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ABSTRACT Localization of the Ca2þ/calmodulin-dependent protein kinase II (CaMKII) to dendritic spine synapses is deter-
mined in part by the actin cytoskeleton. We determined binding of GFP-tagged CaMKII to tag-RFP-labeled actin cytoskeleton
within live cells using total internal reflection fluorescence microscopy and single-molecule tracking. Stepwise photobleaching
showed that CaMKII formed oligomeric complexes. Photoactivation experiments demonstrated that diffusion out of the
evanescent field determined the track lifetimes. Latrunculin treatment triggered a coupled loss of actin stress fibers and the
colocalized, long-lived CaMKII tracks. The CaMKIIa (a) isoform, which was previously thought to lack F-actin interactions,
also showed binding, but this was threefold weaker than that observed for CaMKIIb (b). The bE0 splice variant bound more
weakly than a, showing that binding by b depends critically on the interdomain linker. The mutations bT287D and aT286D,
which mimic autophosphorylation states, also abolished F-actin binding. Autophosphorylation triggers autonomous CaMKII
activity, but does not impair GluN2B binding, another important synaptic protein interaction of CaMKII. The CaMKII inhibitor
tatCN21 or CaMKII mutations that inhibit GluN2B association by blocking binding of ATP (bK43R and aK42M) or Ca2þ/calmod-
ulin (bA303R) had no effect on the interaction with F-actin. These results provide the first rationale for the reduced synaptic
spine localization of the aT286D mutant, indicating that transient F-actin binding contributes to the synaptic localization of
the CaMKIIa isoform. The track lifetime distributions had a stretched exponential form consistent with a heterogeneously
diffusing population. This heterogeneity suggests that CaMKII adopts different F-actin binding modes, which is most easily
rationalized by multiple subunit contacts between the CaMKII dodecamer and the F-actin cytoskeleton that stabilize the initial
weak (micromolar) monovalent interaction.

INTRODUCTION
The calcium calmodulin-dependent kinase (CaMKII) is a
multifunctional kinase that has a prominent role in long-
term potentiation (LTP) (1–3). The four major isoforms of
vertebrate CaMKII have ~40 splice variants and are ex-
pressed in diverse tissues (3). Two isoforms, CaMKIIa
(<a>) and CaMKIIb (<b>), are dominant in the brain
and their relative expression levels vary among different
regions of the brain as well as during development (4).
Their relative levels also vary within individual neurons be-
tween the cell body and dendritic/axonal processes (2).
CaMKII has a prominent structural role in hippocampal
dendritic spines, the postsynaptic computational units for
LTP. CaMKII concentrations in spines are high (5), consis-
tent with its structural role. The <b> isoform targets ab

hetero-oligomers to dendritic spines by binding to the
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spine actin cytoskeleton (6). Synaptic stimulation triggers
CaMKII sequestration to dendritic spines and the postsyn-
aptic density (PSD) within a few seconds of stimulation
(7–10). This rapid sequestration is coupled to actin polymer-
ization and expansion of the stimulated spine (11). Expan-
sion is due to the direct effects of CaMKII on the actin
cytoskeleton (12,13) as well as to indirect effects mediated
by the activation of other kinases (14). The increase in spine
size persists after termination of the stimulus-induced cal-
cium transient. CaMKII levels in stimulated spines are
also increased due to association with the PSD, in particular,
the NMDA receptor GluN2B subunit (15) and the enlarged
actin cytoskeleton (16). In the longer term, CaMKII pro-
motes axonal branching and outgrowth (17).

The neuronal isoforms have highly homologous kinase
and association domains, but the linker that connects these
two domains is variable in sequence and length (1). The indi-
vidual subunits assemble into homo- or hetero-oligomers of
variable isoform compositions, and the atomic structure of
the dodecameric enzyme has been previously described
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FIGURE 1 TIRF workstation. The choice of the laser excitation wave-

length (laser 1¼ 561 nm; laser 2¼ 488 nm) was computer controlled; exci-

tation (green line) and fluorescence emission (red arrow) light paths are

Khan et al.
(18). The <a> and <b> isoforms form 12 subunit homo-
oligomers of similar size, with one study reporting a slightly
smaller<b> oligomer (19). Calmodulin binding to the regu-
latory segment relieves inhibition, and transphosphorylation
activates the enzyme at <a>T286 (T287 in the other iso-
forms), which confers autonomous activity to the enzyme.

