     |   |           | Verbal WM 1           | Listening span           | 1.05  |         |               |
|                                     |   |           | Verbal WM 2           | Operation span           | 0.72  |         |               |

|                       |   |           | Verbal WM 3           | Minus 2 span                       | 0.38  |         |             |
|-----------------------|---|-----------|-----------------------|------------------------------------|-------|---------|-------------|
|                       |   |           | Reading comp          | Nelson Denny reading comprehension | 0.00  |         |             |
| Pugin et al 2015      | 1 | Posttest  | Verbal WM             | Auditory letter n-back             | 0.73  | 14 (15) | 10-16       |
|                       |   |           | Nonverbal reasoning   | TONI                               | 0.37  |         |             |
|                       |   |           | Verbal WM             | Letter number sequencing           | 0.18  |         |             |
|                       |   | Follow up | Verbal WM             | Auditory letter n-back             | 1.13  | 14 (15) | 10-16       |
|                       |   |           | Nonverbal reasoning   | TONI                               | 0.63  |         |             |
|                       |   |           | Verbal WM             | Letter number sequencing           | 0.21  |         |             |
| Redick et al 2013     | 1 | Posttest  | Nonverbal reasoning 1 | Raven standard                     | 0.00  | 24 (29) | 21.1 (20.7) |
|                       |   |           | Nonverbal reasoning 2 | Raven advanced                     | -0.05 |         |             |
|                       |   |           | Nonverbal reasoning 3 | Cattell                            | -0.43 |         |             |
|                       |   |           | Nonverbal reasoning 4 | Paper folding                      | 0.30  |         |             |
|                       |   |           | Verbal reasoning 1    | General knowledge                  | -0.08 |         |             |
|                       |   |           | Verbal reasoning 2    | Verbal analogies                   | -0.13 |         |             |
|                       |   |           | Verbal reasoning 3    | Inferences                         | 0.31  |         |             |
|                       |   |           | Verbal reasoning 4    | Number series                      | -0.12 |         |             |
|                       |   |           | Verbal WM             | Running letter span                | 0.11  |         |             |
|                       |   |           | Visual WM             | Symmetry span                      | 0.34  |         |             |
|                       | 2 | Posttest  | Nonverbal reasoning 1 | Raven standard                     | 0.04  | 24 (20) | 21.1 (21.2) |
|                       |   |           | Nonverbal reasoning 2 | Raven advanced                     | -0.18 |         |             |
|                       |   |           | Nonverbal reasoning 3 | Cattell                            | -0.05 |         |             |
|                       |   |           | Nonverbal reasoning 4 | Paper folding                      | 0.36  |         |             |
|                       |   |           | Verbal reasoning 1    | General knowledge                  | 0.30  |         |             |
|                       |   |           | Verbal reasoning 2    | Verbal analogies                   | 0.20  |         |             |
|                       |   |           | Verbal reasoning 3    | Inferences                         | 0.16  |         |             |
|                       |   |           | Verbal reasoning 4    | Number series                      | 0.32  |         |             |
|                       |   |           | Verbal WM             | Running Letter span                | -0.02 |         |             |
|                       |   |           | Visual WM             | Symmetry span                      | 0.26  |         |             |
| Redick & Wiemers 2015 | 1 | Posttest  | Verbal WM 1           | Running letter span                | 0.42  | 30 (29) | 20.5 (20.5) |
|                       |   |           | Visual WM 1           | Running matrix span                | -0.20 |         |             |
|                       |   |           | Verbal WM 2           | Letter 3-back                      | 0.36  |         |             |

|                                      |   |          | Visual WM 2         | Matrix 3-back                      | -0.15 |           |             |
|--------------------------------------|---|----------|---------------------|------------------------------------|-------|-----------|-------------|
|                                      |   |          | Visual WM 3         | Color change detection             | -0.28 |           |             |
|                                      |   |          | Visual WM 4         | Orient change detection            | 0.14  |           |             |
|                                      |   |          | Reading comp        | Nelson Denny reading comprehension | 0.18  |           |             |
|                                      | 2 | Posttest | Verbal WM 1         | Running letter span                | -0.09 | 27 (29)   | 20.4 (20.5) |
|                                      |   |          | Visual WM 1         | Running matrix span                | -0.28 |           |             |
|                                      |   |          | Verbal WM 2         | Letter 3-back                      | 0.17  |           |             |
|                                      |   |          | Visual WM 2         | Matrix 3-back                      | 0.04  |           |             |
|                                      |   |          | Visual WM 3         | Color change detection             | -0.06 |           |             |
|                                      |   |          | Visual WM 4         | Orient change detection            | 0.18  |           |             |
|                                      |   |          | Reading comp        | Nelson Denny reading comprehension | 0.34  |           |             |
| Reimer et al 2014                    | 1 | Posttest | Visual WM 1         | WRAML finger windows               | 0.52  | 16 (13)   | 24 (24)     |
|                                      |   |          | Verbal WM 1         | WRAML number letters               | 0.35  | 16 (13)   |             |
|                                      |   |          | Verbal WM 2         | WRAML verbal working memory        | 0.57  | 15 (12)   |             |
|                                      |   |          | Verbal WM 3         | WRAML symbolic working memory      | 0.18  | 16 (13)   |             |
|                                      |   |          | Verbal WM 4         | Operation span                     | 0.19  | 16 (13)   |             |
|                                      |   |          | Visual WM 2         | Symmetry span                      | 0.17  | 16 (12)   |             |
|                                      |   |          | Nonverbal reasoning | Raven advanced                     | 0.09  | 16 (13)   |             |
|                                      |   |          | Verbal reasoning 1  | Letter sets                        | 0.25  | 16 (13)   |             |
|                                      |   |          | Verbal reasoning 2  | Inferences                         | -0.26 | 16 (13)   |             |
| Richey et al 2014 <sup>16</sup>      | 1 | Posttest | Visual WM           | Spatial WM                         | 0.58  | 25 (24)   | 18-30       |
|                                      |   |          | Nonverbal reasoning | Raven advanced                     | 0.28  | 25 (24)   |             |
|                                      | 2 | Posttest | Visual WM           | Spatial WM                         | 0.39  | 25 (26)   | 18-30       |
|                                      |   |          | Verbal reasoning    | Analogies                          | -0.19 | 25 (24)   |             |
| Richmond et al 2011                  | 1 | Posttest | Nonverbal reasoning | Raven                              | -0.40 | 21 (19)   | 66          |
|                                      |   |          | Verbal WM 1         | Digit span backward                | -0.50 |           |             |
|                                      |   |          | Verbal WM 2         | Reading span                       | 0.67  |           |             |
| <i>Rode et al</i> 2014 <sup>17</sup> | 1 | Posttest | Arithmetic 1        | WIAT-II mathematical reasoning     | 0.04  | 156 (126) | 8-9         |
|                                      |   |          | Reading comp        | WIAT-II reading comprehension      | 0.11  |           |             |
|                                      |   |          | Arithmetic 2        | CMB math                           | 0.14  |           |             |
|                                      |   |          | Decoding            | CMB reading fluency                | -0.05 |           |             |

| Rudebeck et al 2012                  | 1 | Posttest | Crit                  | Dual n-back                        | 3.81  | 27 (28) | 25.36 (25.49) |
|--------------------------------------|---|----------|-----------------------|------------------------------------|-------|---------|---------------|
|                                      |   |          | Nonverbal reasoning   | BOMAT                              | 0.71  |         |               |
| Salminen et al 2012                  | 1 | Posttest | Crit                  | Dual n-back                        | 5.61  | 20 (16) | 24.4 (24.5)   |
|                                      |   |          | Nonverbal reasoning   | Raven advanced                     | -0.68 | 13 (9)  |               |
| Savage 2013                          | 1 | Posttest | Nonverbal reasoning 1 | Cattell                            | 0.23  | 23 (27) | 46.65 (48.44) |
|                                      |   |          | Nonverbal reasoning 2 | Raven advanced                     | -0.11 |         |               |
|                                      |   |          | Visual WM             | Spatial manipulation               | -0.52 |         |               |
|                                      |   |          | Verbal WM 1           | WAIS-IV Digit span fw, bw, and seq | -0.09 |         |               |
|                                      |   |          | Verbal WM 2           | Operation span                     | 0.08  | 23 (26) |               |
| Schwarb et al 2015 E1 <sup>18</sup>  | 1 | Posttest | Nonverbal reasoning   | Raven advanced                     | -0.12 | 27 (25) | 18-30         |
| Schwarb et al 2015 E2                | 1 | Posttest | Nonverbal reasoning   | Cattell                            | 0.35  | 22 (22) | 18-32         |
|                                      |   |          | Nonverbal reasoning   | Raven advanced                     | 0.07  |         |               |
|                                      |   |          | Verbal WM             | Operation span                     | 0.45  | 21 (21) |               |
|                                      |   |          | Visual WM 1           | Symmetry span                      | 0.13  |         |               |
|                                      |   |          | Visual WM 2           | Change detection                   | 1.04  |         |               |
|                                      | 2 | Posttest | Nonverbal reasoning   | Cattell                            | -0.06 | 22 (22) | 18-32         |
|                                      |   |          | Nonverbal reasoning   | Raven advanced                     | 0.50  |         |               |
|                                      |   |          | Verbal WM             | Operation span                     | 0.47  | 22 (21) |               |
|                                      |   |          | Visual WM 1           | Symmetry span                      | 0.63  |         |               |
|                                      |   |          | Visual WM 2           | Change detection                   | 0.83  |         |               |
| Schweizer et al 2011                 | 1 | Posttest | Nonverbal reasoning   | Raven standard                     | 1.37  | 14 (16) | 25 (25)       |
|                                      | 2 | Posttest | Nonverbal reasoning   | Raven standard                     | 0.89  | 15 (16) | 25 (25)       |
| Shavelson et al 2008                 | 1 | Posttest | Nonverbal reasoning   | Raven                              | 0.01  | 18 (19) | 13.5 (13.5)   |
|                                      |   |          | Verbal WM 1           | Reading span                       | 0.15  |         |               |
|                                      |   |          | Verbal WM 2           | Operation Span                     | 0.33  |         |               |
|                                      |   |          | Crit                  | Span board forward & backward      | 0.52  |         |               |
|                                      |   |          | Verbal WM 3           | Digit span forward & backward      | 0.97  |         |               |
| Shiran & Breznitz 2011 <sup>19</sup> | 1 | Posttest | Crit 1                | Cognifit visuo-spatial WM          | 0.36  | 26 (15) | 24.84         |
|                                      |   |          | Crit 2                | Cognifit auditory WM               | 0.67  |         |               |
|                                      |   |          | Crit 3                | Cognifit visual-verbal WM          | 0.39  |         |               |
|                                      |   |          | Decoding 1            | Words per minute                   | 0.46  |         |               |

|                                      |   |           | Decoding 2          | Pseudowords per minute        | 0.31  |         |               |
|--------------------------------------|---|-----------|---------------------|-------------------------------|-------|---------|---------------|
|                                      |   |           | Reading comp        | Silent reading comprehension  | 0.87  |         |               |
|                                      | 2 |           | Decoding 3          | Parsing test (number correct) | -0.08 |         |               |
|                                      | 2 | Posttest  | Crit 1              | Cognifit visuo-spatial WM     | 0.50  | 35 (15) | 25.11         |
|                                      |   |           | Crit 2              | Cognifit auditory WM          | 0.26  |         |               |
|                                      |   |           | Crit 3              | Cognifit visual-verbal WM     | 0.50  |         |               |
|                                      |   |           | Decoding 1          | Words per minute              | 0.29  |         |               |
|                                      |   |           | Decoding 2          | Pseudowords per minute        | 0.52  |         |               |
|                                      |   |           | Reading comp        | Silent reading comprehension  | 0.58  |         |               |
|                                      |   |           | Decoding 3          | Parsing test (number correct) | -0.03 |         |               |
| Smith et al 2013 <sup>20</sup>       | 1 | Posttest  | Nonverbal reasoning | Raven advanced                | 0.04  | 10 (10) | 18-34         |
|                                      | 2 | Posttest  | Nonverbal reasoning | Raven advanced                | -0.64 | 10 (9)  | 18-34         |
|                                      | 3 | Posttest  | Nonverbal reasoning | Raven advanced                | 0.00  | 10 (10) | 18-34         |
| Söderqvist et al 2012 <sup>21</sup>  | 1 | Posttest  | Nonverbal reasoning | Raven colored                 | -0.01 | 22 (19) | 9.68          |
|                                      |   |           | Nonverbal reasoning | WPPSI Block design            | 0.25  |         |               |
|                                      |   |           | Verbal WM           | Word span backward            | 0.38  |         |               |
|                                      |   |           | Visual WM           | Odd one out                   | 0.39  |         |               |
|                                      | 1 | Follow up | Nonverbal reasoning | Raven colored                 | -0.14 | 22 (19) | 9.68          |
|                                      |   |           | Nonverbal reasoning | WPPSI Block design            | -0.15 |         |               |
|                                      |   |           | Verbal WM           | Word span backward            | -0.07 |         |               |
|                                      |   |           | Visual WM           | Odd one out                   | -0.01 |         |               |
| Sprenger et al 2013 E1 <sup>22</sup> | 1 | Posttest  | Verbal WM 1         | Operation span                | 0.49  | 58 (55) | 22.97 (23.05) |
|                                      |   |           | Verbal WM 2         | Listening span                | 0.28  | 58 (54) |               |
|                                      |   |           | Visual WM 1         | Symmetry span                 | 0.34  | 59 (55) |               |
|                                      |   |           | Visual WM 2         | Rotation span                 | 0.14  | 55 (52) |               |
|                                      |   |           | Reading comp        | AFOQT Reading comprehension   | -0.16 | 59 (54) |               |
|                                      |   |           | Verbal reasoning 1  | ETS Inferences                | -0.25 | 59 (54) |               |
|                                      |   |           | Verbal reasoning 2  | AFOQT Verbal analogies        | 0.07  | 59 (55) |               |
|                                      | 1 | Follow up | Verbal WM 1         | Operation span                | 0.69  | 49 (47) |               |
|                                      |   |           | Verbal WM 2         | Listening span                | 0.34  | 48 (46) |               |
|                                      |   |           | Visual WM 1         | Symmetry span                 | 0.60  | 49 (47) |               |

|                           |   |          | Visual WM 2           | Rotation span                      | 0.42  | 49 (44) |               |
|---------------------------|---|----------|-----------------------|------------------------------------|-------|---------|---------------|
|                           |   |          | Reading comp          | AFOQT Reading comprehension        | -0.10 | 46 (46) |               |
|                           |   |          | Verbal reasoning 1    | ETS Inferences                     | -0.20 | 46 (46) |               |
|                           |   |          | Verbal reasoning 2    | AFOQT Verbal analogies             | 0.01  | 46 (46) |               |
| Sprenger et al 2013 E2    | 1 | Posttest | Nonverbal reasoning   | Raven advanced                     | 0.15  | 33 (37) | 35.51         |
|                           |   |          | Reading comp          | Nelson Denny reading comprehension | 0.06  | 34 (37) |               |
|                           |   |          | Verbal WM             | Reading span                       | -0.20 | 33 (44) |               |
|                           |   |          | Visual WM             | Shapebuilder                       | 1.07  | 30 (35) |               |
|                           |   |          | Crit                  | Letter N-back                      | 0.67  | 34 (37) |               |
|                           | 2 | Posttest | Crit                  | Shapebuilder                       | 1.40  | 34 (37) | 35.51         |
|                           |   |          | Nonverbal reasoning   | Raven advanced                     | 0.13  | 34 (37) |               |
|                           |   |          | Reading comp          | Nelson Denny reading comprehension | 0.12  | 33 (37) |               |
|                           |   |          | Verbal WM 1           | Reading span                       | -0.22 | 34 (37) |               |
|                           |   |          | Verbal WM 2           | Letter N-back                      | 0.00  | 33 (37) |               |
|                           | 3 | Posttest | Crit 1                | Shapebuilder                       | 1.07  | 34 (37) | 35.51         |
|                           |   |          | Nonverbal reasoning   | Raven advanced                     | 0.12  | 33 (37) |               |
|                           |   |          | Reading comp          | Nelson Denny reading comprehension | -0.05 | 34 (37) |               |
|                           |   |          | Verbal WM             | Reading span                       | -0.37 | 34 (37) |               |
|                           |   |          | Crit 2                | Letter N-back                      | 0.74  | 33 (37) |               |
| Stepankova et al 2014     | 1 | Posttest | Crit                  | Letter N-back                      | 2.29  | 20 (25) | 67.95 (68.08) |
|                           |   |          | Nonverbal reasoning 1 | WASI Block design                  | 0.12  |         |               |
|                           |   |          | Nonverbal reasoning 2 | WASI Matrix reasoning              | 0.18  |         |               |
|                           |   |          | Verbal WM 1           | WMS-III Digit span fw & bw         | 0.17  |         |               |
|                           |   |          | Verbal WM 2           | WMS-III Letter-Number Sequencing   | 0.67  |         |               |
|                           | 2 | Posttest | Crit                  | Letter N-back                      | 1.96  | 20 (25) | 68.15 (68.08) |
|                           |   |          | Nonverbal reasoning 1 | WASI Block design                  | 0.42  |         |               |
|                           |   |          | Nonverbal reasoning 2 | WASI Matrix reasoning              | 0.49  |         |               |
|                           |   |          | Verbal WM 1           | WMS-III Digit span fw & bw         | 0.16  |         |               |
|                           |   |          | Verbal WM 2           | WMS-III Letter-Number Sequencing   | 0.51  |         |               |
| Stephenson & Halpern 2013 | 1 | Posttest | Nonverbal reasoning 1 | Beta-III Matrix reasoning          | 1.18  | 28 (26) | 22.48         |
|                           |   |          | Nonverbal reasoning 2 | Cattell                            | 0.18  |         |               |

|                     |   |          | Nonverbal reasoning 3 | Paper folding             | 0.52  |         |             |
|---------------------|---|----------|-----------------------|---------------------------|-------|---------|-------------|
|                     |   |          | Nonverbal reasoning 4 | Mental rotation           | -0.03 |         |             |
|                     |   |          | Nonverbal reasoning 5 | Raven advanced            | 0.71  |         |             |
|                     |   |          | Nonverbal reasoning 6 | WASI Matrix reasoning     | 0.40  |         |             |
|                     |   |          | Verbal reasoning      | Extended range vocabulary | 0.08  |         |             |
|                     | 2 | Posttest | Nonverbal reasoning   | Beta-III Matrix reasoning | 0.68  | 29 (26) | 22.48       |
|                     |   |          | Nonverbal reasoning   | Cattell                   | 0.18  |         |             |
|                     |   |          | Nonverbal reasoning   | Paper folding             | 0.42  |         |             |
|                     |   |          | Nonverbal reasoning   | Mental rotation           | -0.10 |         |             |
|                     |   |          | Nonverbal reasoning   | Raven advanced            | 0.46  |         |             |
|                     |   |          | Nonverbal reasoning   | WASI Matrix reasoning     | 0.37  |         |             |
|                     |   |          | Verbal reasoning      | Extended range vocabulary | 0.00  |         |             |
|                     | 3 | Posttest | Nonverbal reasoning   | Beta-III Matrix reasoning | 0.37  | 25 (26) | 22.48       |
|                     |   |          | Nonverbal reasoning   | Cattell                   | 0.06  |         |             |
|                     |   |          | Nonverbal reasoning   | Paper folding             | 0.18  |         |             |
|                     |   |          | Nonverbal reasoning   | Mental rotation           | 0.17  |         |             |
|                     |   |          | Nonverbal reasoning   | Raven advanced            | 0.39  |         |             |
|                     |   |          | Nonverbal reasoning   | WASI Matrix reasoning     | 0.25  |         |             |
|                     |   |          | Verbal reasoning      | Extended range vocabulary | -0.04 |         |             |
|                     | 4 | Posttest | Nonverbal reasoning   | Beta-III Matrix reasoning | 0.58  | 28 (26) | 22.48       |
|                     |   |          | Nonverbal reasoning   | Cattell                   | -0.07 |         |             |
|                     |   |          | Nonverbal reasoning   | Paper folding             | 0.33  |         |             |
|                     |   |          | Nonverbal reasoning   | Mental rotation           | 0.09  |         |             |
|                     |   |          | Nonverbal reasoning   | Raven advanced            | 0.57  |         |             |
|                     |   |          | Nonverbal reasoning   | WASI Matrix reasoning     | 0.45  |         |             |
|                     |   |          | Verbal reasoning      | Extended range vocabulary | 0.02  |         |             |
| Takeuchi et al 2013 | 1 | Posttest | Arithmetic 1          | Simple arithmetic         | 0.04  | 41 (20) | 20.9 (21.4) |
|                     |   |          | Arithmetic 2          | Complex arithmetic        | 0.05  |         |             |
|                     |   |          | Arithmetic 3          | Kyodai SX test            | 0.09  |         |             |
|                     |   |          | Nonverbal reasoning 1 | BOMAT                     | -0.31 |         |             |
|                     |   |          | Nonverbal reasoning 2 | Raven advanced            | 0.46  |         |             |