Binding of <b>, but not <a>, to the actin cytoskeleton
has been shown by various approaches, including colocali-
zation, fluorescence photobleaching, and pharmacological
manipulations in neuronal and non-neuronal cell cultures
(6,20–23). In vitro sedimentation assays and electron micro-
scopy have demonstrated the <b>-dependent formation of
F-actin bundles (12,22–24). Activation of <b> by both au-
tophosphorylation and the phosphomimetic T287D muta-
tion (22) abolishes actin bundling activity. Furthermore,
an alternative splice variant, <bE0>, which has a short
linker similar to that of <a>, does not bind or bundle
F-actin in pull-down assays. The differences observed
with the mutants in pull-down assays are consistent with co-
localization in neuronal cell cultures. Pyrene fluorescence
measurements (12) have shown that both <a> and <b>
isoforms bind globular (G-) actin, and <b> binds with
2.4 mM affinity and a stoichiometry of 12 actin monomers
per oligomer (24). However, quantitative estimates of the af-
finity of<b> or <a> for F-actin, or of modulation via acti-
vation through stimulation or mutation, are not available.

Here, we characterized the association of CaMKII with
labeled F-actin in live human umbilical vein endothelial
cells (HUVECs) (25) by using total internal reflection fluo-
rescence microscopy (TIRFM) to image and track single
molecules (26,27). We previously exploited this approach
to study motor proteins, ion channels, and G-protein-
coupled receptors (27–30). Here, we extended the method
to measure the association of enhanced green fluorescent
protein (eGFP)-tagged CaMKII native and mutant pro-
teins with red fluorescent protein (RFP)-tagged actin to
mark the cytoskeletal structures. Single-molecule tracking
experiments have shown that actin depolymerization in-
creases CaMKII mobility in dendritic spines, and revealed
different, heterogeneous mobility distributions for stimu-
lated versus unstimulated states (16). We used HUVECs
as a model system because they are ideal for TIRF imaging,
have a defined cytoskeletal architecture, and are amenable
to transient transfection methods. Our measurements show
that both neuronal CaMKII isoforms bind cytoskeletal actin,
but with affinities that differ by threefold over the first
decade range of a log-normal binding curve. Our results
explain why association of <a> may have been overlooked
in earlier studies, and have implications for CaMKII trans-
port and cytoskeletal remodeling within neurons.
shown. The TIRF incident angle was adjusted by an external mirror. The

microscope stage and objective lens employed piezo-positioners to control

specimen position and image focus. Images were acquired with an EMCCD

camera. A waveform generator set the duration, delay, and frequency of

photoactivation pulses (laser 3 ¼ 405 nm), also in TIRF mode. Separate,

exchangeable filter cassettes were used for GFP and tRFP fluorescence.
MATERIALS AND METHODS

All biochemicals were sourced from Sigma-Aldrich (Poole Dorset, UK) un-

less noted otherwise.
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TIRFM

We used a custom-built TIRF microscope workstation based on an inverted

microscope (Nikon Eclipse, TE 2000U; Nikon, Kingston-upon-Thames,

UK) (Fig. 1). Complete details are provided in Supporting Materials and

Methods in the Supporting Material.
In vitro assays

For use as a single fluorophore calibration specimen, we immobilized GFP

molecules on the surface of a microscope flow cell with a GFP antibody

by first filling the flow cell with a phosphate-buffered saline (PBS) solu-

tion (pH 7.4) containing 5 mg/mL (3 nM) polyclonal anti-GFP antibody

(Abcam, Cambridge, UK) as described previously (27). This solution

was left to incubate in the flow cell for 5 min and then washed with

PBS supplemented with 0.5 mg/mL bovine serum albumin to block re-

gions of bare coverglass. The solution was then replaced with PBS con-

taining 10 ng/mL (0.37 nM) GFP (Clontech, Palo Alto, CA) for 5 min,

and unbound protein was washed out of the flow cell by several washes

with assay buffer (AB� (20 mM imidazole (pH 7.4), 50 mM KCl,

2 mM EGTA, 4 mM MgCl2)) before it was viewed by TIRFM. The mol-

ecules were imaged in degassed and argon-purged AB� supplemented

with an oxygen-scavenger system consisting of 3 mg/mL glucose,

0.5 mg/mL catalase, 0.2 mg/mL glucose oxidase, and 20 mM dithiothrei-

tol. Using the antibody-immobilized GFP molecules as a control sample,

we measured the single fluorophore intensity as a function of excitation

power. The average value measured over several hundred fluorophores

was linear with the laser power. The mean single fluorophore intensity

could therefore be used as an independent internal check of excitation po-

wer in subsequent experiments.
Cell culture

CaMKII fusion proteins tagged with monomeric eGFP (GFP) or photoacti-

vatable eGFP (PaGFP) carrying the A206K mutation have been described

previously (22,31–34). The GFP tag does not interfere with kinase activity
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or holoenzyme assembly (24), and immunoelectron microscopy has shown

that native CaMKII sequesters to the PSD of dendritic spines (35) with

kinetics similar to those reported by the tagged proteins (22,36). We studied

the following tagged actin fusion proteins: mCherry-actin (37), tagRFP-

actin (38), and mTurquoise2-actin (39). We chose tagRFP-actin (tRFP-

actin) for its brightness, photostability, and expression level (40). The

plasmids encoding GFP-CaMKII and tRFP-actin constructs were mixed

and cotransfected into primary HUVECs or Cos7 cells at 70–80% conflu-

ence, primarily by nucleofection (Nucleofector Model 2b; Lonza, Blackley,

UK). Alternatively, Lipofectamine-2000 (Life Technologies, Paisley, UK)

transfection was used as previously described (41). With either method,

the transfection efficiency was typically >50%. The cells were plated on

poly-lysine-coated dishes (Lab-Tek chambered borosilicate, #1 coverglass;

Nunc, Rochester, NY) in Dulbecco’s modified Eagle’s medium with added

10% fetal bovine serum and streptomycin (50 mg/mL). Cell culture dishes

were removed from the CO2 incubator (Galaxy R; Scientific Laboratory

Supplies, East Riding of Yorkshire, UK) 24–36 h after transfection. These

incubation times were optimal for visualizing single GFP-CaMKII

molecules. TIRF imaging was conducted at 25�C within an hour after the

samples were removed from the incubator.

The HUVECs we chose as a model system for most of our TIRF imag-

ing experiments attach firmly to the culture dish substrate and have long

ventral stress fibers (42) that form oriented arrays. Other cytoskeletal

substructures (i.e., arcs (43) and filopodia) are also present. Although

HUVECs express a variant CaMKIId6 isoform (44), they do not natively

express the <a> or <b> isoforms found in neurons. Expression was

monitored by epifluorescence, and cell morphology was determined by

phase contrast. In addition to morphology, we checked the integrity of

the physiological state by noting an absence of CaMKII aggregation

caused by high pH or calcium (36).
Single-molecule image analysis

A typical experiment involved a set of cotransfections of the plasmid encod-

ing tRFP-actin with a plasmid encoding a GFP-CaMKII fusion (two dishes

per CaMKII construct; up to four constructs per experiment). Control dishes

cotransfected with plasmids encoding tRFP-actin and GFPCaMKIIb were

included in each experiment to assess the viability of the primary culture.

First, tRFP-actin fluorescence was used to identify transfected cells, and

then GFP-fluorescence was recorded. Many thousands of single-particle

tracks were obtained for each construct using >12 cells from four different

culture dishes and two separate experiments. Details regarding the single-

particle tracking algorithm and the analytical measures used are provided

in Supporting Materials and Methods.

Multiple analysis of variance (ANOVA) and simultaneous pairwise

t-tests were conducted in R (https://www.r-project.org/) as detailed in

(45). The variance was the sum of the variation within and between groups

normalized by their degrees of freedom. The probability (p-value) that dif-

ferences between populations were significant was then computed from the

F-value (F). Significant differences reported by ANOVA were then tested

by means of simultaneous, pairwise t-tests with default Holm correction

for multiple testing.
FIGURE 2 TIRFM visualization of GFP in vitro and in living cells versus