|                       |   |          | Verbal WM             | Digit span fw & bw                 | 1.29  |         |             |
|-----------------------|---|----------|-----------------------|------------------------------------|-------|---------|-------------|
|                       |   |          | Visual WM             | Visuospatial WM fw & bw            | 0.50  |         |             |
| Thompson et al 2013   | 1 | Posttest | Crit                  | Dual N-back                        | 2.77  | 20 (19) | 21.2 (23.1) |
|                       |   |          | Decoding              | Nelson Denny reading rate          | 0.24  | 20 (18) |             |
|                       |   |          | Nonverbal reasoning 1 | Raven advanced                     | 0.23  | 20 (19) |             |
|                       |   |          | Nonverbal reasoning 2 | WASI/WAIS Matrix reasoning         | -0.37 | 20 (19) |             |
|                       |   |          | Nonverbal reasoning 3 | WASI/WAIS Blocks                   | -0.10 | 20 (19) |             |
|                       |   |          | Reading comp          | Nelson Denny reading comprehension | 0.00  | 20 (18) |             |
|                       |   |          | Verbal WM 1           | Operation span                     | 0.18  | 19 (14) |             |
|                       |   |          | Verbal WM 2           | Reading span                       | 0.21  | 20 (14) |             |
|                       |   |          | Verbal reasoning 1    | WASI/WAIS Similarities             | 0.24  | 20 (19) |             |
|                       |   |          | Verbal reasoning 2    | WASI/WAIS Vocabulary               | -0.05 | 20 (19) |             |
|                       | 2 | Posttest | Crit                  | Dual N-back                        | 2.67  | 20 (19) | 21.2 (21.3) |
|                       |   |          | Decoding              | Nelson Denny reading rate          | -0.04 |         |             |
|                       |   |          | Nonverbal reasoning 1 | Raven advanced                     | 0.10  |         |             |
|                       |   |          | Nonverbal reasoning 2 | WASI/WAIS Matrix reasoning         | -0.81 |         |             |
|                       |   |          | Nonverbal reasoning 3 | WASI/WAIS Blocks                   | -0.22 |         |             |
|                       |   |          | Reading comp          | Nelson Denny reading comprehension | 0.00  |         |             |
|                       |   |          | Verbal WM 1           | Operation span                     | 0.46  | 19 (19) |             |
|                       |   |          | Verbal WM 2           | Reading span                       | 0.47  |         |             |
|                       |   |          | Verbal reasoning 1    | WASI/WAIS Similarities             | 0.21  |         |             |
|                       |   |          | Verbal reasoning 2    | WASI/WAIS Vocabulary               | 0.00  |         |             |
| Thorell et al 2009    | 1 | Posttest | Nonverbal reasoning   | WISC Block design                  | -0.03 | 17 (14) | 4.5 (4.8)   |
|                       |   |          | Verbal WM             | Word span fw & bw                  | 1.09  |         |             |
|                       |   |          | Visual WM             | WAIS-R-NI Span board fw & bw       | 0.45  |         |             |
|                       | 2 | Posttest | Nonverbal reasoning   | WISC Block design                  | 0.33  | 17 (16) | 4.5 (5)     |
|                       |   |          | Verbal WM             | Word span fw & bw                  | 1.06  |         |             |
|                       |   |          | Visual WM             | WAIS-R-NI Span board fw & bw       | 0.70  |         |             |
| Urbánek & Marček 2015 | 1 | Posttest | Nonverbal reasoning 1 | Raven advanced                     | 0.33  | 31 (34) | 24.8 (24.6) |
|                       |   |          | Nonverbal reasoning 2 | BOMAT                              | 0.01  |         |             |
|                       | 2 | Posttest | Nonverbal reasoning 1 | Raven advanced                     | 0.04  | 37 (34) | 25.7 (24.6) |

|                           |             |           | Nonverbal reasoning 2 BOMAT |                                 | -0.25 |         |               |  |
|---------------------------|-------------|-----------|-----------------------------|---------------------------------|-------|---------|---------------|--|
| Van der Molen et al 2010  | 1           | Posttest  | Arithmetic                  | De Vos 1992 arithmetic          | 0.00  | 41 (26) | 15.32 (15.43) |  |
|                           |             |           | Decoding                    | Brus & Voeten 1973 reading      | 0.09  |         |               |  |
|                           |             |           | Nonverbal reasoning         | Raven standard                  | -0.23 |         |               |  |
|                           |             |           | Verbal WM 1                 | WMTB-C Backward digit recall    | 0.22  |         |               |  |
|                           |             |           | Verbal WM 2                 | WMTB-C Listening recall         | 0.09  |         |               |  |
|                           |             |           | Visual WM                   | AWMA Spatial span               | 0.17  |         |               |  |
|                           | 2           | Posttest  | Arithmetic                  | De Vos 1992 arithmetic test     | -0.05 | 26 (26) | 15 (15.43)    |  |
|                           |             |           | Decoding                    | Brus & Voeten 1973 reading test | 0.06  |         |               |  |
|                           |             |           | Nonverbal reasoning         | Raven standard                  | 0.03  |         |               |  |
|                           |             |           | Verbal WM 1                 | WMTB-C Backward digit recall    | -0.15 |         |               |  |
|                           |             |           | Verbal WM 2                 | WMTB-C Listening recall         | 0.04  |         |               |  |
|                           |             |           | Visual WM                   | AWMA Spatial span               | 0.14  |         |               |  |
|                           | 1 Follow up | Follow up | Arithmetic                  | De Vos 1992 arithmetic          | 0.10  | 39 (25) | 15 (15.43)    |  |
|                           |             |           | Decoding                    | Brus & Voeten 1973 reading      | 0.17  |         |               |  |
|                           |             |           | Nonverbal reasoning         | Raven standard                  | -0.23 |         |               |  |
|                           |             |           | Verbal WM 1                 | WMTB-C Backward digit recall    | 0.20  |         |               |  |
|                           |             |           | Verbal WM 2                 | WMTB-C Listening recall         | 0.06  |         |               |  |
|                           |             |           | Visual WM                   | AWMA Spatial span               | 0.42  |         |               |  |
|                           | 2           | Follow up | Arithmetic                  | De Vos 1992 arithmetic test     | -0.07 | 25 (25) | 15 (15.43)    |  |
|                           |             |           | Decoding                    | Brus & Voeten 1973 reading test | 0.04  |         |               |  |
|                           |             |           | Nonverbal reasoning         | Raven standard                  | -0.07 |         |               |  |
|                           |             |           | Verbal WM 1                 | WMTB-C Backward digit recall    | 0.06  |         |               |  |
|                           |             |           | Verbal WM 2                 | WMTB-C Listening recall         | 0.06  |         |               |  |
|                           |             |           | Visual WM                   | AWMA Spatial span               | 0.03  |         |               |  |
| van Dongen-Boomsma et al  |             | D         | N7 1 1 1                    |                                 | 0.00  | 26 (21) |               |  |
| 2014                      | 1           | Posttest  | Nonverbal reasoning         | Raven colored                   | -0.08 | 26 (21) | 6.5 (6.6)     |  |
|                           |             |           | verbal WM                   | Digit span WISC-III backward    | 0.91  | 22 (21) |               |  |
|                           |             |           | Visual WM                   | Knox cubes LDT backward         | 0.12  | 26 (19) |               |  |
| Vartanian et al 2013      | 1           | Posttest  | Nonverbal reasoning         | Raven advanced                  | 0.63  | 17 (17) | 30.79         |  |
| von Bastian & Eschen 2015 | 1           | Posttest  | Crit 1                      | Numerical span                  | 0.95  | 34 (32) | 23 (23)       |  |

|                        |   |          | Crit 2                | Verbal span               | 0.66  |         |               |
|------------------------|---|----------|-----------------------|---------------------------|-------|---------|---------------|
|                        |   |          | Crit 3                | Figural span              | 1.16  |         |               |
|                        |   |          | Nonverbal reasoning 1 | Locations test            | -0.31 |         |               |
|                        |   |          | Nonverbal reasoning 2 | Diagramming relationships | -0.30 |         |               |
|                        |   |          | Nonverbal reasoning 3 | Raven advanced            | 0.02  |         |               |
|                        |   |          | Verbal reasoning      | Nonsense syllogisms       | 0.04  |         |               |
|                        |   |          | Verbal WM 1           | Binding                   | 0.06  |         |               |
|                        |   |          | Verbal WM 2           | Brown-peterson            | 0.38  |         |               |
|                        |   |          | Verbal WM 3           | Number updating           | 0.16  | 34 (31) |               |
|                        | 2 | Posttest | Crit 1                | Numerical span            | 0.96  | 30 (32) | 22.5 (23)     |
|                        |   |          | Crit 2                | Verbal span               | 0.66  |         |               |
|                        |   |          | Crit 3                | Figural span              | 1.04  |         |               |
|                        |   |          | Nonverbal reasoning 1 | Locations test            | -0.15 |         |               |
|                        |   |          | Nonverbal reasoning 2 | Diagramming relationships | 0.14  |         |               |
|                        |   |          | Nonverbal reasoning 3 | Raven advanced            | -0.15 |         |               |
|                        |   |          | Verbal reasoning      | Nonsense syllogisms       | -0.07 |         |               |
|                        |   |          | Verbal WM 1           | Binding                   | -0.36 |         |               |
|                        |   |          | Verbal WM 2           | Brown-peterson            | 0.12  |         |               |
|                        |   |          | Verbal WM 3           | Number updating           | 0.26  |         |               |
|                        | 3 | Posttest | Crit 1                | Numerical span            | 0.96  | 34 (32) | 23.12 (23)    |
|                        |   |          | Crit 2                | Verbal span               | 0.55  |         |               |
|                        |   |          | Crit 3                | Figural span              | 0.90  |         |               |
|                        |   |          | Nonverbal reasoning 1 | Locations test            | -0.32 |         |               |
|                        |   |          | Nonverbal reasoning 2 | Diagramming relationships | 0.04  |         |               |
|                        |   |          | Nonverbal reasoning 3 | Raven advanced            | -0.28 |         |               |
|                        |   |          | Verbal reasoning      | Nonsense syllogisms       | -0.23 |         |               |
|                        |   |          | Verbal WM 1           | Binding                   | 0.13  |         |               |
|                        |   |          | Verbal WM 2           | Brown-peterson            | 0.06  |         |               |
|                        |   |          | Verbal WM 3           | Number updating           | 0.21  | 34 (31) | 23 (23)       |
| von Bastian & Oberauer |   | D        |                       |                           | 0.00  | 20 (20) |               |
| 2013-20                | 1 | Posttest | Verbal reasoning      | Syllogisms                | -0.08 | 30 (30) | 22.87 (23.77) |

|                       |   |           | Verbal WM             | Memory updating         | 0.07  |         |               |
|-----------------------|---|-----------|-----------------------|-------------------------|-------|---------|---------------|
|                       | 1 | Follow up | Verbal reasoning      | Syllogisms              | 0.24  | 30 (30) | 22.87 (23.77) |
|                       |   |           | Verbal WM             | Memory updating         | -0.07 |         |               |
| Wang et al 2014       | 1 | Posttest  | Nonverbal reasoning   | Raven standard          | 0.54  | 20 (20) | 10-11         |
|                       | 2 | Posttest  | Nonverbal reasoning   | Raven standard          | 0.25  | 20 (20) |               |
|                       | 3 | Posttest  | Nonverbal reasoning   | Raven standard          | 0.20  | 20 (20) |               |
|                       | 4 | Posttest  | Nonverbal reasoning   | Raven standard          | 0.01  | 15 (20) |               |
| Weicker et al 2013    | 1 | Posttest  | Verbal WM             | Digit span bw           | 0.00  | 10 (5)  | 67.3 (67.0)   |
|                       |   |           | Visual WM 1           | Span board bw           | 1.11  | 12 (7)  |               |
|                       |   |           | Visual WM 2           | Symbol span             | -0.47 | 12 (7)  |               |
|                       |   |           | Nonverbal reasoning   | LPS Figural Relations   | 0.09  | 12 (7)  |               |
|                       | 2 | Posttest  | Verbal WM             | Digit span bw           | -0.62 | 10 (13) | 67.3 (67.6)   |
|                       |   |           | Visual WM 1           | Span board bw           | 0.77  | 12 (13) |               |
|                       |   |           | Visual WM 2           | Symbol span             | -0.62 | 12 (13) |               |
|                       |   |           | Nonverbal reasoning   | LPS Figural Relations   | 0.14  | 12 (13) |               |
| Westerberg et al 2007 | 1 | Posttest  | Nonverbal reasoning   | Raven standard          | -0.10 | 9 (9)   | 55 (53.6)     |
| Xin et al 2014        | 1 | Posttest  | Verbal WM 1           | Numerical updating      | 0.84  | 15 (14) | 70 (69)       |
|                       |   |           | Nonverbal reasoning   | Raven advanced          | 0.09  |         |               |
|                       |   |           | Verbal WM 2           | WAIS-R Digit span bw    | 1.15  |         |               |
| Zhang et al 2014      | 1 | Posttest  | Nonverbal reasoning 1 | BOMAT                   | 0.65  | 26 (24) | 23            |
|                       |   | Posttest  | Nonverbal reasoning 2 | Form Board              | 0.40  |         |               |
|                       |   | Posttest  | Nonverbal reasoning 3 | Space Relations         | 0.29  |         |               |
|                       |   | Posttest  | Nonverbal reasoning 4 | ETS Surface Development | 0.39  |         |               |
| Zhao et al 2011       | 1 | Posttest  | Nonverbal reasoning   | Raven standard          | 0.54  | 16 (17) | 9.76          |
| Zinke et al 2014      | 1 | Posttest  | Nonverbal reasoning   | Raven standard          | 0.39  | 40 (40) | 76.7 (77.7)   |
|                       |   |           | Verbal WM             | Letter span plus        | 0.85  |         |               |
|                       |   | Follow up | Nonverbal reasoning   | Raven standard          | 0.04  | 33 (18) | 76.7 (77.7)   |
|                       |   |           | Verbal WM             | Letter span plus        | 0.62  |         |               |

*Note*. The Comparison column provides a label for a specific comparison within that study; studies with multiple comparisons have multiple labels; t = training, c = control, WM = working memory, crit = criterion near transfer measure, Reading comp = reading comprehension

<sup>1</sup>Anguera et al 2012 – Analogies, Letter Sets, Raven, BOMAT not reported in published article

<sup>2</sup>Chein & Morrison 2010 – ETS Reasoning battery not coded because it was a composite of nonverbal and verbal reasoning outcomes <sup>3</sup>Chooi & Thompson 2012 – Additional vocabulary outcome not coded because of administration issues reported in article

<sup>4</sup>Dahlin 2011/2013 – Same subjects, different outcomes reported. Also, WM and Raven outcomes not coded given the control group did not perform those tasks (control data reported in article for those outcomes are from Klingberg et al, 2005). Also, follow-up data not included because as stated in Dahlin (2013, p. 123), part of the training group completed an additional 10 training sessions during the posttest-to-follow-up interval, and their data were combined with the training participants that did not complete any additional training. <sup>5</sup>Dunning et al 2013 – Untreated control group did not complete follow-up outcomes

<sup>6</sup>Dunning et al 2013 – Untreated control group did not complete follow-up outcomes

<sup>6</sup>Egeland et al 2013/Hovik et al 2013 – Same subjects, different outcomes reported

<sup>7</sup>Gray et al 2012 – WRAT math not coded because the active control group performed arithmetic tasks, producing a negative effect size because the control group improved more from pretest to posttest than the WM training group

<sup>8</sup>Holmes et al 2009 – Follow-up outcomes not coded because the control group did not complete follow-up outcomes

<sup>9</sup>Jaeggi et al 2008 – Active control group data not reported in published article

 $^{10}$ Karbach et al 2014 – Knuspels reading ability test not coded because it was a composite of reading comprehension and decoding outcomes

<sup>11</sup>Kundu et al 2013 – Location VSTM not coded as TMS pulses were applied on 50% of trials

<sup>12</sup>Lee 2014 – TONI not reported in dissertation

<sup>13</sup>Loosli et al 2012 – Reading time used as dependent variable instead of errors given that errors were so infrequent

<sup>14</sup>Mansur-Alves et al 2013 – *Bateria Fatorial CEPA* and *Teste de Desempnho Escolar* not coded because each test was a composite of multiple outcomes (verbal reasoning, arithmetic, decoding)

<sup>15</sup>Nussbaumer et al 2013 – *Intelligenz-Struktur-Test* not coded because it was a composite of multiple outcomes (verbal reasoning, nonverbal reasoning, arithmetic)

<sup>16</sup>Richey et al 2014 – Active control group data and Raven outcome not reported in published article (presented in Phillips et al. 2012 conference poster)

<sup>17</sup>Rode et al 2014 – AWMA composite not coded because it was a composite of multiple outcomes (verbal WM, visual WM)

<sup>18</sup>Schwarb et al 2015 E1 – pretest and posttest means and SDs only available for Raven advanced progressive matrices outcome

<sup>19</sup>Shiran & Breznitz 2011 – Sternberg memory task not coded because was administered with EEG recording for training groups only

 $^{20}$ Smith et al 2013 – Follow-up data not coded because the follow-up session was only 1 week after the posttest, in contrast to all other studies with follow-up comparisons that occurred months after posttest.

 $^{21}$ Söderqvist et al 2012 – Aston Index test and Allet Teller test not coded because relevant data not available in text, and not assessed at posttest; authors did report that "training had no effect on outcome measures employed in this study assessing cognitive abilities or school assessments at the T3 follow-up" (p. 5).

<sup>22</sup>Sprenger et al 2013 E1 – Inconsistent sample sizes due to attrition, and for reading comprehension and verbal reasoning follow-up

outcomes, authors provided pretest and posttest means/SDs for only those subjects that completed study

<sup>23</sup>von Bastian & Oberauer 2013 – BIS-4s reasoning not coded because it was a composite of digit series, figure series, figural analogies, word analogies, fact/opinion, and estimation subtests; Brown-Peterson not coded because it was a composite of verbal WM and visual WM

## Table s2

Categorization of Moderators in Working Memory Training Studies Included in Meta-Analysis

| Study                           | Comp | Training Type | Training | Dose  | Control | Random | Age      | Learner  | Publication |
|---------------------------------|------|---------------|----------|-------|---------|--------|----------|----------|-------------|
|                                 |      |               | Content  |       | Туре    |        |          | Status   |             |
| Alloway 2012                    | 1    | Adaptive      | Both     | Large | Passive | Yes    | Child    | Atypical | Published   |
|                                 |      | Other         |          |       |         |        |          |          |             |
| Alloway et al 2013              | 1    | Adaptive      | Both     | Large | Active  | Yes    | Child    | Atypical | Published   |
|                                 |      | Other         |          |       |         |        |          |          |             |
| Alloway et al 2013              | 2    | Adaptive      | Both     | Large | Passive | Yes    | Child    | Atypical | Published   |
|                                 |      | Other         |          |       |         |        |          |          |             |
| Ang et al 2015                  | 1    | Adaptive      | Visual   | Large | Active  | No     | Child    | Atypical | Published   |
|                                 |      | Running       |          |       |         |        |          |          |             |
| Ang et al 2015                  | 2    | Adaptive      | Visual   | Large | Passive | No     | Child    | Atypical | Published   |
|                                 |      | Running       |          |       |         |        |          |          |             |
| Ang et al 2015                  | 3    | Adaptive      | Visual   | Large | Active  | No     | Child    | Atypical | Published   |
|                                 |      | Cogmed        |          |       |         |        |          |          |             |
| Ang et al 2015                  | 4    | Adaptive      | Visual   | Large | Passive | No     | Child    | Atypical | Published   |
|                                 |      | Cogmed        |          |       |         |        |          |          |             |
| Anguera et al 2012 <sup>1</sup> | 1    | Adaptive      | Both     | Small | Active  | Yes    | Y. Adult | Typical  | Published   |
|                                 |      | N-back *      |          |       |         |        |          |          |             |
| Ashman-East 2015                | 1    | Adaptive      | Both     | Large | Active  | Yes    | Child    | Atypical | Grey        |
|                                 |      | Cogmed        |          |       |         |        |          |          |             |
| Bergman-Nutley &                | 1    | Adaptive      | Both     | Large | Passive | No     | Child    | Atypical | Published   |
| Klingberg 2014 <sup>2</sup>     |      | Cogmed        |          |       |         |        |          |          |             |
| Borella et al 2014              | 1    | Adaptive      | Visual   | Small | Passive | Yes    | O. Adult | Typical  | Published   |
|                                 |      | Complex       |          |       |         |        |          |          |             |
| Borella et al 2014              | 2    | Adaptive      | Visual   | Small | Passive | Yes    | O. Adult | Typical  | Published   |
|                                 |      | Complex       |          |       |         |        |          |          |             |
| Brehmer et al 2012              | 1    | Adaptive      | Both     | Large | Active  | Yes    | Y. Adult | Typical  | Published   |
|                    |   | Cogmed   |        |       |         |     |          |          |           |
|--------------------|---|----------|--------|-------|---------|-----|----------|----------|-----------|
| Brehmer et al 2012 | 2 | Adaptive | Both   | Large | Active  | Yes | O. Adult | Typical  | Published |
|                    |   | Cogmed   |        |       |         |     |          |          |           |
| Bürki et al 2014   | 1 | Adaptive | Verbal | Small | Active  | No  | Y. Adult | Typical  | Published |
|                    |   | N-back   |        |       |         |     |          |          |           |
| Bürki et al 2014   | 2 | Adaptive | Verbal | Small | Passive | No  | Y. Adult | Typical  | Published |
|                    |   | N-back   |        |       |         |     |          |          |           |
| Bürki et al 2014   | 3 | Adaptive | Verbal | Small | Active  | No  | O. Adult | Typical  | Published |
|                    |   | N-back   |        |       |         |     |          |          |           |
| Bürki et al 2014   | 4 | Adaptive | Verbal | Small | Passive | No  | O. Adult | Typical  | Published |
|                    |   | N-back   |        |       |         |     |          |          |           |
| Chacko et al 2014  | 1 | Adaptive | Both   | Large | Active  | Yes | Child    | Atypical | Published |
|                    |   | Cogmed   |        |       |         |     |          |          |           |
| Chein & Morrison   | 1 | Adaptive | Both   | Large | Passive | Yes | Y. Adult | Typical  | Published |
| 2010               |   | Complex  |        |       |         |     |          |          |           |
| Chooi & Thompson   | 1 | Adaptive | Both   | Small | Active  | No  | Y. Adult | Typical  | Published |
| 2012               |   | N-back * |        |       |         |     |          |          |           |
| Chooi & Thompson   | 2 | Adaptive | Both   | Small | Passive | No  | Y. Adult | Typical  | Published |
| 2012               |   | N-back * |        |       |         |     |          |          |           |
| Chooi & Thompson   | 3 | Adaptive | Both   | Large | Active  | No  | Y. Adult | Typical  | Published |
| 2012               |   | N-back * |        |       |         |     |          |          |           |
| Chooi & Thompson   | 4 | Adaptive | Both   | Large | Passive | No  | Y. Adult | Typical  | Published |
| 2012               |   | N-back * |        |       |         |     |          |          |           |
| Clouter 2013       | 1 | Adaptive | Both   | Small | Active  | Yes | Y. Adult | Typical  | Grey      |
|                    |   | N-back * |        |       |         |     |          |          |           |
| Colom et al 2013   | 1 | Adaptive | Both   | Large | Passive | No  | Y. Adult | Typical  | Published |
|                    |   | N-back * |        |       |         |     |          |          |           |
| Dahlin 2011/2013   | 1 | Adaptive | Both   | Large | Passive | No  | Child    | Atypical | Published |
|                    |   | Cogmed   |        |       |         |     |          |          |           |
| Dahlin et al 2008  | 1 | Adaptive | Both   | Large | Passive | Yes | Y. Adult | Typical  | Published |
|                    |   | Other    |        |       |         |     |          |          |           |
| Dahlin et al 2008  | 2 | Adaptive | Both   | Large | Passive | Yes | O. Adult | Typical  | Published |
|                    |   | Other    |        |       |         |     |          |          |           |

| Dunning et al 2013    | 1 | Adaptive     | Both   | Large | Active  | No  | Child    | Atypical | Published |
|-----------------------|---|--------------|--------|-------|---------|-----|----------|----------|-----------|
|                       |   | Cogmed       |        |       |         |     |          |          |           |
| Dunning et al 2013    | 2 | Adaptive     | Both   | Large | Passive | No  | Child    | Atypical | Published |
|                       |   | Cogmed       |        |       |         |     |          |          |           |
| Egeland et al         | 1 | Adaptive     | Both   | Large | Passive | Yes | Child    | Atypical | Published |
| 2013/Hovik et al 2013 |   | Cogmed       |        |       |         |     |          |          |           |
| Estrada et al 2015    | 1 | Non-Adaptive | Both   | Small | Passive | Yes | Y. Adult | Typical  | Published |
|                       |   | Other        |        |       |         |     |          |          |           |
| Everts et al 2015     | 1 | Adaptive     | Both   | Small | Passive | No  | Child    | Atypical | Published |
|                       |   | Other        |        |       |         |     |          |          |           |
| Feiyue et al 2009     | 1 | Adaptive     | Both   | Small | Passive | No  | Y. Adult | Typical  | Published |
| -                     |   | N-back *     |        |       |         |     |          |          |           |
| Foster et al 2014     | 1 | Adaptive     | Both   | Large | Active  | Yes | Y. Adult | Atypical | Grey      |
|                       |   | Complex      |        | -     |         |     |          | • •      | -         |
| Foster et al 2014     | 2 | Adaptive     | Both   | Large | Active  | Yes | Y. Adult | Typical  | Grey      |
|                       |   | Complex      |        | -     |         |     |          |          | -         |
| Foster et al 2014     | 3 | Adaptive     | Both   | Large | Active  | Yes | Y. Adult | Atypical | Grey      |
|                       |   | Other        |        | -     |         |     |          |          | -         |
| Foster et al 2014     | 4 | Adaptive     | Both   | Large | Active  | Yes | Y. Adult | Typical  | Grey      |
|                       |   | Other        |        |       |         |     |          |          |           |
| Gray et al 2012       | 1 | Adaptive     | Both   | Large | Active  | Yes | Child    | Atypical | Published |
|                       |   | Cogmed       |        |       |         |     |          |          |           |
| Gropper et al 2014    | 1 | Adaptive     | Both   | Large | Passive | Yes | Y. Adult | Atypical | Published |
|                       |   | Cogmed       |        |       |         |     |          |          |           |
| Hanson 2013           | 1 | Adaptive     | Both   | Large | Active  | Yes | Child    | Atypical | Grey      |
|                       |   | Cogmed       |        | -     |         |     |          | • •      | -         |
| Harrison et al 2013   | 1 | Adaptive     | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
|                       |   | Complex      |        | -     |         |     |          | • •      |           |
| Harrison et al 2013   | 2 | Adaptive     | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
|                       |   | Other        |        | -     |         |     |          |          |           |
| Heffernan 2014        | 1 | Adaptive     | Both   | Small | Active  | Yes | Y. Adult | Typical  | Grey      |
|                       |   | N-back *     |        |       |         |     |          |          | -         |
| Heinzel et al 2014    | 1 | Adaptive     | Verbal | Small | Passive | Yes | Y. Adult | Typical  | Published |

|                                          |   | N-back               |        |       |         |     |          |          |           |
|------------------------------------------|---|----------------------|--------|-------|---------|-----|----------|----------|-----------|
| Heinzel et al 2014                       | 2 | Adaptive<br>N-back   | Verbal | Small | Passive | Yes | O. Adult | Typical  | Published |
| Holmes et al 2009                        | 1 | Adaptive<br>Cogmed   | Both   | Large | Active  | No  | Child    | Atypical | Published |
| Horvat 2014                              | 1 | Adaptive<br>N-back * | Both   | Small | Passive | No  | Child    | Typical  | Grey      |
| Jaeggi et al 2008 <sup>3</sup>           | 1 | Adaptive<br>N-back * | Both   | Small | Active  | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2008                        | 2 | Adaptive<br>N-back * | Both   | Small | Passive | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2008                        | 3 | Adaptive<br>N-back * | Both   | Small | Passive | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2008                        | 4 | Adaptive<br>N-back * | Both   | Small | Passive | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2008 <sup>3</sup>           | 5 | Adaptive<br>N-back * | Both   | Small | Passive | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2011                        | 1 | Adaptive<br>N-back   | Visual | Small | Active  | No  | Child    | Typical  | Published |
| Jaeggi et al 2014                        | 1 | Adaptive<br>N-back * | Both   | Small | Active  | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2014                        | 2 | Adaptive<br>N-back   | Verbal | Small | Active  | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2010                        | 1 | Adaptive<br>N-back * | Both   | Small | Passive | No  | Y. Adult | Typical  | Published |
| Jaeggi et al 2010                        | 2 | Adaptive<br>N-back   | Visual | Small | Passive | No  | Y. Adult | Typical  | Published |
| Jaušovec & Jaušovec<br>2012 <sup>4</sup> | 1 | Adaptive<br>Other    | Both   | Large | Active  | No  | Y. Adult | Typical  | Published |
| Karbach et al 2014                       | 1 | Adaptive<br>Complex  | Visual | Small | Active  | Yes | Child    | Typical  | Published |
| Klingberg et al 2002 <sup>5</sup>        | 1 | Adaptive<br>Cogmed   | Both   | Large | Passive | Yes | Child    | Atypical | Published |

| Klingberg et al 2005                  | 1 | Adaptive<br>Cogmed               | Both   | Large | Active  | Yes | Child    | Atypical | Published |
|---------------------------------------|---|----------------------------------|--------|-------|---------|-----|----------|----------|-----------|
| Kundu et al 2013                      | 1 | Adaptive                         | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| Kundu et al 2013 <sup>6</sup>         | 2 | N-back *<br>Adaptive<br>N-back * | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| Lange & Süß 2015 <sup>7</sup>         | 1 | Adaptive                         | Both   | Large | Active  | Yes | O. Adult | Typical  | Published |
| Lange & Süß 2015 <sup>7</sup>         | 2 | Other<br>Adaptive<br>Other       | Both   | Large | Passive | Yes | O. Adult | Typical  | Published |
| Lee 2014                              | 1 | Adaptive<br>Complex              | Visual | Small | Active  | Yes | Child    | Typical  | Grey      |
| Lindeløv et al 2014                   | 1 | Adaptive<br>N-back               | Both   | Small | Active  | No  | Y. Adult | Typical  | Grey      |
| Lindeløv et al 2014                   | 2 | Adaptive<br>N-back               | Both   | Small | Active  | No  | Y. Adult | Atypical | Grey      |
| Loosli et al 2012                     | 1 | Adaptive<br>Complex              | Visual | Small | Passive | No  | Child    | Typical  | Published |
| Mansur-Alves &<br>Flores-Mendoza 2015 | 1 | Adaptive<br>Other                | Verbal | Large | Passive | Yes | Child    | Typical  | Published |
| Mansur-Alves et al 2013               | 1 | Adaptive<br>Other                | Verbal | Large | Active  | Yes | Child    | Typical  | Published |
| Minear et al 2012                     | 1 | Adaptive<br>N-back               | Visual | Small | Active  | No  | Y. Adult | Typical  | Grey      |
| Minear et al 2012                     | 2 | Adaptive                         | Verbal | Large | Active  | No  | Y. Adult | Typical  | Grey      |
| Minear et al 2012                     | 3 | Non-Adaptive                     | Visual | Small | Active  | No  | Y. Adult | Typical  | Grey      |
| Minear et al 2013 <sup>8</sup>        | 1 | Adaptive                         | Both   | Large | Passive | Yes | Y. Adult | Typical  | Grey      |
| Moreau et al 2015                     | 1 | Adaptive<br>Complex              | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| Nussbaumer et al 2013                 | 1 | Adaptive                         | Both   | Small | Active  | Yes | Y. Adult | Typical  | Published |

|                                |   | N-back *     |        |       |         |     |          |         |           |
|--------------------------------|---|--------------|--------|-------|---------|-----|----------|---------|-----------|
| Nussbaumer et al 2013          | 2 | Non-Adaptive | Both   | Small | Active  | Yes | Y. Adult | Typical | Published |
|                                |   | Other        |        |       |         |     |          |         |           |
| Nutley et al 2011              | 1 | Adaptive     | Both   | Small | Active  | Yes | Child    | Typical | Published |
| -                              |   | Cogmed       |        |       |         |     |          |         |           |
| Oelhafen et al 2013            | 1 | Adaptive     | Both   | Small | Passive | Yes | Y. Adult | Typical | Published |
|                                |   | N-back *     |        |       |         |     |          |         |           |
| Oelhafen et al 2013            | 2 | Adaptive     | Both   | Small | Active  | Yes | Y. Adult | Typical | Published |
|                                |   | N-back *     |        |       |         |     |          |         |           |
| Payne 2014                     | 1 | Adaptive     | Verbal | Small | Active  | Yes | O. Adult | Typical | Grey      |
| -                              |   | Complex      |        |       |         |     |          |         | -         |
| Pugin et al 2015               | 1 | Adaptive     | Visual | Small | Passive | No  | Child    | Typical | Published |
| -                              |   | N-back       |        |       |         |     |          |         |           |
| Redick et al 2013              | 1 | Adaptive     | Both   | Large | Active  | No  | Y. Adult | Typical | Published |
|                                |   | N-back *     |        | -     |         |     |          |         |           |
| Redick et al 2013              | 2 | Adaptive     | Both   | Large | Passive | No  | Y. Adult | Typical | Published |
|                                |   | N-back *     |        | -     |         |     |          | • •     |           |
| Redick & Wiemers               | 1 | Adaptive     | Verbal | Small | Active  | Yes | Y. Adult | Typical | Grey      |
| 2015                           |   | Complex      |        |       |         |     |          |         |           |
| Redick & Wiemers               | 2 | Adaptive     | Verbal | Small | Active  | Yes | Y. Adult | Typical | Grey      |
| 2015                           |   | Complex      |        |       |         |     |          |         |           |
| Reimer et al 2014              | 1 | Adaptive     | Both   | Large | Active  | Yes | Y. Adult | Typical | Grey      |
|                                |   | Other        |        |       |         |     |          |         |           |
| Richey et al 2014 <sup>9</sup> | 1 | Adaptive     | Both   | Small | Active  | No  | Y. Adult | Typical | Published |
|                                |   | Complex      |        |       |         |     |          |         |           |
| Richey et al 2014              | 2 | Adaptive     | Both   | Small | Passive | No  | Y. Adult | Typical | Published |
|                                |   | Complex      |        |       |         |     |          |         |           |
| Richmond et al 2011            | 1 | Adaptive     | Both   | Small | Active  | Yes | O. Adult | Typical | Published |
|                                |   | Complex      |        |       |         |     |          |         |           |
| Rode et al 2014                | 1 | Adaptive     | Verbal | Small | Passive | No  | Child    | Typical | Published |
|                                |   | Complex      |        |       |         |     |          |         |           |
| Rudebeck et al 2012            | 1 | Adaptive     | Visual | Small | Passive | Yes | Y. Adult | Typical | Published |
|                                |   | N-back       |        |       |         |     |          |         |           |

| Salminen et al 2012                     | 1 | Adaptive<br>N-back * | Both   | Large | Passive | Yes | Y. Adult | Typical  | Published |
|-----------------------------------------|---|----------------------|--------|-------|---------|-----|----------|----------|-----------|
| Savage 2013                             | 1 | Adaptive<br>N-back * | Both   | Small | Active  | Yes | Y. Adult | Typical  | Grey      |
| Schwarb et al 2015 E1                   | 1 | Adaptive<br>N-back   | Both   | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Schwarb et al 2015 E2                   | 1 | Adaptive<br>N-back   | Visual | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Schwarb et al 2015 E2                   | 2 | Adaptive<br>N-back   | Verbal | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Schweizer et al 2011                    | 1 | Adaptive<br>N-back * | Both   | Small | Active  | Yes | Y. Adult | Typical  | Published |
| Schweizer et al 2011                    | 2 | Adaptive<br>N-back * | Both   | Small | Active  | Yes | Y. Adult | Typical  | Published |
| Shavelson et al 2008                    | 1 | Adaptive<br>Cogmed   | Both   | Large | Active  | Yes | Child    | Atypical | Published |
| Shiran & Breznitz<br>2011               | 1 | Adaptive<br>Other    | Both   | Large | Active  | No  | Y. Adult | Atypical | Published |
| Shiran & Breznitz<br>2011               | 2 | Adaptive<br>Other    | Both   | Large | Active  | No  | Y. Adult | Typical  | Published |
| Smith et al 2013                        | 1 | Adaptive<br>N-back * | Both   | Small | Active  | Yes | Y. Adult | Typical  | Published |
| Smith et al 2013                        | 2 | Adaptive<br>N-back * | Both   | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Smith et al 2013                        | 3 | Adaptive<br>N-back * | Both   | Small | Active  | Yes | Y. Adult | Typical  | Published |
| Söderqvist et al 2012 <sup>10</sup>     | 1 | Adaptive<br>Other    | Visual | Small | Active  | No  | Child    | Atypical | Published |
| Sprenger et al 2013 E1                  | 1 | Adaptive<br>Other    | Both   | Large | Passive | Yes | Y. Adult | Typical  | Published |
| Sprenger et al 2013<br>E2 <sup>11</sup> | 1 | Adaptive<br>Other    | Verbal | Large | Active  | Yes | Y. Adult | Typical  | Published |
| Sprenger et al 2013 E2                  | 2 | Adaptive             | Visual | Large | Active  | Yes | Y. Adult | Typical  | Published |

|                                         |   | Other                |        |       |         |     |          |          |           |
|-----------------------------------------|---|----------------------|--------|-------|---------|-----|----------|----------|-----------|
| Sprenger et al 2013<br>E2 <sup>10</sup> | 3 | Adaptive<br>Other    | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| Stepankova et al 2014                   | 1 | Adaptive<br>N-back   | Verbal | Small | Passive | Yes | O. Adult | Typical  | Published |
| Stepankova et al 2014                   | 2 | Adaptive<br>N-back   | Verbal | Small | Passive | Yes | O. Adult | Typical  | Published |
| Stephenson & Halpern 2013               | 1 | Adaptive<br>N-back * | Both   | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Stephenson & Halpern 2013               | 2 | Adaptive<br>N-back   | Visual | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Stephenson & Halpern 2013               | 3 | Adaptive<br>N-back   | Verbal | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Stephenson & Halpern 2013               | 4 | Adaptive<br>Other    | Visual | Small | Passive | Yes | Y. Adult | Typical  | Published |
| Takeuchi et al 2013                     | 1 | Adaptive<br>Other    | Both   | Large | Passive | No  | Y. Adult | Typical  | Published |
| Thompson et al 2013                     | 1 | Adaptive<br>N-back * | Both   | Large | Passive | No  | Y. Adult | Typical  | Published |
| Thompson et al 2013                     | 2 | Adaptive<br>N-back * | Both   | Large | Active  | No  | Y. Adult | Typical  | Published |
| Thorell et al 2009                      | 1 | Adaptive<br>Cogmed   | Visual | Small | Active  | No  | Child    | Typical  | Published |
| Thorell et al 2009                      | 2 | Adaptive<br>Cogmed   | Visual | Small | Passive | No  | Child    | Typical  | Published |
| Urbánek & Marček<br>2015                | 1 | Adaptive<br>N-back   | Both   | Small | Active  | Yes | Y. Adult | Typical  | Published |
| Urbánek & Marček<br>2015                | 2 | Adaptive<br>N-back   | Visual | Small | Active  | Yes | Y. Adult | Typical  | Published |
| Van der Molen et al 2010                | 1 | Adaptive<br>Complex  | Visual | Small | Active  | Yes | Child    | Atypical | Published |
| Van der Molen et al<br>2010             | 2 | Adaptive<br>Complex  | Visual | Small | Active  | Yes | Child    | Atypical | Published |

| van Dongen-Boomsma    | 1 | Adaptive      | Visual | Small | Active  | Yes | Child    | Atypical | Published |
|-----------------------|---|---------------|--------|-------|---------|-----|----------|----------|-----------|
| et al 2014            |   | Cogmed        |        |       |         |     |          |          |           |
| Vartanian et al 2013  | 1 | Non-Adaptive  | Verbal | Small | Active  | Yes | Y. Adult | Typical  | Published |
|                       |   | N-back        |        |       |         |     |          |          |           |
| von Bastian & Eschen  | 1 | Adaptive      | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| 2015                  |   | Complex       |        |       |         |     |          |          |           |
| von Bastian & Eschen  | 2 | Random        | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| 2015                  |   | Complex       |        |       |         |     |          |          |           |
| von Bastian & Eschen  | 3 | Self-selected | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| 2015                  |   | Complex       |        |       |         |     |          |          |           |
| von Bastian &         | 1 | Adaptive      | Both   | Large | Active  | Yes | Y. Adult | Typical  | Published |
| Oberauer 2013         |   | Complex       |        |       |         |     |          |          |           |
| Wang et al 2014       | 1 | Adaptive      | Both   | Small | Passive | Yes | Child    | Typical  | Published |
|                       |   | Other         |        |       |         |     |          |          |           |
| Wang et al 2014       | 2 | Adaptive      | Both   | Small | Passive | Yes | Child    | Typical  | Published |
|                       |   | Other         |        |       |         |     |          |          |           |
| Wang et al 2014       | 3 | Adaptive      | Both   | Small | Passive | Yes | Child    | Typical  | Published |
|                       |   | Other         |        |       |         |     |          |          |           |
| Wang et al 2014       | 4 | Adaptive      | Both   | Small | Passive | Yes | Child    | Typical  | Published |
|                       |   | Other         |        |       |         |     |          |          |           |
| Weicker et al 2013    | 1 | Adaptive      | Both   | Small | Active  | Yes | O. Adult | Typical  | Grey      |
|                       |   | Other         |        |       |         |     |          |          |           |
| Weicker et al 2013    | 2 | Adaptive      | Both   | Small | Passive | Yes | O. Adult | Typical  | Grey      |
|                       |   | Other         |        |       |         |     |          |          |           |
| Westerberg et al 2007 | 1 | Adaptive      | Both   | Large | Passive | Yes | Y. Adult | Atypical | Published |
|                       |   | Cogmed        |        |       |         |     |          |          |           |
| Xin et al 2014        | 1 | Adaptive      | Both   | Small | Active  | No  | O. Adult | Typical  | Published |
|                       |   | Other         |        |       |         |     |          |          |           |
| Zhang et al 2014      | 1 | Adaptive      | Both   | Small | Active  | No  | Y. Adult | Typical  | Grey      |
|                       |   | N-back        |        |       |         |     |          |          |           |
| Zhao et al 2011       | 1 | Adaptive      | Visual | Small | Active  | No  | Child    | Typical  | Published |
|                       |   | Other         |        |       |         |     |          |          |           |
| Zinke et al 2014      | 1 | Adaptive      | Both   | Small | Passive | Yes | O. Adult | Typical  | Published |

Other

*Note.* The Comparison column provides a label for a specific comparison within that study; studies with multiple comparisons have multiple labels; asterisk denotes dual N-back training type.

<sup>1</sup>Anguera et al 2012 – coded publication status as 'published', although four of the nonverbal ability outcomes were not included in the published article

<sup>2</sup>Bergman-Nutley & Klingberg 2014 – coded learner status as 'atypical', although control group was composed of typically developing children

<sup>3</sup>Jaeggi et al 2008 – coded publication status as 'published', although active-control group data in comparison 1 and two working memory outcomes in comparison 5 were not included in the published article

<sup>4</sup>Jaušovec & Jaušovec 2012 –2 of the 5 training tasks were not computerized

<sup>5</sup>Klingberg et al 2002 – 80% of training was WM (Cogmed); note that control group was coded as 'passive' because control participants completed only 10 trials (compared to 30 trials in training group), but coding the study as 'active' does not change the significance any of the outcomes.