GFP-CaMKII. (A) i: Antibody-immobilized GFP molecules (10-frame

averaged image)). ii: Line intensity profiles of the four spots in field center,

top and right (5 standard error (SE), thin line), and of the brighter spot

(arrow) show the diffraction-limited size. (B) Intensity-versus-time records

of spots shown in A(i), illustrating single-step photobleaching (i–iii), blink-

ing behavior (iv), and double-step photobleaching of the brighter spot

(v).The single-step modal value was 27.5 5 2.5 counts/pixel (doubling

and tripling occurs when fluorophore PSFs overlap). (C) Single video frame

(50 ms exposure) of a HUVEC expressing GFP alone, showing that motion

blurring prevents single fluorophore observation. (D) Single video frame of

a HUVEC expressing GFP-CaMKIIb, showing that discrete fluorescent

spots are now visible.
RESULTS

Our experimental study consisted of two parts, First, we
used dual-color TIRFM to visualize and track (27) individ-
ual GFP-tagged <a> and <b> isoforms in HUVECS, and
derived their properties from population statistics and
spatial colocalization with F-actin cytoskeletal structures.
We then studied different mutants and pharmacological
agents to understand the structural basis of CaMKII associ-
ation with F-actin.
Assay development

Visualization of GFP molecules in control specimens and live
cells

We visualized antibody-immobilized GFPs at low surface
density (<1 mm�2) using TIRFM to establish the emission
intensity of individual GFP molecules under our standard
imaging conditions. Individual GFPs were readily identified
as discrete fluorescent spots that had a diffraction-limited
point spread function (PSF) with a characteristic spot inten-
sity (Fig. 2 A). The spots had a mean duration of 2.05 0.4 s
and exhibited single-step photobleaching with a unitary in-
tensity of 27.4 5 2.2 counts/pixel. Brighter spots with
twofold greater intensity exhibited two-step photobleaching
(Fig. 2 B). Next, we obtained TIRFM video recordings of
cultured HUVECs and Cos7 cells that were expressing
Biophysical Journal 111, 395–408, July 26, 2016 397
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GFP. In contrast to the video recordings of antibody-immo-
bilized GFP molecules, the GFP fluorophores within cells
could not be resolved (Fig. 2 C). This was because rapid
diffusive motion within the cytosol caused image blurring
during the frame acquisition period, as explained below.

Visualization of homomeric GFP-CaMKIIb complexes in the
cellular cortex

In marked contrast to cell cultures expressing GFP mole-
cules alone (see above), single fluorescent particles were
visualized by TIRFM in cell cortices when GFP-tagged
<b> (henceforth termed b) was expressed (Fig. 2 D).
This discrepancy can be explained by attenuation of the
spot intensity by motion blurring during the 50 ms frame
acquisition period (dt). The attenuation factor of the
computed centroid is given by the ratio of the area covered
by the diffusing particle during a single video frame ¼
p(dx)2 (where dx ¼ (4D.dt)1/2, and D is the diffusion coeffi-
cient) and the area that captures 90% of the object’s PSF
(here a 3 � 3 pixel region on the camera) ¼ 0.9 mm2.

The expected lateral diffusion coefficients,DStokes, for the
relevant species were computed from the diffusion equation:

DStokes ¼ kbT

6phas
; (1)

where Stokes radius as ¼ (3M/4pAs)1/3, M is the molecular
mass (kDa), A is Avogadro’s number, s is the protein den-
sity (1300 kg/m3) (46), and h is the cortical viscosity
(0.0032 Pa.s) (47,48). This gives an estimated DStokes for
GFP (M ¼ 27 kDa; as ¼ ~2 nm) of ~30 mm2s�1 and diffu-
sive motion blurring during a 50 ms video frame of
~20 mm2. Therefore, the expected reduction in fluorescence
intensity (per pixel) is 20/0.9, ~23-fold. This explains why
freely diffusing GFP molecules were not resolved at the
video imaging rates. Since DStokes varies inversely as the
cube root of the molecular mass, we were also unable to
resolve the GFP-<a> (henceforth a) mutant, which is
monomeric due to deletion of the association domain
(aD316) (M ¼ 62 kDa) and tRFP-G-actin (M ¼ 70 kDa),
as both exhibit a >15-fold estimated attenuation of spot in-
tensity due to motion blurring. Wewere able to satisfactorily
visualize b molecules because they form dodecameric com-
plexes (M ¼ 87 � 12 ¼ 1044 kDa) (18,49). Thus, the inten-
sity attenuation by motion blurring (~7-fold) is more than
compensated for by the 12-fold increase in intensity due
to the increased number of GFPs.