<sup>6</sup>Kundu et al 2013 – comparison 2 was subset of n = 3 participants in each group that completed full version of Raven at pretest and posttest; all other participants (comparison 1) completed half at pretest and other half at posttest

<sup>7</sup>Lange & Süß 2015 – 4 of the 5 training tasks were WM (80%)

<sup>8</sup>Minear et al 2013 – 50% of training was WM

 $^{9}$ Richey et al 2014 – coded publication status as 'published', although the nonverbal ability outcome was not included in the published article

<sup>10</sup>Söderqvist et al 2012 – 50% of training was WM (Cogmed)

<sup>11</sup>Sprenger et al 2013 E2 – for comparison 1, 50% of training was WM (N-back); for comparison 4, 75% of training was WM

Number of participants (and mean sample size) of studies for each outcome measure

| Construct                | Time<br>point | Total number<br>of participants<br>training group<br>(mean sample size) | Total number<br>of participants<br>control group<br>(mean sample size) |
|--------------------------|---------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| Near transfer measure    | Posttest      | 975 (23.8)                                                              | 912 (22.2)                                                             |
|                          | Follow up     | 143 (20.4)                                                              | 120 (17.1)                                                             |
| Verbal<br>working        | Posttest      | 2118 (23.3)                                                             | 2053 (22.6)                                                            |
| memory                   | Follow up     | 556 (25.3)                                                              | 515 (23.4)                                                             |
| Visuo-spatial<br>working | Posttest      | 1270 (24.4)                                                             | 1199 (23.1)                                                            |
| memory                   | Follow up     | 337 (24.1)                                                              | 333 (23.8)                                                             |
| Nonverbal abilities      | Posttest      | 2713 (22.4)                                                             | 2677 (22.1)                                                            |
|                          | Follow up     | 440 (23.2)                                                              | 395 (20.8)                                                             |
| Verbal abilities         | Posttest      | 1102 (29.0)                                                             | 1138 (29.9)                                                            |
|                          | Follow up     | 112 (22.4)                                                              | 136 (22.7)                                                             |
| Word decoding            | Posttest      | 606 (37.8)                                                              | 480 (30.0)                                                             |
|                          | Follow up     | 147 (29.4)                                                              | 124 (24.8)                                                             |
| Reading comprehension    | Posttest      | 759 (30.4)                                                              | 650 (26)                                                               |
|                          | Follow up     | 84 (28)                                                                 | 84 (28)                                                                |
| Arithmetic               | Posttest      | 1100 (37.9)                                                             | 1088 (37.5)                                                            |
|                          | Follow up     | 393 (24.6)                                                              | 377(23.6)                                                              |

Figure s1a. Effect sizes at posttest for nonverbal ability, treated controls, for each study (displayed by  $\blacksquare$ ) with confidence intervals, and mean effect size for treated controls ( $\blacklozenge$ ).

47



Favours control group

Favours training group

Figure s1b. Effect sizes at posttest for nonverbal ability, untreated controls, for each study (displayed by  $\blacklozenge$ ) with confidence intervals, and mean effect size for treated controls ( $\blacklozenge$ ).



Figure s2. Effect sizes at posttest for verbal ability for each study (displayed by  $\blacksquare$ ) with confidence intervals, and mean effect size for treated and untreated controls ( $\blacklozenge$ ).

| Treated       Harrison, et al. 2013 comp 2<br>von Bastian & Eschen 2013 comp 1<br>von Bastian & Derauer 2013 comp 1<br>von Bastian & Derauer 2013 comp 1<br>harrison, et al. 2013 comp 1<br>Anguera, et al. 2014<br>Reidek, et al. 2014 comp 1<br>Jaeggi, et al. 2014 comp 1<br>Jaeggi, et al. 2013 comp 1<br>Non Bastian & Eschen 2015 comp 1<br>Thompson, et al. 2013 comp 1<br>Minear, et al 2012 comp 1<br>Jaeggi, et al. 2013 comp 1<br>Non Bastian & Eschen 2015 comp 1<br>Thompson, et al. 2013 comp 1<br>Minear, et al 2012 comp 1<br>Alloway, et al. 2013 comp 1<br>Minear, et al. 2013 comp 2<br>Stephenson & Halpern 2013 comp 2<br>Stephenson & Halpern 2013 comp 2<br>Stephenson & Halpern 2013 comp 2<br>Aloway, et al. 2013 comp 2<br>Aloway 2012       Image 4 Suik 2015 comp 1<br>Chool & Thompson, 2012 comp 2<br>Aloway 2012                                                                                                                                                                                                  |           | Study name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | Effe                     | ect size |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|----------|-------------------------------|
| Interested       Redick, et al. 2013 comp 1         Jaeggi, et al. 2014 comp 1         Jaeggi, et al. 2014 comp 2         Minear, et al 2012 comp 1         von Bastian & Eschen 2015 comp 1         Thompson, et al. 2013 comp 2         Minear, et al 2012 comp 3         Dunning, et al. 2013 comp 1         Minear, et al 2012 comp 2         Jausovec & Jausovec 2012         Holmes, et al. 2013 comp 1         Alloway, et al. 2013 comp 2         Stephenson & Halpern 2013 comp 2         Stephenson & Halpern 2013 comp 1         Thompson, et al. 2013 comp 1         Thompson, et al. 2013 comp 2         Stephenson & Halpern 2013 comp 1         Thompson, et al. 2013 comp 2         Alloway, et al. 2013 comp 2         Alloway, et al. 2013 comp 2         Alloway 2012         -2       -1       0       1       2         Favours control group       Favours training group <th>Treated</th> <th>Harrison, et al. 2013 comp 2<br/>von Bastian &amp; Eschen 2013 comp 3<br/>Chooi &amp; Thompson, 2012 comp 3<br/>Lange &amp; Süß 2015 comp 1<br/>von Bastian &amp; Oberauer 2013 comp 1<br/>von Bastian &amp; Eschen 2015 comp 2<br/>Anguera et al 2012<br/>Harrison, et al. 2014</th> <th></th> <th></th> <th></th> <th></th> | Treated   | Harrison, et al. 2013 comp 2<br>von Bastian & Eschen 2013 comp 3<br>Chooi & Thompson, 2012 comp 3<br>Lange & Süß 2015 comp 1<br>von Bastian & Oberauer 2013 comp 1<br>von Bastian & Eschen 2015 comp 2<br>Anguera et al 2012<br>Harrison, et al. 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                          |          |                               |
| -2 -1 0 1 2<br>Favours control group Favours training group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Untreated | Reimer et al, 2014<br>Redick, et al. 2013 comp 1<br>Jaeggi, et al. 2014 comp 1<br>Jaeggi, et al. 2014 comp 2<br>Minear, et al 2012 comp 1<br>von Bastian & Eschen 2015 comp 1<br>Thompson, et al. 2013 comp 2<br>Minear, et al 2012 comp 3<br>Dunning, et al. 2013 comp 1<br>Minear, et al 2012 comp 2<br>Jausovec & Jausovec 2012<br>Holmes, et al. 2009<br>Chooi & Thompson, 2012 comp 1<br>Alloway, et al. 2013 comp 1<br>Chooi & Thompson, 2012 comp 4<br>Richey, et al. 2013 comp 2<br>Lange & Süß 2015 comp 2<br>Colom, et al. 2013<br>Dunning, et al. 2013 comp 2<br>Stephenson & Halpern 2013 comp 3<br>Stephenson & Halpern 2013 comp 4<br>Estrada et al 2015<br>Sprenger, et al. 2013 comp 1<br>Chooi & Thompson, 2012 comp 2<br>Alloway, et al. 2013 comp 2<br>Redick, et al. 2013 comp 2<br>Alloway, et al. 2013 comp 2<br>Alloway 2012 |           |                          |          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2<br>Fav | -1<br>ours control group | 0        | 1 2<br>Favours training group |

Figure s3. Effect sizes at posttest for decoding for each study (displayed by  $\blacksquare$ ) with confidence intervals, and mean effect size for treated and untreated controls ( $\blacklozenge$ ).



Figure s4. Effect sizes at posttest for reading comprehension for each study (displayed by  $\blacksquare$ ) with confidence intervals, and mean effect size for treated and untreated controls ( $\blacklozenge$ ).

|           | Study                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |           |              | Effect size            |   |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--------------|------------------------|---|--|
| Treated   | Minear, et al 2012 comp 1<br>Gray et al. 2012<br>Sprenger, et al. 2013 comp 3<br>Minear, et al 2012 comp 3<br>Payne 2014<br>Thompson, et al. 2013 comp 2<br>Hanson 2013<br>Sprenger, et al. 2013 comp 1<br>Jæggj, et al. 2013 comp 1<br>Jæggj, et al. 2013 comp 1<br>Dunning, et al. 2013 comp 1<br>Lee 2014<br>Chacko, et al. 2014 comp 1<br>Lee 2014<br>Redick & Wiemers, 2015 comp 2<br>Jæggj, et al. 2014 comp 2<br>Shiran & Breznitz, 2011 comp 2 |      |           |              |                        |   |  |
| Untreated | Sprenger, et al. 2013 ex 1<br>Gropper, et al. 2014<br>Thompson, et al. 2013 comp 1<br>Rode, et al. 2014<br>Dunning, et al. 2013 comp 2<br>Dahlin 2011 and 2013<br>Chein & Morrison 2010                                                                                                                                                                                                                                                                |      |           |              | -<br>-<br>•            |   |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2 ່ | -1        | 0            | 1                      | 2 |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Favours c | ontrol group | Favours training group |   |  |

Figure s5. Effect sizes at posttest for arithmetic for each study (displayed by  $\blacksquare$ ) with confidence intervals, and mean effect size for treated and untreated controls ( $\blacklozenge$ ).

|           | Study                                    |       |               | Effect size |                  |             |
|-----------|------------------------------------------|-------|---------------|-------------|------------------|-------------|
|           | Karbach, et al. 2014                     |       | -             |             | — I              |             |
|           | Alloway, et al. 2013 comp1               |       |               |             | — I              |             |
|           | Dunning, et al. 2013 comp 1              |       |               |             | — I              |             |
|           | Ang, et al 2015 comp 3                   |       |               |             | —                |             |
|           | Holmes, et al. 2009                      |       |               |             | — I              |             |
|           | Van der Molen, et al. 2010, comp. 2      |       |               |             | — I              |             |
|           | Van der Molen, et al. 2010 comp 1        |       |               | +           | — I              |             |
| Treated   | Minear, et al 2012 comp 1                |       |               |             | <u> </u>         |             |
|           | Nussbaumer et al 2013 comp 1             |       |               |             |                  |             |
|           | Chacko, et al. 2014                      |       |               |             | <b>⊢</b>         |             |
|           | Minear, et al 2012 comp 2                |       |               | -+          | •                |             |
|           | Minear, et al 2012 comp 3                |       |               | -+          |                  |             |
|           | Ang, et al 2015 comp 1                   |       |               | -+-         |                  |             |
|           | Nussbaumer et al 2013 comp 2             |       |               |             | — <b></b> —      |             |
|           | Ashman-East 2015                         |       |               |             |                  | -           |
|           | Ang, et al 2015 comp 4                   |       |               |             | -                |             |
|           | Dunning, et al. 2013 comp 2              |       |               |             | -                |             |
|           | Mansur-Alves & Flores-Mendoza 2015       |       |               |             | —                |             |
| Untreated | Everts et al 2015                        |       |               |             | —— I             |             |
|           | Gropper, et al 2014                      |       |               |             | — I              |             |
|           | Takeuchi, et al, 2013                    |       |               |             | —— I             |             |
|           | Rode, et al. 2014                        |       |               |             | <b>⊢</b> ∣       |             |
|           | Ang, et al 2015 comp 2                   |       |               |             |                  |             |
|           | Alloway, et al. 2013 comp 2              |       |               |             |                  |             |
|           | Bergman-Nutley & Klingberg, 2014         |       |               | H           | ■-               |             |
|           | Dahlin 2011 and 2013                     |       |               |             | - <b></b>        |             |
|           | Egeland et al 2013 and Hovik et al. 2013 |       |               |             | - <b></b>        |             |
|           | Colom, et al. 2013                       |       |               | -+          | <b></b>          |             |
|           | Alloway 2012                             |       |               |             |                  | —           |
|           |                                          |       |               |             |                  |             |
|           |                                          | -2    | -1            | 0           | , ,<br>1         | 2           |
|           |                                          | Favoi | urs control g | roup        | -<br>Favours tra | ining group |

Figure s6. Effect sizes at posttest for verbal working memory for each study (displayed by  $\blacksquare$ ) with confidence intervals, and mean effect size for treated and untreated controls ( $\blacklozenge$ ).



Figure s7. Effect sizes at posttest for visuo-spatial working memory for each study (displayed by ■) with confidence intervals, and mean effect size for treated and untreated controls (♦).



Figure s8. Effect sizes at posttest for criterion near transfer measures for each study (displayed by ■) with confidence intervals, and mean effect size for treated and untreated controls (♦).

55



Favours control group

**Favours training group** 

# Analysis of Moderators of Immediate Effects on Nonverbal Abilities

|                       |                                     | Treated controls      |                                           |                                   |                                     | Untreated controls    |                                           |                                   |  |
|-----------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|--|
| Moderator<br>variable | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog<br>-eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog<br>-eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) |  |
| Age                   |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |  |
| Children              | 14                                  | -0.02                 | 0                                         |                                   | 12                                  | 0.23                  | 0.06                                      |                                   |  |
| Adults                | 47                                  | 0.10*                 | 0                                         |                                   | 31                                  | 0.20**                | 0.02                                      |                                   |  |
| Older Adults          | 6                                   | -0.13                 | 0                                         |                                   | 10                                  | 0.22*                 | 0                                         |                                   |  |
|                       |                                     |                       |                                           | .13                               |                                     |                       |                                           | .96                               |  |
| Training dose         |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |  |
| Large                 | 29                                  | -0.04                 | 0                                         |                                   | 15                                  | 0.07                  | 0.03                                      |                                   |  |
| Small                 | 38                                  | 0.13**                | 0                                         |                                   | 38                                  | 0.23**                | 0.01                                      |                                   |  |
|                       |                                     |                       |                                           | .02*                              |                                     |                       |                                           | .14                               |  |
| Design                |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |  |
| Non-randomized        | 24                                  | 0.03                  | 0                                         |                                   | 22                                  | 0.21*                 | 0.02                                      |                                   |  |
| Randomized            | 43                                  | 0.07                  | 0                                         |                                   | 31                                  | 0.19**                | 0.01                                      |                                   |  |
|                       |                                     |                       |                                           | .64                               |                                     |                       |                                           | .88                               |  |
| Learner status        |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |  |
| Learning disabled     | 11                                  | -0.08                 | 0                                         |                                   | 4                                   | 0.25                  | 0.43**                                    |                                   |  |
| Unselected            | 56                                  | 0.08*                 | 0                                         |                                   | 49                                  | 0.19**                | 0                                         |                                   |  |
|                       |                                     |                       |                                           | .11                               |                                     |                       |                                           | .88                               |  |

| CogMed       | 9  | -0.13 | 0 |      | 4  | 0.38   | 0.51 |     |
|--------------|----|-------|---|------|----|--------|------|-----|
| N-back       | 30 | 0.15* | 0 |      | 30 | 0.26** | 0.02 |     |
| Complex span | 13 | -0.09 | 0 |      | 4  | 0.13   | 0    |     |
| Other        | 15 | 0.16* | 0 |      | 15 | 0.11   | 0    |     |
|              |    |       |   | .01* |    |        |      | .35 |
|              |    |       |   |      |    |        |      |     |

## Analysis of Moderators of Immediate Effects on Verbal Abilities

|                       | Treated controls                    |                       |                                           |                                   | Untreated controls                  |                       |                                           |                                   |  |
|-----------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|--|
| Moderator<br>variable | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog-<br>eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog<br>-eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) |  |
| Age                   |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |  |
| Children              | -                                   | -                     | -                                         |                                   | -                                   | -                     | -                                         |                                   |  |
| Adults                | 18                                  | 0.01                  | 0                                         |                                   | 12                                  | 0.00                  | 0                                         |                                   |  |
| Older Adults          | -                                   | -                     | -                                         |                                   | -                                   | -                     | -                                         |                                   |  |
| Training dose         |                                     |                       |                                           | -                                 |                                     |                       |                                           | -                                 |  |
| Large                 | 16                                  | 0.05                  | 0.0                                       |                                   | 10                                  | 0.03                  | 0.01                                      |                                   |  |
| Small                 | 6                                   | 0.06                  | 0.0                                       |                                   | 6                                   | 0.03                  | 0                                         |                                   |  |
|                       |                                     |                       |                                           | .97                               |                                     |                       |                                           | .95                               |  |
| Design                |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |  |
| Non-randomized        | 12                                  | 0.12                  | 0                                         |                                   | 7                                   | -0.04                 | 0                                         |                                   |  |
| Randomized            | 10                                  | -0.02                 | 0.01                                      |                                   | 9                                   | 0.05                  | 0                                         |                                   |  |
|                       |                                     |                       |                                           | .28                               |                                     |                       |                                           | .53                               |  |
| Learner status        |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |  |
| Learning disabled     | -<br>19                             | -                     | -                                         |                                   | - 13                                | -                     | -                                         |                                   |  |

| Intervention prog | gram      |       |      |     |   |      |     |     |
|-------------------|-----------|-------|------|-----|---|------|-----|-----|
| CogMe             | d -       | -     | -    |     | - | -    | -   |     |
| N-back            | 9         | 0.04  | 0    |     | 8 | 0.02 | 0   |     |
| Comple            | ex span 6 | -0.03 | 0    |     | - | -    | -   |     |
| Other             | 5         | 0.13  | 0.10 |     | 6 | 0.09 | .03 |     |
|                   |           |       |      | .71 |   |      |     | .74 |
| 1                 |           |       |      |     |   |      |     |     |

-

-

# Analysis of Moderators of Immediate Effects on Verbal Working Memory

|                       |                                     | Treate                | ed controls                               |                                   | Untreated controls                  |                       |                                           |                                   |
|-----------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|
| Moderator<br>variable | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog-<br>eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog<br>-eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) |
| Age                   |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Children              | 17                                  | 0.68**                | 0.21**                                    |                                   | 9                                   | 0.85**                | 0.30**                                    |                                   |
| Adults                | 37                                  | 0.12*                 | 0                                         |                                   | 19                                  | 0.17                  | 0.09                                      |                                   |
| Older Adults          | 6                                   | 0.28                  | 0.07                                      |                                   | 10                                  | 0.49**                | 0.28**                                    |                                   |
|                       |                                     |                       |                                           | .001**                            |                                     |                       |                                           | .01**                             |
| Training dose         |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Large                 | 32                                  | 0.33**                | 0.16**                                    |                                   | 17                                  | 0.48**                | 0.25**                                    |                                   |
| Small                 | 28                                  | 0.27**                | 0.02                                      |                                   | 21                                  | 0.37**                | 0.23**                                    |                                   |
|                       |                                     |                       |                                           | .61                               |                                     |                       |                                           | .57                               |
| Design                |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Non-randomized        | 20                                  | 0.47**                | 0.21**                                    |                                   | 19                                  | 0.36*                 | 0.32**                                    |                                   |
| Randomized            | 40                                  | 0.23**                | 0.05*                                     |                                   | 19                                  | 0.48**                | 0.15**                                    |                                   |
|                       |                                     |                       |                                           | .08                               |                                     |                       |                                           | .53                               |
| Learner status        | 17                                  |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Learning disabled     | 17                                  | 0.58**                | 0.22**                                    |                                   | 8                                   | 0.76**                | 0.42**                                    |                                   |
| Unselected            | 43                                  | 0.18**                | 0.02                                      |                                   | 30                                  | 0.33**                | 0.17*                                     |                                   |

|                      |    |        |        | .01** |    |        |        | .11  |
|----------------------|----|--------|--------|-------|----|--------|--------|------|
| Intervention program |    |        |        |       |    |        |        |      |
| CogMed               | 11 | 0.91** | 0.24*  |       | 5  | 0.84*  | 0.64** |      |
| N-back               | 18 | 0.17** | 0      |       | 19 | 0.12   | 0.03   |      |
| Complex span         | 16 | 0.19*  | 0      |       | -  | -      | -      |      |
| Other                | 15 | 0.16   | 0.07** |       | 12 | 0.48** | 0.14** |      |
|                      |    |        |        | .01** |    |        |        | .01* |

## Analysis of Moderators of Immediate Effects on Visuo-spatial Working Memory

|                       |                                     | Treated controls      |                                           |                                   |                                     | Untreated controls    |                                          |                                   |  |
|-----------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|-------------------------------------|-----------------------|------------------------------------------|-----------------------------------|--|
| Moderator<br>variable | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog-<br>eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(d) | Hetero-<br>eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) |  |
| Age                   |                                     |                       |                                           |                                   |                                     |                       |                                          |                                   |  |
| Children              | 17                                  | 0.32**                | 0.07*                                     |                                   | 9                                   | 0.62**                | 0.06*                                    |                                   |  |
| Adults                | 21                                  | 0.24**                | 0.05                                      |                                   | 12                                  | 0.44**                | 0.12**                                   |                                   |  |
| Older Adults          | -                                   | -                     | -                                         |                                   | 4                                   | 0.47                  | 0.47                                     |                                   |  |
|                       |                                     |                       |                                           | .73                               |                                     |                       |                                          | .59                               |  |
| Training dose         |                                     |                       |                                           |                                   |                                     |                       |                                          |                                   |  |
| Large                 | 21                                  | 0.35**                | 0.07                                      |                                   | 12                                  | 0.49**                | 0.07*                                    |                                   |  |
| Small                 | 19                                  | 0.19*                 | 0.02                                      |                                   | 13                                  | 0.52**                | 0.22* *                                  |                                   |  |
|                       |                                     |                       |                                           | .15                               |                                     |                       |                                          | .89                               |  |
| Design                |                                     |                       |                                           |                                   |                                     |                       |                                          |                                   |  |
| Non-randomized        | 13                                  | 0.42**                | 0.01                                      |                                   | 15                                  | 0.51**                | 0.10**                                   |                                   |  |
| Randomized            | 27                                  | 0.20**                | 0.06*                                     |                                   | 10                                  | 0.53**                | 0.16**                                   |                                   |  |
|                       |                                     |                       |                                           | .051                              |                                     |                       |                                          | .89                               |  |
| Learner status        |                                     |                       |                                           |                                   |                                     |                       |                                          |                                   |  |
| Learning disabled     | 16                                  | 0.30**                | 0.05                                      |                                   | 9                                   | 0.54**                | 0.09*                                    |                                   |  |
| Unselected            | 24                                  | 0.26**                | 0.05                                      |                                   | 16                                  | 0.49**                | 0.15*                                    |                                   |  |

|                      |    |        |       | .77 |   |        |        | .77 |
|----------------------|----|--------|-------|-----|---|--------|--------|-----|
| Intervention program |    |        |       |     |   |        |        |     |
| CogMed               | 10 | 0.34*  | 0.10* |     | 7 | 0.60** | 0.12** |     |
| N-back               | 10 | 0.24*  | 0.03  |     | 9 | 0.52** | 0.16** |     |
| Complex span         | 11 | 0.18   | 0.02  |     | - | -      | -      |     |
| Other                | 9  | 0.37** | 0.07  |     | 6 | 0.37** | 0      |     |
|                      |    |        |       | .60 |   |        |        | .67 |

## Analysis of Moderators of Immediate Effects on Criterion Near Transfer Measures

|                       |                                     | Treate                | ed controls                               |                                   | Untreated controls                  |                       |                                           |                                   |
|-----------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|-------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|
| Moderator<br>variable | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(g) | Heterog-<br>eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) | Number<br>of Effect<br>sizes<br>(k) | Effect<br>size<br>(d) | Heterog-<br>eneity<br>(Tau <sup>2</sup> ) | Test of<br>difference<br>(Q-test) |
| Age                   |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Children              | 4                                   | 0.41**                | 0                                         |                                   | -                                   | -                     | -                                         |                                   |
| Adults                | 14                                  | 0.90**                | 0.12**                                    |                                   | 8                                   | 2.27**                | 2.02**                                    |                                   |
| Older Adults          | 4                                   | 0.76**                | 0                                         |                                   | 7                                   | 1.37**                | 0.34**                                    |                                   |
|                       |                                     |                       |                                           | .04*                              |                                     |                       |                                           | .04*                              |
| Training dose         |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Large                 | 17                                  | 0.85**                | 0.11*                                     |                                   | 8                                   | 1.86**                | 1.22**                                    |                                   |
| Small                 | 5                                   | 0.59**                | 0                                         |                                   | 8                                   | 1.91**                | 1.03**                                    |                                   |
|                       |                                     |                       |                                           | .16                               |                                     |                       |                                           | .93                               |
| Design                |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Non-randomized        | 5                                   | 0.94**                | 0.47**                                    |                                   | -                                   | -                     | -                                         |                                   |
| Randomized            | 17                                  | 0.78**                | 0.02                                      |                                   | 13                                  | 2.03**                | 1.12**                                    |                                   |
|                       |                                     |                       |                                           | .66                               |                                     |                       |                                           | -                                 |
| Learner status        |                                     |                       |                                           |                                   |                                     |                       |                                           |                                   |
| Learning disabled     | 4                                   | 0.37*                 | 0                                         |                                   | -                                   | -                     | -                                         |                                   |
| Unselected            | 18                                  | 0.88**                | 0.07**                                    |                                   | 14                                  | 1.91**                | 1.06**                                    |                                   |

-

| Intervention | program |
|--------------|---------|
|--------------|---------|

| N-back     4     1.02*     0.74     8     2.52**     1.94**       Complex span     6     0.84**     0     -     -     -     - | CogMed       | 5 | 0.62** | 0.08 |     | - | -      | -      |
|-------------------------------------------------------------------------------------------------------------------------------|--------------|---|--------|------|-----|---|--------|--------|
| Complex span 6 0.84** 0                                                                                                       | N-back       | 4 | 1.02*  | 0.74 |     | 8 | 2.52** | 1.94** |
| comprenspan of the t                                                                                                          | Complex span | 6 | 0.84** | 0    |     | - | -      | -      |
| Other 7 0.83** 0.03                                                                                                           | Other        | 7 | 0.83** | 0.03 |     | - | -      | -      |
| .72 -                                                                                                                         |              |   |        |      | .72 |   |        | -      |

### Grey versus published studies

| Construct      | Results                                                                          |
|----------------|----------------------------------------------------------------------------------|
| Nonverbal      | Results for published studies showed a mean $g = 0.13$ (95% CI [0.07, 0.19]      |
| ability        | k = 101) and for grey studies $g = 0.04$ (95% CI [-0.11, 0.18], $k = 19$ ). This |
|                | difference was not significant ( $p = 0.24$ ).                                   |
| Reading        | Results for published studies showed a mean $g = .15$ (95% CI [0.04, 0.27]       |
| comprehension  | k = 18) and for grey studies $g = 0.08$ (95% CI [-0.11, 0.28], $k = 8$ ). This   |
|                | difference was not significant ( $p = 0.53$ ).                                   |
| Verbal working | Results for published studies showed a mean $g = 0.40$ (95% CI [0.28, 0.52]      |
| memory         | k = 76) and for grey studies $g = 0.19$ (95% CI [0.05, 0.32], $k = 22$ ). This   |
|                | difference was significant ( $p = 0.02$ ).                                       |
| Visuo-spatial  | Results for published studies showed a mean $g = 0.48$ (95% CI [0.37, 0.60]      |
| working        | k = 47) and for grey studies $g = 0.06$ (95% CI [-0.09, 0.20], $k = 18$ ). This  |
| memory         | difference was significant ( $p < 0.01$ ).                                       |

#### P-curve inclusion rules

| Number | Rule                                                                                                        |
|--------|-------------------------------------------------------------------------------------------------------------|
| 1.     | All studies of working memory training published as journal articles showing a significant result           |
|        | after testing a hypothesis or a research question of effects on far transfer measures. Criteria             |
|        | regarding design and participants are the same as applied in the meta-analysis, with exception that         |
|        | non-computerized WM training also included here to increase sample size.                                    |
| 2.     | In cases where paper report significant effects on more than one far transfer effect on the same            |
|        | comparison groups, the first and the last analysis was selected.                                            |
| 3.     | A p-curve will be reported for studies that report only one p-value plus the <i>first</i> p-value that is   |
|        | reported in studies that report more than one p-value. Another p-curve will be calculated for studies       |
|        | that report only one p-value plus the <i>last</i> p-value that is reported in studies that report more than |
|        | one p-value.                                                                                                |

*P-curve disclosure table for the sample published articles* 

| Original paper     | 1. Quoted text indicating prediction<br>of interest to researchers                                                                                                                                                                                                                        | 2. Study<br>design                                                                              | 3. Key statistical result                                     | 4. Quoted text from paper<br>with conclusion based on<br>statistical result                                                                                                                                                                         | 5. Results on<br>far transfer<br>measures<br>(quoted<br>statistical<br>result)                                                                  | 6. Robustness<br>of results                                                                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Alloway 2012       | We postulated that any observed<br>gains in vocabulary and academic<br>attainment could be explained by the<br>interactive training program rather<br>than practice effects or test taking<br>skills                                                                                      | Randomised<br>Untreated<br>controls                                                             | Differences in means,<br>nonparametric<br>statistics          | The superior performance of the<br>training group compared with<br>the control group was<br>confirmed in most of the<br>cognitive measures: vocabulary,<br>math and wm                                                                              | U = 8.5, p = 0.02<br>(vocabulary), in meta z = 2.12, p = 0.032                                                                                  | Math U = 12.5,<br>p = 0.04.<br>In meta,z score<br>not sig.                                 |
| Alloway et al 2013 | Specifically, we were interested in<br>whether working memory training<br>would result in transfer effects within<br>an educational setting, measured by<br>standardized tests of verbal ability<br>and academic achievement                                                              | Randomised<br>Untreated<br>controls<br>and<br>Randomised<br>treated<br>controls                 | ANOVA two way interaction                                     | For vocabulary there was not a<br>significant difference in<br>performance as a function of<br>group or between times, but the<br>interaction was significant, and<br>the wm high group performed<br>better than the wm low group<br>post training. | Excluded, since<br>differences a<br>baseline causes<br>this result<br>F(2,91) = 8.02,<br>p = .001<br>vocabulary for<br>treated control<br>group | Follow up, F(2,<br>49) = 10.98, p<br>= 0.001<br>vocabulary for<br>treated control<br>group |
| Ang et al 2015     | A question of continuing interest is<br>whether academic performance can<br>be improved by increasing WM or<br>updating capacity. In this study, we<br>designed and evaluated the efficacy<br>of a computerized updating training<br>programme.                                           | Non-<br>randomised<br>Untreated<br>controls<br>and<br>Non-<br>randomised<br>treated<br>controls | 4 (Training<br>condition) by 3<br>(assessment time)<br>MANOVA | Using the same MANOVA<br>model, we examined the<br>effectsof training on the<br>mathematics tasks. Children<br>improved acrosstesting sessions,<br>but the magnitude of<br>improvement was notaffected by<br>training.                              | Excluded, no<br>significant far<br>transfer effects                                                                                             |                                                                                            |
| Anguera et al 2012 | Type 2 tests included Raven's<br>matrices (Raven et al., 1990), which<br>is a standardized test of fluid<br>intelligence, and the BOMAT and<br>verbal analogies tests of intelligence<br>(Hossiep et al., 1995). We have<br>previously shown that working<br>memory training transfers to | Randomised<br>treated<br>controls                                                               | ANOVA                                                         | A MANOVA with all the<br>cognitive measures as<br>dependent variables was<br>significant (F(5,37) = 4.23, p <<br>.05) showing more transfer<br>overall for the NB group.<br>Follow-up univariate ANOVAs<br>revealed significant intervention        | F(5,37) = 4.23,<br>p < .05                                                                                                                      |                                                                                            |

|                                    | performance on this task (Jaeggi et<br>al., 2008), and we included it here for<br>the sake of replication.'<br>Quote from Seidler et al 2010<br>technical report                                                                                                                                                                                                                                                                                 |                                             |                                                                                                                                                                                                                                            | effects for the 3-back ( $F(1,41) = 4.68$ , $p < .05$ ), 4-back ( $F(1,41) = 4.70$ , $p < .05$ ), and operation span tasks ( $F(1,42) = 3.90$ , $p < .05$ ).                                                                                                                                                                                                                                    |                                                                               |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Bergman-Nutley &<br>Klingberg 2014 | The inconsistent results of WM<br>training on mathematics could be due<br>to 19 a true lack of effect or that only<br>certain aspects of mathematics are<br>affected; 2) that effect occurs not<br>directly after training but later as a<br>combination of improved WM<br>capacity in combination with<br>instruction or 3) that the effect size is<br>small, and that the existing studies<br>include too few subjects to detect an<br>effect. | Non-<br>randomised<br>Untreated<br>controls | General linear model<br>and General linear<br>model with repeated<br>measures                                                                                                                                                              | The training group improved<br>significantly more than the<br>control group on all three<br>transfer tasks (odd one out,<br>following instructions and math)                                                                                                                                                                                                                                    | Math F(1, 388)<br>= 13.5, p =<br>0.0004                                       |
| Borella et al 2014                 | Concerning the transfer effects, we<br>expected to find the same transfer<br>effects, and maintenance effects, as<br>were seen after administering<br>the verbal WM training by Borella et<br>al. (2010) to young-old.                                                                                                                                                                                                                           | Randomised<br>Untreated<br>controls         | Two way ANOVA<br>with interaction                                                                                                                                                                                                          | Contrary to the results reported<br>by Borella et al.'s (2010) verbal<br>WM training study, no far<br>transfer effects were apparent in<br>our participants of either age<br>group, with the exception of a<br>processing speed measure<br>showing that trained young–old<br>completed tasks more quickly at<br>the posttest stage, and this<br>benefit was not maintained at<br>the follow-up. | Excluded, no<br>significant<br>improvement                                    |
| Brehmer et al 2012                 | Based on previous findings, we<br>expected (a) younger and older adults<br>to benefit from WM training, (b)<br>near-transfer effects to non-trained<br>WM tasks but also some far-transfer<br>to tasks that share similar underlying<br>pro- cesses (i.e., attention,<br>reasoning), and (c) maintenance<br>effects for younger as well as older<br>adults across the 3-month time<br>interval for the training gains as well                    | Randomised<br>treated<br>controls           | Mixed repeated<br>measure ANOVAs<br>were conducted with<br>age (young and old)<br>and intervention<br>(adaptive training and<br>low-level practice) as<br>between-subject<br>factors and time<br>(baseline, post-<br>training, and follow- | Regarding far-transfer, similar<br>performance improvements for<br>the adaptive training as well as<br>the active control groups were<br>observed for tests of<br>interference control (Stroop)<br>and reasoning (RAVEN). These<br>findings demonstrate general<br>test-retest effects. More<br>interestingly, both younger and<br>older adults receiving adaptive                              | F (2, 192)=<br>3.22, $p = 0.045$<br>cognitive<br>functioning<br>questionnaire |

|                   |                                      |            | × •.1 • 1 •           |                                     |                   |
|-------------------|--------------------------------------|------------|-----------------------|-------------------------------------|-------------------|
|                   | as for potential transfer effects.   |            | factor for the eight  | training snowed larger              |                   |
|                   |                                      |            | cognitive tasks and   | measuring sustained attention       |                   |
|                   |                                      |            | the self-rating scale | (PASAT) and reported less           |                   |
|                   |                                      |            | respectively          | (TASAT) una reportea tess           |                   |
|                   |                                      |            | respectively.         | the 5 weeks of intervention then    |                   |
|                   |                                      |            |                       | the controls                        |                   |
| Bürki et al 2014  | Note: Main aim with paper is to      | Non-       | A repeated measures   | The fact that younger and older     | Excluded, no      |
|                   | propose a model for analyzing        | randomised | analysis of variance  | adults exhibited similar transfer   | significant far   |
|                   | individual learning curves in        | Untreated  | (ANOVA) was           | effects is in line with some        | transfer effects  |
|                   | intervention research, not test      | controls   | conducted including   | training studies () but             |                   |
|                   | hypotheses regarding far transfer.   | and        | age-group (younger,   | contradicts others () which         |                   |
|                   |                                      | Non-       | older) as a between-  | reported transfer effects in        |                   |
|                   | To illustrate the proposed approach, | randomised | subjects              | younger adults but not in older     |                   |
|                   | a latent growth curve model analysis | treated    | factor and training   | adults .No additional transfer      |                   |
|                   | using data from a 10 day working     | controls   | session (session 1-   | effects, that is, transfer to other |                   |
|                   | memory training in younger and       |            | 10) as a within-      | tasks, were observed. This result   |                   |
|                   | older adults is reported             |            | subjects factor.      | is in line with recent WM           |                   |
|                   |                                      |            |                       | training studies () in which far-   |                   |
|                   |                                      |            |                       | transfer effects were not           |                   |
|                   |                                      |            |                       | reported, either in younger or in   |                   |
|                   |                                      |            |                       | older adults.                       |                   |
| Chacko et al 2014 | Moreover, given the relationships    | Randomised | Mixed effects         | Both treatment groups improved      | Excluded. No      |
|                   | between working memory,              | treated    | regression was used   | with treatment on measures of       | significant       |
|                   | inattention, and academic            | controls   | for each outcome      | academic achievement, with no       | differences were  |
|                   | achievement, it was hypothesized     |            | over time using       | incremental benefit of CWMT         | found between     |
|                   | that, compared to CWMT Placebo,      |            | SuperMix software     | Active on these outcomes. These     | treatment         |
|                   | CWMT Active would result in          |            |                       | findings are similar to those of    | conditions on     |
|                   | significant improvements in ADHD     |            |                       | Gray et al. (2012), who found       | Word Reading,     |
|                   | inattention symptoms, objective      |            |                       | no incremental benefit of           | Sentence          |
|                   | measures of attention, and academic  |            |                       | CWMT Active compared to an          | Completion,       |
|                   | achievement                          |            |                       | intensive math intervention on      | Math              |
|                   |                                      |            |                       | academic achievement                | Computation       |
|                   |                                      |            |                       | outcomes. This                      | or Spelling       |
|                   |                                      |            |                       | suggests that CWMT per se may       | achievement       |
|                   |                                      |            |                       | not have specific effects on        | scores            |
|                   |                                      |            |                       | measures of academic                | at posttreatment. |
|                   |                                      |            |                       | achievement, at least in the        |                   |
|                   |                                      | <b>D</b> 1 | <b>T</b> ( )          | short term.                         | (20) 1.00         |
| Chein & Morrison  | we anticipated that, because CWM     | Randomised | I-test                | These WM training benefits          | t(38) = 1.80, p = |

| 2010                     | tasks place a strong demand on<br>mechanisms linked to domain-general<br>attention control (Engle & Kane,<br>2004), a training paradigm built<br>around this task would result in both<br>increases of WM span and more far-<br>reaching benefits.                                                                   | untreated<br>controls                                                                           |                                                                                                                                                                                                                                                                                                       | generalized to performance on<br>the Stroop task and, in a novel<br>finding, promoted significant<br>increases in reading<br>comprehension. The results are<br>discussed in relation to the<br>hypothesis that WM training<br>affects domain-general attention<br>control mechanisms and can<br>thereby elicit far-reaching<br>cognitive benefits.                                               | 0.04 for reading<br>comprehension<br>(one-tailed)                                                             |                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Chooi &<br>Thompson 2012 | The present study predicted that there<br>would be no improvements in verbal<br>and perceptual tests, but there could<br>be improvements in spatial ability<br>and matrix reasoning tests.                                                                                                                           | Non-<br>randomised<br>Untreated<br>controls<br>and<br>Non-<br>randomised<br>treated<br>controls | Paired t-test analyses                                                                                                                                                                                                                                                                                | Results from the current study<br>did not suggest improvement in<br>general intelligence after<br>repeated training on a<br>challenging working memory<br>task. Our prediction that spatial<br>and reasoning abilities could be<br>improved after working memory<br>training was not supported.                                                                                                  | Excluded. No<br>significant<br>improvement                                                                    |                                                 |
| Colom et al 2013         | The main prediction is that if<br>adaptive working memory training<br>promotes skills relevant for the<br>reliable temporary storage of<br>relevant information, then fluid<br>intelligence and working memory<br>scores will be higher for the trained<br>than for the control group at the<br>posttest evaluation. | Non-<br>randomised<br>Untreated<br>controls                                                     | ANCOVA where the<br>group was the<br>independent variable,<br>the construct/measure<br>was the dependent<br>variable, and the<br>covariate was the<br>score at the pretest<br>for the corresponding<br>variable. A <i>p</i> level of<br>.05 (one-tailed) was<br>considered for testing<br>the results | The main finding is that the<br>large improvements in the<br>challenging adaptive cognitive<br>training program based on the<br>N-back task (Fig. 2) do not<br>evoke greater changes than<br>those observed for a passive<br>control group in fluid-abstract<br>intelligence and crystallized<br>intelligence, or in working<br>memory capacity and attention<br>control at the construct level. | Excluded. No<br>significant<br>improvement<br>RAPM] $F(1,53)$<br>= 2.340; $p$ = .06<br>(One-tailed<br>ANCOVA) |                                                 |
| Dahlin 2011              | We hypothesized that working<br>memory ability would increase<br>through the training with a positive<br>effect on children's reading<br>comprehension skills (cf. Cain et al.,<br>2004).                                                                                                                            | Non-<br>randomised<br>Untreated<br>controls                                                     | Multivariate analysis<br>of variance with<br>repeated measures                                                                                                                                                                                                                                        | The results show that working<br>memory can be seen as a<br>crucial factor in the reading<br>development of literacy among<br>children with special needs, and<br>that interventions to improve                                                                                                                                                                                                  | Only the results<br>of reading<br>comprehension<br>improved at T2,<br>(estimated<br>treatment effect          | T3 reading<br>comprehension:<br>T 2.72, p < .05 |

| Dahlin 2013        | It was hypothesised that WM training<br>at school for a period of five weeks<br>would improve skills in WM ability,<br>and subsequently improve results in<br>mathematics.                                                                                                                                       | Non-<br>randomised<br>Untreated<br>controls                                                  | Repeated measures model                                                                                                                                                                                                                                         | working memory may help<br>children becoming more<br>proficient in reading<br>comprehension.<br>The results indicate that boys<br>aged 9 to 12 with special needs<br>may benefit, over time, from<br>WM training, as shown in the<br>enhanced results in mathematics                                                                                                                                                                                                                                                                                             | = 2.51, SE =<br>0.8, t = 3.27, p =<br>.01, d = 0.88)<br>Treatment effect<br>= 1.638, SE =<br>0.690, F(1, 26)<br>= 5.63, p < .05                                                              |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dahlin et al 2008  | First, at both the group and the<br>individual level, we examined<br>whether young and older adults<br>would improve their updating<br>performance after updating training.<br>Of main interest was whether older<br>adults would show evidence of<br>executive plasticity at all.                               | Randomised<br>Untreated<br>controls                                                          | 2 (Group: trained,<br>control) x 2 (Session:<br>pretest, Posttest 1)<br>analyses of variance<br>(ANOVAs) with<br>repeated measures on<br>the last factor were<br>performed                                                                                      | Transfer effects were in general<br>limited and restricted to the<br>young participants, who showed<br>transfer to an untrained task<br>that required<br>updating (3-back).                                                                                                                                                                                                                                                                                                                                                                                      | Excluded. No<br>significant<br>improvement<br>For the two<br>fluency tasks<br>and<br>reasoning, all<br>interactions<br>involving group<br>and session<br>were<br>nonsignificant<br>(ps>.05). |
| Dunning et al 2013 | Whilst improvements in WM tasks<br>that closely resemble the trained<br>activities are reported consistently<br>(), the evidence for transfer to tasks<br>that share little overlap with the<br>structure and content of trained<br>activities while drawing on<br>hypothesized common processes is<br>mixed (). | Non-<br>randomised<br>treated<br>controls and<br>non-<br>randomised<br>untreated<br>controls | To test group effects<br>on training gains,<br>general linear models<br>were performed<br>separately for the<br>different T2 measures<br>with scores at T2<br>entered as the<br>dependent variable<br>and scores at T1 and<br>group as independent<br>variables | Adaptive WM training did not<br>significantly improve children's<br>performance on standardized<br>reading and mathematics tests<br>either immediately after training<br>or one year later. Indeed, the<br>only significant change in any<br>group was an increase in basic<br>reading scores for the no<br>intervention group. It also had<br>no effect on nonverbal<br>reasoning, contrary to studies<br>that have used N-back training<br>paradigms (), and others in<br>which CWMT () has been<br>used despite comparable<br>statistical power. We therefore | Excluded. No<br>significant<br>improvement                                                                                                                                                   |
| Egeland et al 2013 | Thus, in this analysis of far transfer<br>effects we ask whether the increased<br>WM performance transfers 1) to                                                                                                                                                                                                                                                                                                                                                                                                                           | Randomised<br>untreated<br>controls         | Treatment effects are<br>analyzed applying<br>Multivariate Analysis                                                                                                                        | have no evidence to support<br>claims that WM training<br>enhances nonverbal IQ.<br>Reading and mathematics were<br>improved. Text reading became<br>faster and more correct.                                                                                                           | F = 7.19, p <<br>.001, df (1,59)<br>for word        | F = 2.34, p <<br>.016, df (1,59)<br>for word |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|
|                    | other NP functional domains, i.e.<br>selective attention, sustained<br>attention or learning capacity; (2) to<br>academic skills such as mathematics<br>and reading ability, and (3) whether<br>parents and teachers rate the training<br>children as less symptomatic with<br>regard to a) working memory, b)<br>attention in general, and c) ADHD<br>symptoms.                                                                                                                                                                           |                                             | of Covariance<br>(MANCOVA) with<br>treatment condition<br>as between group<br>factor and PT1 and<br>PT2 scores as within<br>group factor. Pretest<br>scores were entered<br>as covariates. | Decoding of single words<br>became more correct, although<br>not faster.                                                                                                                                                                                                                | decoding %<br>correct                               | decoding %<br>correct                        |
| Estrada et al 2015 | This brings to life the well-known<br>practice effect and it must be taken<br>into account in research aimed at the<br>proper assessment of changes after<br>the completion of cognitive training<br>programs Between the pre-test and<br>the post-test sessions, some<br>participants completed eighteen<br>practice sessions based on memory<br>span tasks, other participants<br>completed eighteen practice sessions<br>based on processing speed tasks, and<br>a third group of participants did<br>nothing between testing sessions. | Randomized<br>untreated<br>controls         | Nested SEM models<br>fit separately for each<br>group                                                                                                                                      | The good fit shown by thismodel<br>implies that the three groups<br>were equal before and after<br>practice, meaning that<br>differential practice was not<br>associated with neither any<br>differential effect in the latent<br>variable weight on the test, nor<br>the tests' means. | Excluded, no<br>significant far<br>transfer effects |                                              |
| Everts et al 2015  | This study aimed to determine<br>whether two types of memory training<br>approaches resulted in an<br>improvement of trained functions<br>and/or a generalization of the<br>training effect to non-trained<br>cognitive domains.                                                                                                                                                                                                                                                                                                           | Non-<br>randomised<br>untreated<br>controls | Nonparametric tests<br>of short-term and<br>long-term gains; tests<br>were computed one-<br>sided and a<br>significance level of<br>p<0.05 was assumed.                                    | Children following a program<br>of working memory training<br>presented a significant<br>improvement in trained<br>functions (verbal working<br>memory, visual short-term<br>memory). Non-trained functions<br>did not improve after the<br>training.                                   | Excluded, no<br>significant far<br>transfer effects |                                              |
| Feiyue et al 2009  | One of the issues which academic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Non-                                        | t-test of gain scores                                                                                                                                                                      | Through using Raven's                                                                                                                                                                                                                                                                   | No significance                                     |                                              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                                                     |                                              |

|                     | people concentrates on is whether Gf<br>of adults can be improved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | randomised<br>untreated<br>controls |                                                                                                                                                                                                                                                                       | Standard Progressive Matrices<br>as the evaluation method to get<br>and analyze the experimental<br>results, it was proved that<br>training pattern can improve<br>fluid intelligence of adults. This<br>will promote a wide range of<br>applications in the field of adult<br>intellectual education. | testing in paper;<br>Correspondence<br>t=4.785, p<0.0<br>00). |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Gray et al 2012     | It was also anticipated that WM<br>training would be associated with<br>concomitant improvements in<br>behavioral symptoms of ADHD in the<br>classroom, with greater effects on<br>inattention compared with<br>hyperactivity/impulsivity. It was<br>expected that WM training would be<br>associated with subsequent<br>improvements in those aspects of<br>numeracy and literacy that are<br>dependent upon WM (e.g., reading<br>comprehension, math reasoning, and<br>spelling) and that math training<br>would be associated with<br>improvements on math tasks. | Randomised<br>treated<br>controls   | Group differences<br>were tested by<br>comparing outcome<br>(posttest) scores<br>between the two<br>groups using a<br>between-group<br>analysis of<br>covariance (One-way<br>analyses of<br>covariance<br>[ANCOVA]), with<br>age and baseline<br>score as covariates. | In contrast with previous studies<br>of WM training (), we did not<br>find robust evidence of<br>improvements in behavioral<br>symptoms of inattention or<br>academic attainment.                                                                                                                      | Excluded. No<br>significant<br>improvement                    |
| Gropper et al 2014  | also anticipated that WM<br>training would be accompanied by<br>improvements in academic areas that<br>are dependent upon WM (e.g.,<br>reading comprehension and math<br>reasoning), and improved self<br>regulation in everyday life (albeit<br>perhaps as later-onset outcomes<br>discernible at follow-up only).                                                                                                                                                                                                                                                  | Randomised<br>untreated<br>controls | ITT analyses used<br>ANCOVA with<br>baseline as a<br>covariate and Group<br>(experimental,<br>control) as a<br>between-subjects<br>factor. The dependent<br>variables were post-<br>test scores on target<br>indices.                                                 | Computerized WM training is a<br>feasible and possibly viable<br>approach for enhancing WM in<br>college students with ADHD or<br>LD.                                                                                                                                                                  | F (1,59) = 4.39<br>cognitive<br>failures<br>questionnaire     |
| Harrison et al 2013 | We also assessed transfer effects to<br>tasks dissimilar to our training tasks<br>but that were theorized to reflect<br>WMC (which would indicate                                                                                                                                                                                                                                                                                                                                                                                                                    | Randomised<br>treated<br>controls   | ANCOVA with<br>group as the between<br>subjects<br>variable and subjects'                                                                                                                                                                                             | The results suggest that WMC<br>and Gf are different<br>hypothetical constructs and that<br>an intervention that may                                                                                                                                                                                   | Excluded, no<br>significant<br>improvement                    |

|                    | moderate transfer). Far transfer<br>would be demonstrated if training on<br>complex span tasks led to<br>improvement on a battery of Gf<br>tasks.                                                                                                                                                                                                                                  |                                             | pretest performance<br>as a covariate.                            | improve WMC may have no<br>effect on Gf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Heinzel et al 2014 | Since processing speed and executive<br>functions were expected to improve<br>through our training approach, we<br>expected to find a transfer effect to<br>fluid intelligence. we expected<br>younger adults to outperform older<br>adults in training gains and transfer<br>effects in the current study.                                                                        | Randomised<br>untreated<br>controls         | 2 (training<br>vs. control group) × 2<br>(t1 vs. t2) ANOVAs       | Results suggest that working<br>memory training may be a<br>beneficial intervention for<br>maintaining and improving<br>cognitive functioning in old age.<br>A significant group by time<br>interaction was only found in<br>younger adults, indicating<br>improved performance in the<br>Verbal Fluency test in the<br>younger training group<br>compared to the younger<br>control group. Contrary to our<br>hypothesis, no transfer to our<br>speeded tasks of fluid<br>intelligence (LPS Figural<br>Relations Test and Raven's<br>SPM) was found in the current<br>study. | <i>F</i> (1, 28) = 5.55,<br><i>MSE</i> = 68.27, <i>p</i><br>= .026, verbal<br>fluency test                                                                                                          |
| Holmes et al 2009  | The purpose of the present study was<br>to answer these three questions by<br>evaluating the extent to which the<br>training program boosts performance<br>of children with low WM on a<br>standardized battery of untrained and<br>well-validated WM tasks () and on<br>measures of academic ability, both<br>immediately following completion of<br>training and 6 months later. | Non-<br>randomised<br>treated<br>controls   | ANOVA group by<br>time interactions                               | This study provides the first<br>demonstration that these<br>commonplace deficits and<br>associated learning difficulties<br>can be ameliorated, and<br>possibly even overcome, by<br>intensive adaptive training over<br>a relatively short period: just 6<br>weeks                                                                                                                                                                                                                                                                                                          | Excluded. No<br>significant<br>effects on far<br>transfer<br>measures.<br>Mathematics 6<br>months after<br>training $F(1, 17)$<br>= 9.50, $MSE$ =<br>48.66, $p < .01$ .,<br>but no control<br>group |
| Jaeggi et al 2008  | The aim of the training intervention<br>was the investigation of the effects of<br>training on the working memory task<br>and its impact on Gf.                                                                                                                                                                                                                                    | Non-<br>randomised<br>untreated<br>controls | Group X test-session<br>interaction, test<br>version as covariate | The improvement in the groups<br>that received the apparent<br>benefit of training was<br>substantially superior. The                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F(1,67) = 5.27;<br>p = 0.05;                                                                                                                                                                        |

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                   | finding that cognitive training<br>can improve Gf is a landmark<br>result because this form of<br>intelligence has been claimed to<br>be largely immutable. Instead of<br>regarding Gf as an immutable<br>trait, our data provide evidence<br>that, with appropriate training,<br>there is potential to improve Gf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Jaeggi et al 2011 | Nevertheless, it seems that Gf is<br>malleable to a certain extent as<br>indicated by the fact that there are<br>accumulating data showing an<br>increase in Gf-related processes after<br>cognitive training (6). Referring<br>back to the analogy in the physical<br>domain, we can characterize WM as<br>taking the place of the cardiovascular<br>system; WM seems to underlie<br>performance in a multitude of tasks,<br>and training WM results in benefits to<br>those tasks. | Non-<br>randomised<br>treated<br>controls | group × session (post<br>vs. pre) | However, despite the<br>experimental group's clear<br>training effect, we observed no<br>significant group $\times$ test session<br>interaction on transfer to the<br>measures of Gf [group $\times$<br>session (post vs. pre): F(1, 59)<br>< 1; P = not significant (ns);<br>(follow-up vs. pre): F(1, 53) $<$<br>1; P = ns; with test version at<br>pretest (A or B) as a covariate]<br>(Table 1). Next, we compared<br>transfer to Gf between these two<br>training subgroups and the<br>control group. Our results<br>indicate that only those<br>participants above the median<br>in WM training improvement<br>showed transfer to measures of<br>Gf [group $\times$ session (post vs.<br>pre); F(2, 58) = 3.23; P < 0.05<br>(Fig. 4A), with test version at<br>pretest (A or B) as a covariate].<br>Planned contrasts revealed<br>significant differences between<br>the group with the large<br>training gain and the other<br>groups (P < 0.05; see Fig. 4A<br>for effect sizes) | F(2, 58) = 3.23;<br>p < 0.05 |
| Jaeggi et al 2014 | Since we had reason to believe that                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Non-                                      | Univariate                        | This study incorporated several                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Visuospatial                 |
|                   | the processes underlying N-back                                                                                                                                                                                                                                                                                                                                                                                                                                                      | randomised                                | ANCOVAs for both                  | methodological advances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reasoning: F(2,              |

|                             | performance are domain-free (), we<br>hypothesized that transfer to<br>reasoning should not depend on the<br>specific stimuli used in the training<br>task. Finally, and most importantly,<br>we used multiple fluid reasoning<br>tasks that we combined into<br>composite scores as transfer<br>measures in order to investigate<br>whether the effects that we had found<br>previously were test specific, or<br>whether the effects were more<br>general on a construct level. | treated<br>controls                         | composite gain scores<br>(with Intervention<br>Type as a between-<br>subjects factor and<br>test version as a<br>covariate)                                                                                                                       | over previous WM training<br>studies, and nonetheless<br>replicated transfer to measures<br>of fluid intelligence (). In<br>particular, this study showed<br>transfer to a composite score<br>representing five visuospatial<br>reasoning measures. Thus,<br>transfer effects do not seem to<br>be restricted to a specific task<br>such as the BOMAT; rather,<br>they seem to be more general, in<br>that they emerged with respect<br>to a visuospatial reasoning<br>factor that did not consist of<br>matrix reasoning tasks alone.<br>Second, this transfer was<br>observed despite the use of an<br>active control group that<br>trained on a knowledge-based<br>task (which showed no<br>improvements in visuospatial<br>reasoning). | 74) = $3.51$ ; p =<br>.035<br>Single n-back vs<br>controls [ $F(1, 50) = 7.20$ , $p =$<br>.005<br><b>one-tailed</b> , two<br>tailed p = $0.01$<br>Dual n-back vs<br>controls<br>Visuospatial<br>Reasoning [ $F(1, 49) = 3.07$ ; $p =$<br>.04 <b>one-tailed</b> |                                                      |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Jaeggi et al 2010           | Considering the rationale that<br>transfer is more likely to happen for<br>tasks that share considerable<br>variance, we can conclude that<br>training on both single and dual N-<br>back tasks should yield transfer to<br>matrix reasoning, but that transfer to<br>working memory capacity should be<br>less likely, especially in the case of<br>single N-back training.                                                                                                      | Non-<br>randomised<br>untreated<br>controls | Repeated-measures<br>ANOVAs with<br>session (pre vs post)<br>as a within-subject<br>factor, and<br>intervention (dual<br>nback, single N-<br>backcontrol) as a<br>between-subject<br>factor separately for<br>each matrix task<br>(BOMAT and APM) | But most interestingly, our<br>results show transfer effects in<br>both matrix reasoning tasks<br>after training. This replicates<br>our prior results (), but it also<br>extends our findings by showing<br>that a) the transfer effect was<br>present in more than just one Gf<br>task, and b), that it was also<br>obtained by training on a single<br>N-back task.                                                                                                                                                                                                                                                                                                                                                                     | 1. BOMAT:<br><i>F</i> (2,85) = 3.45;<br><i>p</i> = .05                                                                                                                                                                                                         | 2. APM:<br><i>F</i> (2,85) = 5.03;<br><i>p</i> = .01 |
| Jausovec &<br>Jausovec 2012 | The aim of the present study was to<br>investigate whether training of WM<br>functions (short-term storage and<br>processing components like control of<br>attention and executive functioning)                                                                                                                                                                                                                                                                                   | Non-<br>randomised<br>treated<br>controls   | General linear model<br>(GLM) for repeated<br>measures test/retest x<br>type of task (digit-<br>span, RAPM, spatial                                                                                                                               | The analysis of behavioral data<br>revealed a significant increase<br>of performance in respondents<br>of the working memory group.<br>This increase was most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F(1,27) = 6.66;<br>p < .05                                                                                                                                                                                                                                     |                                                      |

|                         | can improve performance on tests of<br>fluid intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | rotation, verbal<br>analogy) x group<br>(working memory,<br>active control).                                                                                                                                                                             | pronounced for the RAPM, but<br>also present on the other three<br>test-batteries used. In<br>conclusion, the results obtained,<br>beside the mentioned limitations<br>due to sample structure and<br>size, lend further support to the<br>hypothesis that working memory<br>training can improve fluid<br>intelligence which is also<br>reflected in changed brain<br>activity.                                                     |                                                                                                                                                                |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Karbach et al 2014      | To summarize, recent findings<br>indicated that cognitive training may<br>indeed support specific aspects of<br>school-related abilities and academic<br>performance in childhood. However,<br>previous studies were mostly<br>restricted to clinical subgroups<br>() and it is unknown whether their<br>findings generalize to healthy<br>children. Therefore, the present study<br>was designed to extend previous<br>findings by testing the effects of<br>adaptive training with a complex WM<br>span task on academic abilities in the<br>domains of math and reading in a<br>sample of healthy elementary-school<br>children. | Randomised<br>treated<br>controls | ANOVAs with the<br>factors Group<br>(training, control) and<br>Session (pretest,<br>posttest).                                                                                                                                                           | In the domain of academic<br>abilities, our data showed short-<br>term transfer to reading<br>ability but not to math ability.<br>The benefits for reading were<br>substantial (d' = 1.08) and<br>extend the findings on healthy<br>children from Loosli et al.<br>(2012) by showing that transfer<br>of adaptive WM training is also<br>significant when the adaptive<br>WM training is compared to<br>an active control condition. | Reading:<br>Session and<br>Group, F(1, 26)<br>= 5.546, p < .05,                                                                                                |
| Klingberg et al<br>2005 | A previous preliminary study<br>indicated that training of WM tasks<br>can enhance executive functioning<br>including WM, response inhibition,<br>and reasoning in children with<br>ADHD (Klingberg et al., 2002b). A<br>major shortcoming of that study was<br>the low number of subjects (n = 7 in<br>both the treatment and the<br>comparison groups). The current<br>study was therefore conducted at four                                                                                                                                                                                                                      | Randomised<br>treated<br>controls | Hypotheses were<br>tested by comparing<br>outcome score at later<br>times (T2 or T3) for<br>the two groups using<br>a general linear<br>model, controlling for<br>age, number of days<br>of program use, and<br>baseline score (T1).<br>This analysis is | The three other executive tasks<br>(digit-span, Stroop task, and<br>Raven's task) were secondary<br>outcome measures, and the<br>outcome of the statistical tests<br>for these tasks should therefore<br>be interpreted cautiously.<br>However, group differences for<br>Raven's task and the Stroop task<br>were also found in the<br>preliminary study of children                                                                 | Raven's task n<br>=44 R2<br>explained by<br>total model =<br>0.77 beta = 2.1,<br>p = 0.01 <b>One-</b><br><b>tailed.</b><br>Not significant<br>in meta-analysis |

|                         | clinical sites evaluating the effects of<br>practice of WM tasks in a<br>randomized, controlled, double-blind<br>design.                                                                                                                                                                                                                                                                    |                                                                              | equivalent to a<br>between-group<br>analysis of<br>covariance with<br>baseline as a<br>covariate.                                          | with ADHD () as well as in a<br>study of WM training in adults<br>(). Together, these results<br>indicate that the effect of WM<br>training also transfers to<br>nontrained executive tasks other<br>than WM tasks.                                                                                                                                                                                                                                                |                                                                                             |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Klingberg et al<br>2002 | In the present study we investigated<br>whether WM capacity could be<br>improved by training. Furthermore, if<br>impairment of WM is a core deficit in<br>ADHD, this would imply that<br>improvement of WM would decrease<br>the symptoms in ADHD.                                                                                                                                          | Randomised<br>untreated<br>controls                                          | Only p value, no sign<br>test reported.<br>Significant<br>improvement on<br>Raven's Progressive<br>Matrices was also<br>evident (Table 1). | The improvement on the<br>reasoning task is a clear<br>evidence of that the training<br>effect generalized to<br>nonpracticed tasks, since the<br>training did not include any<br>problem solving or reasoning<br>exercises at all. The<br>improvement in reasoning<br>ability is likely due to the fact<br>that complex reasoning depends<br>on WM, or more<br>precisely, that the trained WM<br>tasks and the reasoning task<br>rely on the same cortical areas. | <pre>p = .001 after t test reported in paper, no t- value reported. In meta: z = 3.72</pre> |
| Kundu et al 2013        | The aim of the present study was to<br>investigate the neural bases of WM<br>training effects, and of their transfer<br>to untrained tasks. We trained an<br>experimental group of subjects on an<br>adaptive, visuospatial N-back task<br>that has been shown to improve<br>performance on other WM tasks, as<br>well as on tests of fluid intelligence<br>() and of reading comprehension | Randomised<br>treated<br>controls                                            | ANOVA group x<br>session                                                                                                                   | Both groups improved, in terms<br>of accuracy and RT, on the DD<br>and TD variants of the location<br>VSTM task (Fig. 1d,e; Table 5).<br>Notably, there was also an<br>absence of WM training transfer<br>to tests of complex WM span<br>(Operation Span), fluid<br>intelligence (RAPM), and<br>control of response conflict<br>(Stroop task)                                                                                                                      | Excluded. No<br>significant far<br>transfer effects.                                        |
| Lange & Süß 2015        | Thus, transfer to short-term memory,<br>speed, and reasoning was only<br>expected after near transfer was<br>found.                                                                                                                                                                                                                                                                         | Randomised<br>treated<br>controls and<br>Randomised<br>untreated<br>controls | 2 (pretest, posttest) ×<br>3 (training group,<br>active control<br>group, passive<br>control group) mixed<br>ANOVAs                        | Although there were significant<br>training effects, no transfer<br>effects were found.                                                                                                                                                                                                                                                                                                                                                                            | Excluded, no<br>significant far<br>transfer effects                                         |
| Loosli et al 2012       | To conclude, evidence for improved                                                                                                                                                                                                                                                                                                                                                          | Non-                                                                         | Multivariate analysis                                                                                                                      | Concerning the transfer                                                                                                                                                                                                                                                                                                                                                                                                                                            | The MANOVA                                                                                  |

|                                          | reading after WM training is very<br>scarce, and there are no studies<br>available investigating whether WM<br>training improves reading processes<br>in typically developing children.<br>Therefore, the goal of the current<br>study is to determine whether WM<br>training in this group will lead to<br>transfer effects to important<br>school-related domains; in our case,<br>reading performance. In addition to<br>reading performance, we also<br>included a transfer task, which is<br>highly correlated with measures of<br>scholastic achievement, namely Gf as<br>measured with a matrix reasoning<br>task. | randomised<br>untreated<br>controls | of variance<br>(MANOVA) with<br>group experimental,<br>control) as the<br>between factor and<br>the differences<br>between post- and<br>pretest scores (from<br>this point on termed<br>gain scores) as<br>dependent variables.<br>Pillai's V as an <i>F</i> -<br>statistic | measures, we found an overall<br>larger performance increase<br>in the experimental group as<br>indicated by the MANOVA. The<br>MANOVA was driven by<br>the gain in reading<br>performance, that is, in reading<br>of text and words but not<br>pseudowords. Finally, in<br>contrast to many previous WM<br>training studies, which often<br>looked at transfer on other<br>laboratory tasks, we showed<br>that it is possible to improve an<br>ability that is very important in<br>everyday life and is related to<br>scholastic achievement in<br>school-aged children. | with all<br>outcome<br>measures ( <i>Gf</i> ,<br>reading of<br>pseudowords,<br>words, and<br>text) as<br>dependent<br>variables was<br>significant, $F(4,$<br>35) = 3.80, p < .05 |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mansur-Alves et al<br>2013               | The present research intends to verify<br>the effectiveness of a cognitive<br>training (CT) to foster intelligence<br>of school Brazilian children from<br>different intellectual levels.                                                                                                                                                                                                                                                                                                                                                                                                                                 | Randomised<br>treated<br>controls   | Wilk's lambda                                                                                                                                                                                                                                                               | no statically [sic] significant<br>difference was found between<br>both groups at posttest in none<br>of the measures used                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Excluded, no<br>significant far<br>transfer effects                                                                                                                               |
| Mansur-Alves &<br>Flores-Mendoza<br>2015 | Recent investigations applying<br>working memory training have<br>indicated that it is possible to train<br>intelligence. This work aimed to<br>verify the effectiveness of a cognitive<br>training program aimed at increasing<br>children's intelligence.                                                                                                                                                                                                                                                                                                                                                               | Randomised<br>untreated<br>controls | MANOVA with<br>group (experimental,<br>control) as the<br>between factor and<br>the standardized<br>change (using the<br>formula: post-test –<br>pre-test/SD pre-test)<br>as dependent<br>variables was used                                                                | The statistical analysis<br>indicated no signif cant<br>differences between EG and CG<br>after training for cognitive<br>measurements. These results<br>demonstrate partial support of<br>the selective literature that<br>indicates the difficulty of<br>achieving significant<br>intellectual changes through<br>specific intervention programs.                                                                                                                                                                                                                         | Excluded, no<br>significant far<br>transfer effects                                                                                                                               |
| Moreau et al 2015                        | Based on prior research in working<br>memory training using complex span<br>tasks, we predicted working memory<br>— but not spatial ability —<br>gains after training working memory.                                                                                                                                                                                                                                                                                                                                                                                                                                     | Randomised<br>treated<br>controls   | Separate 3<br>(Condition) × 2<br>(Session) mixed<br>factorial ANOVAs<br>with repeated<br>measures on the latter                                                                                                                                                             | Simples effects conducted with<br>dependent t-tests showed<br>improvements for all groups, yet<br>of different magnitudes. The DS<br>group showed the largest<br>improvements, followed by the                                                                                                                                                                                                                                                                                                                                                                             | Excluded, no<br>significant far<br>transfer effects<br>for WM training<br>versus AE                                                                                               |

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | variable were<br>conducted for each<br>task                                                                                                                                                                                                                                                                                                                                                                          | WM group and the AE group.                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nussbaumer et al<br>2013 | In sum, the main goal of the current<br>study is to test a) whether a WM<br>training yields near transfer, an<br>enhancement of performance in<br>untrained WM tasks, and b) to<br>systematically test whether such a<br>potential WM enhancement can<br>provoke far transfer in the domain of<br>intelligence and mathematical<br>problem solving and whether<br>such an enhancement is depending on<br>the amount of WM load during<br>training. | Treated<br>randomised | ANOVA (between<br>subject factor group:<br>low, medium and<br>high load and within-<br>subject factor time:<br>pre-, post-, and<br>follow up- testing)                                                                                                                                                                                                                                                               | No differential transfer<br>occurred in any of the<br>mathematical problem solving<br>tasks or in the intelligence tests.<br>Positive transfer occurred<br>between two tasks focusing on<br>inhibitory processes.                                                                                                                                                                                                                                          | Excluded, but<br>F(2,79) =<br>3.31<br>p < 0.05<br>(inhibition)                                                                                                                                                                                                                                                                    |
| Nutley et al 2011        | The main aims of this study were<br>therefore to investigate: (1) if Gf is<br>improved through computerized<br>training on non-verbal reasoning<br>(NVR) tasks; and (2) if training WM<br>or NVR would result in any transfer<br>to measures of the non-trained<br>construct, Gf and WM,<br>respectively.                                                                                                                                          | Treated<br>randomised | The expected value<br>of the latent variable<br>from T2 (given the<br>tests scores) was used<br>as a dependent<br>variable in an<br>ANCOVA with<br>group as fixed factor,<br>age in months and<br>the expected value of<br>the latent variable at<br>T1 as covariates. In<br>the event of a<br>significant or<br>marginally signif-<br>icant ( $p < .10$ ) group<br>effect, planned<br>comparisons were<br>performed | In summary, we found that Gf<br>can be improved through5<br>weeks of NVR training in 4-<br>year-olds. This type of training<br>might be useful for children with<br>poor intelligence. Early<br>detection and intervention of<br>children who would benefit from<br>NVR and or WM training could<br>possibly prevent falling behind<br>at school and allow learning<br>opportunities that may<br>otherwise be lost due to<br>impaired cognitive capacities | Excluded, no<br>improvement in<br>the WM group.<br>(F(3, 101) =<br>4.64,<br>p = .005<br>Planned<br>comparisons<br>revealed that the<br>NVR training<br>group ( $p = .02$ )<br>and the<br>Combined<br>training group<br>(wm + NVR)<br>( $p = .05$ ) had<br>improved<br>significantly<br>more than the<br>placebo<br>training group |

| Oelhafen et al 2013 | Our primary objective was to test<br>whether training of shared cognitive<br>processes in the training and transfer<br>tasks would lead to improved<br>performance in the ANT and<br>corresponding electrophysiological<br>changes.                                                                                                                                                                                                                                                                                                                                                                                                               | Randomised<br>Treated<br>controls and<br>untreated<br>controls | Behavioral data were<br>analyzed with<br>analyses of variance<br>(ANOVA), and for<br>pairwise<br>comparisons, we<br>conducted Tukey<br>HSD (within subject)<br>and Games-Howell<br>(between subject)<br>corrected tests | However, the main effect of<br>group and the relevant session<br>by group interaction did not<br>reach significance, Fs<1. Also,<br>combining the two training<br>groups and comparing them to<br>the passive control group did<br>not reveal a main effect of<br>group or a group by session<br>interaction for RST and BOMAT<br>(all Fs<1). Thus, the RST and<br>BOMAT scores were higher in<br>the posttest, but neither the lure<br>training nor the non-lure<br>training group showed a higher<br>pre-post gain compared to the | Excluded.<br>No significant<br>transfer effects                                                          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Pugin et al 2015    | The aim of our study was to<br>investigate working memory training<br>and its effects on working memory<br>tasks and fluid intelligence in male<br>subjects between 10 and 16 years. In<br>fact, this age range may be particular<br>susceptible to interventions because<br>many cognitive functions are still<br>developing. Furthermore, working<br>memory performance has been shown<br>to be linked to attentional control <sup>10</sup><br>and processing speed <sup>11</sup> . Thus,<br>putative transfer effects on fluid<br>intelligence may not be limited to<br>fluid intelligence, but may also<br>include other cognitive functions. | Non-<br>randomised<br>Untreated<br>controls                    | A mixed ANOVA<br>test between 'group'<br>and 'test session'                                                                                                                                                             | control group.<br>A mixed ANOVA test revealed a<br>significant difference between<br>'group' and 'test session' in<br>auditory N-back (ANB)<br>performance. No other test<br>(letter-number sequencing task,<br>number-span task, matrix<br>reasoning task, Stroop task, and<br>Flanker task) showed a<br>significant change.                                                                                                                                                                                                        | Excluded.<br>No significant<br>transfer effects<br>(Open access<br>journal)                              |
| Redick et al 2013   | Numerous recent studies seem to<br>provide evidence for the general<br>intellectual benefits of working<br>memory training. In reviews of the<br>training literature, Shipstead, Redick,<br>and Engle (2010, 2012) argued<br>that the field should treat recent                                                                                                                                                                                                                                                                                                                                                                                   | Non-<br>randomised,<br>treated and<br>untreated<br>groups      | Factorial ANOVAs<br>with Group 3 as the<br>between subjects<br>factor and Session 3<br>as the within-subjects<br>factor. Significant<br>Group x Session                                                                 | Despite improvements on both<br>the dual N-back and visual<br>search tasks with practice, and<br>despite a high level of statistical<br>power, there was no positive<br>transfer to any of the cognitive<br>ability tests.                                                                                                                                                                                                                                                                                                           | Excluded.<br>No significant<br>transfer effects<br>(Out of 17<br>ANOVAs, there<br>were no<br>significant |

|                        | results with a critical eye.                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | interactions were<br>decomposed<br>with simple effects<br>analyses focusing on<br>the effects of Group<br>and Session<br>independently. |                                                                                                                                                                                                                                                                                  | Group x Session<br>interactions)                                                                 |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Richey et al 2014      | This study investigated whether<br>working memory improvements, if<br>replicated, would increase analogical<br>reasoning ability. We assessed<br>participants' performance on verbal<br>and visual analogy tasks after a<br>complex working memory training<br>program incorporating verbal and<br>spatial tasks [3], [4].                                                                                                                   | Non-<br>randomised<br>untreated<br>controls | Paired-samples t-test<br>for each group                                                                                                 | Participants' improvements on<br>the working memory training<br>tasks transferred to other short-<br>term and working memory tasks,<br>supporting the possibility of<br>broad effects of working<br>memory training. However, we<br>found no effects on analogical<br>reasoning. | Excluded.<br>No significant<br>transfer effects<br>(open access<br>journal)                      |
| Richmond et al<br>2011 | We predicted that: (a) older adults<br>would show improved WM span after<br>training, and (b) older adults would<br>show far transfer to assessments of<br>everyday functioning. In addition, we<br>predicted a replication of the finding<br>in Chein and Morrison (2010) that<br>this particular WM training paradigm<br>does not produce far-transfer to a<br>common measure of general<br>intelligence, Raven's Progressive<br>Matrices. | Treated<br>randomised                       | Chi-square test of<br>Likert scale<br>concerning cognitive<br>functioning, ANOVA<br>on continuous data                                  | Compared to the trivia control<br>subjects, a significantly greater<br>number of participants in the<br>training group selfreported<br>an increase in attention when<br>queried about general cognitive<br>improvements they thought may<br>have been affected by training       | $\chi^2$ (1, n= 9) =<br>2.78, p = .05<br>(One-tailed)<br>Cognitive<br>functioning self<br>report |
| Rode et al 2014        | At this point, it is however not clear<br>to what degree such a core working<br>memory training program can be<br>embedded within a regular school<br>context and to what degree it<br>produces benefits on academically<br>relevant abilities that exceed those of<br>regular class participation.<br>Therefore, the main goal of the<br>current project was to adapt an<br>existing training program [19] to and                           | Untreated,<br>Non-<br>randomised            | t-tests                                                                                                                                 | However, only the AWMA, the CBM<br>Math, and the Teacher Rating<br>showed significant condition<br>differences.                                                                                                                                                                  | t (281) = 2.20<br>(math)                                                                         |

|                         | test ifs effectiveness within a relatively large sample of 3rd grade students within a classroom context.                                                                                                                                                                                                                                                              |                                     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                          |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rudebeck et al<br>2012  | We predicted, therefore, that our<br>spatial WM training task would at<br>least lead to significant improvements<br>in Gf and potentially, in recognition<br>memory performance as well, as<br>captured by some or all of the<br>different performance measures used.                                                                                                  | Untreated<br>randomised             | To investigate any<br>changes in<br>performance after<br>training, gain scores<br>(post- minus pre-<br>training score) were<br>calculated for all<br>tasks | Overall, the trainers made a<br>significantly greater<br>improvement on this test<br>[Bomat] in comparison to<br>controls                                                                                                                                                                                                                                                                   | t(53) = 3.14, <i>p</i> = 0.003                                                                                                                                                                                                           |
| Salminen et al 2012     | In summary, the present study set out<br>to investigate, whether training<br>effects from the dual N-backtransfers<br>to (1) a WM updating task, (2) dual-<br>tasks with different demands on WM<br>updating, (3) task switching, and (4)<br>an AB task. Additionally, transfer to<br>reasoning abilities was tested.                                                  | Untreated<br>randomised             | 2 (Group: training vs.<br>control) × 2 (Session:<br>pre-test vs. post-test)<br>mixed-design<br>ANOVA                                                       | In any case, we provided no<br>evidence for WM transfer effects<br>to the performance in the RAPM<br>after training.                                                                                                                                                                                                                                                                        | Excluded. No<br>significant<br>transfer effects<br>(open access<br>journal)                                                                                                                                                              |
| Schwarb et al 2015      | Researchers have promoted the<br>enticing possibility that simple<br>behavioral training can expand the<br>limits of working memory which<br>indeed may also lead to<br>improvements on other cognitive<br>processes as well                                                                                                                                           | Randomised<br>untreated<br>controls | ANOVA group by time interaction                                                                                                                            | <ul><li>E1: In this experiment, n-back<br/>training did not improve Gf.</li><li>E2: As in Experiment 1, in this<br/>experiment, Gf did not improve<br/>following WM training.</li></ul>                                                                                                                                                                                                     | Excluded, no<br>significant far<br>transfer effects                                                                                                                                                                                      |
| Schweizer et al<br>2011 | Our first hypothesis then was that<br>training on the dual N-backtask<br>(irrespective of the valence of the<br>content), relative to control task<br>training, would lead to transferable<br>gains in short-term memory/WM<br>capacity (measured by digit span)<br>and in Gf (measured by Raven's<br>Progressive Matrices) over and<br>above any gains in digit span. | Treated<br>randomised               | ANOVA group by<br>time interaction                                                                                                                         | Our data provide some support<br>for this by showing significant<br>pre- to post-training<br>improvements in Gf,the<br>current results which further<br>support the malleability of Gf to<br>training have a potentially wide<br>range of (encouraging)<br>implications for educational,<br>neuropsychological and<br>psychopathology treatment<br>settings, if they prove to be<br>robust. | Gf: group by<br>time interaction<br>was significant,<br>F(1, 40) = 7.47,<br>p = 0.01,<br>There was a<br>trend toward a<br>significant<br>group difference<br>in Gf (RPM<br>scores) at pre-<br>training, $p \le 0.10$ .<br>After removing |

| Shiran & Breznitz | The aim of the current study was to                                                                                                                                                                                                                                                                                                                              | Treated non-                                       | ANOVA group x                                                                                                                                                                                                                                                                                                                                                         | The dyslexics' reading scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | subjects that<br>caused baseline<br>differences $F(1, 30) = 3.66, P = 0.032,$<br>Excluded. No                                                                                                                                                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2011              | examine the effect of the CogniFit<br>Personal Coach computerized<br>training program on the recall range<br>and speed of processing in working<br>memory of dyslexic readers, and<br>whether it affects reading ability.                                                                                                                                        | randomised                                         | training                                                                                                                                                                                                                                                                                                                                                              | before memory training were<br>significantly lower than those of<br>the skilled readers for all<br>reading measures except oral<br>reading comprehension (Table<br>5). Following memory training,<br>there was a significant increase<br>in all measures except<br>orthographic accuracy test. It<br>can be concluded that our<br>findings support the notion of<br>plasticity in the neural system<br>underlying working memory and<br>point to a relationship between<br>larger working memory<br>capacity and enhancement of<br>reading skills. | significant<br>transfer<br>measures.<br>Words per<br>minute:<br>F(1,28) = 1.18<br>Pseudowords<br>per minute:<br>F(1, 28) = 1.56<br>Not significant<br>(paper<br>emphasize only<br>main effects<br>from training<br>not training x<br>group<br>interaction)    |
| Smith et al 2013  | We expected that (a) there would be<br>performance improvements for<br>participants actively using training<br>software, either commercial or<br>custom-build, in comparison to any<br>control groups and (b) that there<br>would be increased improvement for<br>participants using the custom-built<br>training software, e.g. as in (Jaeggi<br>et al., 2008). | Randomised<br>treated and<br>untreated<br>controls | A repeated measures<br>analysis of variance6<br>with the between-<br>subjects factor<br>training intervention<br>(Control, Gaming,<br>COTS, DIY) and the<br>within-subjects factor<br>time point (pretest<br>[week 0], posttest<br>[week 3] and delayed<br>posttest [week 4])<br>was conducted. The<br>dependent variable<br>was the RPM score at<br>each time point. | In the RPM tests both cognitive<br>training systems (COTS/DIY<br>groups) failed to produce<br>significant improvements in<br>comparison to the Control<br>group or the Gaming group.<br>This suggests caution in the<br>over generalization on the<br>effectiveness of brain training<br>systems with results from other<br>demographic groups, for<br>example school children                                                                                                                                                                     | Excluded. No<br>significant wm<br>training effects<br>on transfer<br>measures.<br>F(6,70) =<br>2.831, p = 0.016<br>on Raven, but<br>the posthoc tests<br>showed that the<br>only significant<br>change in the<br>RPM score was<br>between the<br>posttest and |

|                          |                                                                                                                                                                                                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                | delayed posttest<br>in the Gaming<br>group ((p =<br>0.017).)                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soderqvist et al<br>2012 | Second, we aimed to evaluate if<br>successful training in children with<br>intellectual disability leads to<br>improved performance on non-<br>trained tasks.                                                                                                                                         | Treated,<br>non-<br>randomised                    | To test the effect of<br>training we<br>performed univariate<br>general linear using<br>each of the outcome<br>measures as a<br>dependent variable<br>and including T1<br>performance on the<br>same measure, age,<br>gender, group, and a<br>group <sup>*</sup> gender<br>interaction as<br>independent<br>variables. | Training did not lead to<br>significant improvements on<br>reasoning ability tasks (Block<br>Design and Raven's colored<br>matrices) although a trend<br>association was observed on<br>improvements on Block Design<br>for males                                                                                                                                                              | Excluded.<br>Effects of<br>training were<br>associated with<br>improvements<br>on Block<br>Design in males<br>with a trend<br>effect [ $F_{(1,17)} =$<br>13.48, $p =$<br>0.062],<br>No significant<br>effects of<br>training<br>progress were<br>observed for<br>improvements<br>on word span<br>forwards,<br>Raven's colored<br>matrices or for<br>Auditory<br>Attention (all <i>p</i> -<br>values >0.1). |
| Sprenger et al 2013      | The present paper addresses some of<br>the shortcomings in prior studies.<br>First, rather than focusing on a single<br>training task, we evaluated the impact<br>of training on a battery of training<br>tasks. Our goal was to test the<br>hypothesis that broad training yields<br>broad transfer. | Treated and<br>untreated<br>groups,<br>randomised | ANCOVA testing for<br>post-test differences<br>between conditions<br>controlling for pre-<br>test performance;<br>Bayes factor analysis                                                                                                                                                                                | Although participants showed<br>improvement on the trained task<br>and on tasks that either shared<br>task characteristics or stimuli,<br>we found no evidence that<br>training led to general<br>improvements in working<br>memory. Using Bayes Factor<br>analysis, we show that the data<br>generally support the hypothesis<br>that working memory training<br>was ineffective at improving | Using Bayes<br>factor no<br>support for<br>transfer effects.<br>Ordinary t-tests<br>showed<br>significant<br>transfer effects<br>on one of 6 far<br>transfer<br>variables in<br>experiment 1                                                                                                                                                                                                               |

|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                                                                                                                                                                                                                                                                                                                               | general cognitive ability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with untreated<br>controls,<br>deciphering<br>languages,<br>t (n = 55 C, n =<br>58 T) = 2.59, P<br>= $< 0.05$ .<br>No significant<br>transfer effects<br>in experiment 2<br>with active<br>controls. |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stepankova et al<br>2014     | The foremost goal of the current<br>study was to examine the efficacy of<br>an adaptive computer-based WM<br>intervention in healthy, community-<br>dwelling older adults. In addition to<br>investigating transfer to WM and<br>visuospatial skills, we were especially<br>interested to see whether training<br>frequency and training gain predicted<br>the extent of transfer in both<br>constructs, which would thereby<br>extend previous findings<br>demonstrating either a dose–response<br>effects in Gf or a relationship<br>between training gain and transfer on<br>Gf. | Untreated<br>randomised           | Univariate<br>ANCOVAs using the<br>posttest composite as<br>dependent variable,<br>the pretest composite<br>as a covariate, and<br>group (CG, Ex10,<br>Ex20) as a between-<br>subject factor.<br>Helmert contrasts in<br>order to compare<br>transfer performance<br>on the group level<br>(i.e., CG vs. Ex10<br>and Ex20; Ex10 vs.<br>Ex20). | the present results add to the<br>evidence for the malleability of<br>visuospatial skills (Uttal et al.,<br>2013) and, more specifically, to<br>the few studies reporting<br>transfer on visuospatial skills<br>following WM training in older<br>adults. To conclude, our data<br>demonstrate generalizing effects<br>to composite scores reflecting<br>WM and visuospatial skills in<br>young-old healthy adults after a<br>verbal N-backintervention. Our<br>work adds to the accumulating<br>evidence for transfer effects in<br>old adults by means of an easily<br>accessible noncommercial<br>computer-based program that<br>can be used independently at<br>home. | Training on the<br>N-back task<br>resulted in<br>improved<br>visuospatial<br>skills, $t(61) =$<br>3.29, p = .001<br>(one-tailed<br>ANCOVA, $r = .39$ ) as<br>compared with<br>the CG.                |
| Stephenson &<br>Halpern 2013 | A number of theorists (e.g.,) have<br>viewed Gf as being a biologically<br>predetermined ability. The results of<br>Jaeggi et al., 2008 and Jaeggi et al.,<br>2010 studies, however, have<br>significant implications for the way<br>philosophers, psychologists, and<br>educators think about intelligence                                                                                                                                                                                                                                                                         | Randomised<br>passive<br>controls | A repeated measures<br>analysis                                                                                                                                                                                                                                                                                                               | The primary goal of our study<br>was to test the hypothesis that<br>scores on tests of Gf would<br>improve only for participants<br>who had a visuospatial<br>component in training to<br>improve WMC. Overall, we<br>found this hypothesis to be                                                                                                                                                                                                                                                                                                                                                                                                                         | Raven<br>Dual n-back vs<br>passive controls,<br>t(131) = 3.46,<br>visual N-backvs<br>passive controls<br>t(131) = 2.80                                                                               |

|                     | because the take-home message is<br>that the ability to solve novel<br>problems can be improved with a<br>short training program. Their studies<br>also have implications for the<br>psychometric properties and uses of<br>the APM and other tests of Gf.<br>Therefore, a careful analysis is<br>needed to substantiate and determine<br>WMC mechanisms that are being<br>improved and leads to improvement<br>in Gf. The current study sought to<br>determine what mechanisms in WMC<br>might be improved through cognitive<br>training, whether there are sex<br>differences in the improvements, and<br>determine the generalizability across<br>other measures of Gf and cognitive<br>tests. |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             | supported, but with a surprising<br>finding that a visuospatial STM<br>training program was also<br>beneficial.                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Takeuchi et al 2013 | We hypothesized that WMT would<br>increase resting-FC within DMN,<br>increase anticorrelations between<br>DMN and EAS, increase resting-CBF<br>in PFC, and increase rGMV in EAS.<br>The hypotheses relating to resting-FC<br>and resting-CBF are based on the<br>abovementioned previous studies that<br>showed that conditions with reduced<br>WMC are generally characterized<br>by a decrease in resting-FC within<br>DMN, a decrease in anticorrelations<br>between DMN and EAS, and a<br>decrease in resting-CBF in PFC. The<br>hypothesis relating to rGMV is based<br>on our previous proposition<br>described above.                                                                      | Untreated,<br>non-<br>randomised | Because the<br>superiority of training<br>was our primary<br>interest, in our<br>behavioral analysis,<br>test-retest changes<br>in the WMT group<br>were compared to<br>those in the control<br>group using one-<br>tailed one-way<br>analyses of<br>covariance<br>(ANCOVAs) with the<br>difference between<br>pre- and post-test<br>measures as<br>dependent variables<br>and pretest scores as<br>independent<br>variables ( $p < .05$ ). | WMT led to improved<br>performance on RAPM but not<br>on BOMAT. On the other hand,<br>although several studies have<br>showed the effects of WMT on<br>Raven matrix tests (Takeuchi et<br>al., 2010b), the effects of WMT<br>on non-verbal reasoning fluid<br>intelligence tasks have recently<br>been contested and there may be<br>a number of reasons for the lack<br>of significant effects on BOMAT<br>or other non-verbal reasoning<br>tasks (Redick et al., in press;<br>Takeuchi et al., 2010b). | Compared with<br>the control<br>group, the<br>WMT group<br>showed<br>significantly<br>greater pre- to<br>post-test<br>increases<br>in performance<br>on (RAPM; $p =$<br>.019, one-tailed<br>ANCOVA) |

| Thompson et al<br>2013      | Recently, however, researchers have<br>reported gains in fluid intelligence<br>after multiple sessions of adaptive<br>working memory training in adults.<br>The current study attempted to<br>replicate and expand those results by                                                                                                                                                                                                                                       | Treated and<br>untreated<br>non-<br>randomised | The use of one-tailed<br>test is consistent with<br>our previous study as<br>well as those of other<br>laboratories<br>(Klingberg et al.,<br>2005, 2002)<br>T-test, Bonferroni<br>corrections | The major finding was a failure<br>to observe any gains in<br>measured fluid intelligence after<br>working memory training.                                                                                                                                                                                                                                         | Excluded,<br>Participants did<br>not generally<br>show<br>improvements<br>on the tasks |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                             | administering a broad assessment of<br>cognitive abilities and personality<br>traits to young adults                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     | measuring near<br>or far transfer<br>(Published open<br>access)                        |
| Thorell et al 2009          | We therefore hypothesized<br>that both training programs would<br>have effects on the trained construct,<br>as well as show transfer effects to the<br>other (i.e. WM would have effects on<br>inhibition and vice versa).<br>Furthermore, performance of both<br>WM and inhibitory tasks requires<br>continuous attention, and we<br>therefore hypothesized that we would<br>find transfer effects to laboratory<br>measures of attention for both types<br>of training. | Non-<br>randomised<br>Treated and<br>untreated | In another set of<br>similar ANCOVAs<br>(see Table 1), the<br>two training groups<br>were compared with<br>the combined<br>control group                                                      | significant overall effect was,<br>however, found for omission<br>errors on the auditory CPT, as<br>well as a marginally<br>significant effect on omission<br>errors on the go/no-go<br>task. Planned comparisons<br>revealed that the WM group,<br>but not the inhibition group, had<br>improved significantly<br>more over time compared to the<br>control group. | Excluded<br>But $F = 3.30 df$<br>s(1, 24) for go<br>no go inhibition                   |
| Urbánek & Marček<br>2015    | Previous research has shown mixed<br>results for the ability of working<br>memory training to improve fluid<br>intelligence. The aims of this study<br>were first to replicate these<br>improvements                                                                                                                                                                                                                                                                      | Randomised<br>Treated<br>controls              | Repeated-measures<br>ANOVA                                                                                                                                                                    | These tests revealed neither<br>main effectsnor their<br>interactionsfor any of the<br>intelligence measures.                                                                                                                                                                                                                                                       | Excluded, no<br>significant far<br>transfer effects                                    |
| Van der Molen et<br>al 2010 | The focus of the current study is on<br>adolescents with mild to borderline<br>intellectual disabilities. This group is<br>known to have substantial WM                                                                                                                                                                                                                                                                                                                   | Treated,<br>randomised                         | General linear model<br>analysis (GLM) was<br>performed controlling<br>for baseline scores                                                                                                    | Scholastic abilities compound<br>score increased for both group<br>A and group B compared with<br>the control group. In both cases,                                                                                                                                                                                                                                 | Beta = 0.14, p =<br>0.03 for training<br>group A versus<br>controls,                   |

|                                      | problems (), generally performs<br>poorly on academic achievement<br>domains () and requires more<br>educational support than do typically<br>developing adolescents (). Given<br>the relationship between WM<br>performance and scholastic abilities,<br>it is of substantial interest to study the<br>feasibility and effectiveness of a WM<br>training in adolescents with M-BID                                                                                                                                          |                        | (pre-testing).                                                                                                                                                                                                                                                                                                                     | It was an increase in score on<br>the Arithmetic test and not on<br>the Reading test, which was<br>responsible for the change the<br>results of the current study are<br>encouraging in that apparently<br>WM, a central and important<br>cognitive aspect, can be trained<br>effectively with a fanning out<br>effect on scholastic and other<br>everyday tasks in a cognitive<br>weak and therefore vulnerable<br>group of people; children with<br>mild to borderline ID | Beta = 0.16, P =<br>0.02 for training<br>group B versus<br>controls on<br>scholastic<br>abilities at<br>follow up<br>(arithmetic test)                                                                                                                                                                                          |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| van Dongen-<br>Boomsma et al<br>2014 | WM shows a rapid development<br>throughout preschool and early<br>school-age (Carlson, 2005). Training<br>children at this young age, before<br>larger demands from school exist,<br>could be beneficial by increasing WM<br>capacity and thereby preventing<br>development of cognitive and/or<br>behavioural problems (Rueda,<br>Posner, & Rothbart, 2005; Thorell,<br>Lindqvist, Bergman, Bohlin, &<br>Klingberg, 2009). Therefore,<br>investigating the efficacy of WMT in<br>younger children in ADHD is<br>worthwhile. | Treated,<br>randomised | When all assumptions<br>were valid, analysis<br>of the Covariance<br>(ANCOVA) was<br>applied to optimize<br>control for the<br>variance at baseline.<br>For each parameter,<br>the endpoint<br>measurement was the<br>dependent variable,<br>the baseline<br>measurement a<br>covariate, and groups<br>the independent<br>variable | There was a significant<br>difference between groups ( $p < .001$ ) on the Start Index.<br>Nevertheless, the WMG<br>significantly improved on the<br>task, as illustrated by a<br>significant difference between<br>the Start Index and the Max<br>Index ( $t(25) = 15.59$ , $p < .001$ ).                                                                                                                                                                                  | Excluded. No<br>significant<br>transfer effects.<br>Both the active<br>and the placebo<br>condition<br>improved on<br>many outcome<br>measures over<br>time. However,<br>no additional<br>effect in favour<br>of the active<br>condition was<br>found on any of<br>the primary or<br>other secondary<br>outcome<br>measurements |
| Vartanian et al                      | Compared to participants enrolled in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Randomised             | mixed-model                                                                                                                                                                                                                                                                                                                        | Second, compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAPM                                                                                                                                                                                                                                                                                                                            |
| 2013                                 | an active control condition, we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ireated                | ANUVA                                                                                                                                                                                                                                                                                                                              | participants enrolled in the                                                                                                                                                                                                                                                                                                                                                                                                                                                | interaction:                                                                                                                                                                                                                                                                                                                    |

|                              | predicted that participants enrolled in<br>the experimental condition would<br>exhibit improvement in fluid<br>intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | controls               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | active control condition, we<br>predicted that participants<br>enrolled in the experimental<br>condition would exhibit<br>improvement in fluid<br>intelligence. This prediction was<br>confirmed as unlike participants<br>in the active control condition<br>who exhibited no change in fluid<br>intelligence, participants in the<br>experimental condition<br>exhibited an 8% improvement in<br>fluid intelligence at the end of<br>training compared to baseline. | F(1, 32) = 5.90,<br>p = .021                                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| von Bastian &<br>Eschen 2015 | In the present study, we therefore<br>tested the hypothesis that adaptive<br>WM training is superior to other<br>training procedures because task<br>difficulty is continuously adapted<br>to individual performance instead of<br>being varied performance-<br>independently, thus differentiating<br>between adaptivity and variability of<br>task difficulty. Hence, adaptive<br>training was compared to another<br>WM training procedure in which task<br>difficulty varied randomly. In<br>addition, a third WM training<br>procedure was included in which<br>participants themselves could modify<br>training task difficulty. The purpose<br>of this training procedure was to<br>explore whether change in training<br>task difficulty across the training<br>period in the adaptive training<br>condition approximately matches<br>what the average individual would<br>choose as the optimal modification of<br>task difficulty across training.<br>Finally, | Treated,<br>randomized | To evaluate gain<br>from pre- to post-<br>assessment, we<br>computed<br>standardized gain<br>scores (i.e.,<br>difference between<br>posttest and pretest<br>score divided by the<br>pretest standard<br>deviation) for each<br>individual and each<br>task (cf. von Bastian<br>& Oberauer, 2013).<br>We then ran linear<br>mixed effects<br>(LME) models to<br>estimate these gain<br>scores on the<br>level of<br>generalization range<br>(i.e., training,<br>intermediate<br>transfer effects)<br>rather than on the | In summary, the results showed<br>that adaptive WM training led<br>to larger gains in the trained<br>tasks than active control<br>training. However, there was no<br>consistent evidence for transfer<br>to structurally dissimilar WM<br>tasks or to reasoning tasks.                                                                                                                                                                                                | Excluded. No<br>significant<br>results<br>concerning far<br>transfer. |

|                 | to evaluate whether we could            |            | level of               |                                   |                  |
|-----------------|-----------------------------------------|------------|------------------------|-----------------------------------|------------------|
|                 | replicate our earlier findings showing  |            | single tasks (for a    |                                   |                  |
|                 | benefits after adaptive WM training     |            | more detailed          |                                   |                  |
|                 | on untrained, structurally dissimilar   |            | discussion of the      |                                   |                  |
|                 | WM and reasoning tasks (von Bastian     |            | advantages             |                                   |                  |
|                 | & Oberauer, 2013), we added an          |            | of using LME models    |                                   |                  |
|                 | adaptive active control group solving   |            | over analyses of       |                                   |                  |
|                 | trivia quizzes with low WM              |            | variance               |                                   |                  |
|                 | demand.                                 |            |                        |                                   |                  |
| von Bastian &   | With the present study, we wanted to    | Treated,   | We therefore chose     | Storage-Processing training       | Storage          |
| Oberauer 2013   | answer the following questions: (1)     | randomised | linear mixed-effect    | had an effect on working          | processing vs    |
|                 | can WMC (with its two aspects, stor-    |            | (LME) modeling,        | memory and reasoning, and         | active controls: |
|                 | age and processin g, and relational     |            | which is less. To      | Supervision training improved     | Reasoning b =    |
|                 | integrati on) and supervision be        |            | assess whether the     | task shifting and reasoning.      | 0.21, p = 0.021  |
|                 | improved by extensive training, (2) do  |            | experimental groups    |                                   |                  |
|                 | training effects transfer to non-       |            | differed in how much   |                                   |                  |
|                 | trained tasks measuring the same        |            | they gained in         |                                   |                  |
|                 | construct, and (3) does transfer to     |            | performance from       |                                   |                  |
|                 | related cogni- tive abilities – such as |            | pretest to posttest in |                                   |                  |
|                 | inhibition and reasoning – occur?       |            | different constructs,  |                                   |                  |
|                 |                                         |            | we modeled             |                                   |                  |
|                 |                                         |            | standardized gain      |                                   |                  |
|                 |                                         |            | scores (i.e., pre-post |                                   |                  |
|                 |                                         |            | differences in         |                                   |                  |
|                 |                                         |            | performance,           |                                   |                  |
|                 |                                         |            | expressed in stan-     |                                   |                  |
|                 |                                         |            | dard deviation units)  |                                   |                  |
|                 |                                         |            | of each individual in  |                                   |                  |
|                 |                                         |            | each task as a         |                                   |                  |
|                 |                                         |            | function of experime-  |                                   |                  |
|                 |                                         |            | ntal group, construct  |                                   |                  |
|                 |                                         |            | measure d by the       |                                   |                  |
|                 |                                         |            | task, and their        |                                   |                  |
|                 |                                         |            | interaction.           |                                   |                  |
| Wang et al 2014 | Based on the body of research on        | Untreated, | A Paired-sample t-     | We can draw two main              | The SPM gain     |
|                 | spacing, memory, and skill              | randomised | test was performed     | conclusions from this study.      | in the 20 Days   |
|                 | acquisition, we predicted that          |            | for each of the four   | First, training schedule has a    | group was        |
|                 | training schedule would have a sub-     |            | training groups        | significant impact on transfer of | significantly    |
|                 | stantial impact on working memory       |            | together with the      | training. Second, the transfer    | larger than the  |
|                 | training gain and transfer.             |            | control group on       | effect of the 20-day group        | control group,   |

|                       | Specifically, we predicted that the group(s) with the most spacing of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | SPM pre-test and                                                                                                                                                                    | replicated results of a recent                                                                                                                                                                                                                                          | $t_{(38)} = 1.832, p =$<br>0.038 (one-tail                                                                                              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                       | training would improve most on the<br>training task and further- more show<br>the most transfer. In addition to this<br>primary goal, we wished to replicate<br>the results of other studies that have<br>trained memory updating and found<br>transfer to fluid intelligence in chil-<br>dren (Jaeggi et al., 2011; Zhao et al.,<br>2011). The total number of studies in<br>which updating is trained in typically<br>developing children is rather small,<br>and thus this study provides an addi-<br>tional data point with respect to the<br>potential effects of updating training<br>more generally. |                                            | the training transfer.                                                                                                                                                              | training and transfer tasks<br>(Zhao et al., 2011). It is also<br>consistent with studies that have<br>found improvements in typically<br>developing children following<br>working memory training                                                                      | test)                                                                                                                                   |
| Westerberg et al 2007 | By using the same method in this pilot<br>study, we evaluated the effects of WM<br>training on cognition<br>in a group of patients with stroke                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Untreated,<br>randomised                   | a general<br>linear model and<br>controlling for<br>baseline scores. This<br>analysis is equivalent<br>of an ANCOVA<br>analysis with baseline<br>score as one of the<br>covariates. | Furthermore, improvements<br>were also significant on the<br>nontrained<br>tests for WM and attention<br>(PASAT and RUFF 2&7),                                                                                                                                          | Passat P = $0.001$<br>Ruff P = $0.005$<br>(no other<br>information in<br>the paper about<br>f values)                                   |
| Xin et al 2014        | We specifically focused on transfer to<br>the following: (i) a running WM task<br>using a different type of item as used<br>during training (hereafter termed<br>nearest transfer); (ii) a digit-span<br>task forward and backward (near<br>transfer); and (iii) performance on a<br>measure of fluid intelligence (far<br>transfer).                                                                                                                                                                                                                                                                       | Treated,<br>non-<br>randomised             | ANCOVA                                                                                                                                                                              | The absence of a training effect<br>on fluid intelligence in our study<br>(far-transfer) is in accordance<br>with previous studies with older<br>adults adopting WM updating<br>tasks during training and<br>measures of reasoning ability<br>during transfer tests (). | Excluded. No<br>significant main<br>or interaction<br>effects for far<br>transfer<br>measuers<br>maximum $F(1, 27) = 3.03,$<br>p = .09, |
| Zhao et al 2011       | Thus, the present study used the<br>running memory task to train WMU<br>ability, enabling us to investigate<br>whether training WMU specifically<br>could directly promote the                                                                                                                                                                                                                                                                                                                                                                                                                              | Non-<br>randomised,<br>Treated<br>controls | Independent-samples<br><i>t</i> -tests of gain scores                                                                                                                               | The analysis of the additive<br>mean values revealed that fluid<br>intelligence scores in the<br>training group were<br>significantly higher than those                                                                                                                 | t(31) = 2.271,<br>P < 0.05                                                                                                              |

|                  | improvement of fluid intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                                                                                    | in the control anoun                                                                                                                                                                   |                                                                                                                                                                                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zinke et al 2012 | improvement of fluid intelligence.<br>Considering the previous literature<br>two possible predictions can be<br>derived. On the one hand, it may be<br>that especially in old-old adulthood<br>only those participants who have<br>maintained a certain cognitive status<br>profit from a WM intervention that<br>requires a considerable amount of<br>attentional resources [18, 19, 20].<br>On the other hand, resting on the<br>disuse hypothesis [21, 22], it may be<br>that participants who start with a low<br>cognitive status (a possible result of a<br>decline in using cognitive resources)<br>are able to reactivate some of their<br>potential with the help of training | Untreated,<br>non-<br>randomised | T tests                                                                                                                                                                            | in the control group<br>Importantly, independent<br>t tests revealed no significant<br>differences between groups in<br>percent gains in either Stroop<br>interference scores or Raven | Excluded. No<br>significant far<br>transfer effects.<br>Raven scores<br>(training group:<br>M = 5.2%, SD =<br>11.5,<br>control group:<br>M = 11.5%, SD<br>= 16.9; t(34) = -<br>1.32, $p > 0.01$ |
| Zinke et al 2014 | Taken together, the current study<br>explored the limits and potential of<br>WM plasticity in a sample of older<br>adults ranging from young-old to old-<br>old age. For that purpose, an<br>experimental approach was used to<br>compare a training group with a<br>control group on measures of<br>training and transfer performance.<br>With an individual difference<br>approach, possible moderating<br>factors of training-related plasticity<br>were investigated for training and<br>transfer<br>gains.                                                                                                                                                                        | Untreated,<br>randomised         | A two-factorial<br>ANOVA was used<br>with group (training<br>vs.control group) as<br>the between-subjects<br>factor and time of<br>measurement<br>as the within-subject<br>factor. | For the fluid intelligence task<br>(Raven SPM), there was a<br>significant effect for the crucial<br>interaction between the time of<br>measurement and the group,                     | <i>F</i> (1, 78) = 5.0, <i>p</i> = .03,                                                                                                                                                         |

*Note*. The same inclusion criteria as used in the meta-analysis were applied to the *p*-curve analysis.