Decoration of actin stress fibers with single GFP-CaMKIIb
holoenzymes

We used two-color TIRFM to image b (excited at 488 nm)
and tRFP-actin (excited at 561 nm) to characterize b com-
plexes interacting with F-actin cortical structures. TIRFM
of HUVECs transfected with t-RFP actin revealed long
linear fibers in the actin cortex. The morphology was consis-
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tent with ventral stress fibers (42), and these structures will
henceforth be referred to as such. Approximately 100 video
frames were averaged to enhance the relatively static fibers
above the background of rapidly diffusing G-actin mono-
mers. The averaged tRFP-actin image was then overlaid
onto TIRFM video recordings of b molecules to reveal
their movement within the cytosol and their association/
dissociation with the tRFP-tagged F-actin structures
(Movie S1).

Individual GFP-fluorescent spots were identified and
tracked in the video sequences to yield spatiotemporal
trajectories (300–3000 per record) of individual objects.
Tracks were generated by linking centroids for successive
frames. Apparent diffusion coefficients (Dlat) were com-
puted from the centroid frame-to-frame displacements (Dx):

Dlat ¼ ðDxÞ2�ð4tcÞ: (2)

For free diffusion, c¼ 1. For confined diffusion, c¼>1 and
the denominator preexponent¼<4. Individual tracks termi-
nated when the object intensity dropped below the detection
threshold due to diffusion from the excitation region
(evanescent field), photobleaching, or tracking errors
(considered below). Superposition of the image showing
all of the particle tracks obtained over one video recording
(lasting 25 s) onto the averaged tRFP-actin image provided
a measure of colocalization (Pearson’s correlation coeffi-
cient, Ppix), as described in Supporting Materials and
Methods. It was clear that b associated with the cortical
actin fibers (Fig. 3 A).

Dynamics of the interaction between CaMKIIb and the actin
cytoskeleton

Automated single-particle tracking (27) was used to identify
and track individual b complexes. The object tracks were
characterized with the measures defined in Materials and
Methods. Short-lived particle trajectories (t < 0.58 s;
Fig. 3 B, yellow symbols) closely approximated Brownian
motion. In contrast, the plot for longer-lived trajectories
(t > 2.5 s; Fig. 3 B, blue symbols) was nonlinear, with little
increase in the mean-square deviation (MSD) beyond Dt >
1.2 s. Further analysis showed that the binned subpopulation
of short-lived tracks had a unimodal intensity distribution
with a lower mean relative to the parent population, whereas
the subpopulation of longer-lived tracks had higher intensity
relative to the parent population and the intensity distribu-
tion was greatly skewed toward higher values (Fig. 3 C).
The different subpopulation characteristics are consistent
with the notion that tracks from weakly bound, more mobile
molecules have a short duration and dominate the <0.5 s
subpopulation. In contrast, more strongly bound molecules
dominate the >2.5 s subpopulation, with lower average
Dlat. The modal intensities for both subpopulations are
lower than expected for the multimeric (10–12 subunits)
tagged b holoenzymes. Thus, although at first it may seem



FIGURE 3 CaMKIIb decoration of the actin cytoskeleton visualized by

two-color TIRFM. (A) Averaged images of b (left panel, green, 400 frames)

and tRFP-actin (right panel, red, 100 frames). Mean tRFP intensity ¼
119 5 9 counts/pixel. The bottom panels (arrow) show the two frames

superimposed (Ppix ¼ 0.27, Prand ¼ 0.09 5 0.07) (left) and the single-par-

ticle tracks (right) accumulated over 10 s of video (Movie S1). (B) MSD-

versus-time interval (Dt) for the total population of tracks (white circles)

and short-lived (yellow circles) and long-lived (blue circles) track subpop-

ulations (5 standard deviation (s)). The initial gradient of the short-lived

track data gives Dlat ¼ 0.28 mm2/s, whereas that of the long-lived tracks

gives 0.04 mm2/s. Total number of tracks, n ¼ 12,723. (C) Intensity histo-

grams for the short-lived track subpopulation (yellow bars) and long-lived

track subpopulation (blue bars). The asterisk (black) marks the region of the

histogram that was used to analyze photobleaching. (D) Sample intensity-

versus-time plots for some of the objects from the asterisk-marked region.

Stepwise intensity changes as detected by Student’s t-test (Fig. S1) are

marked immediately below each trace to indicate sudden intensity transi-

tions. The starting intensity for each spot was >170 counts/pixel, which

is ~8-fold greater than the unitary GFP intensity. The green line (in the

lowest panel), is the two-step immobilized GFP photobleaching, redrawn

from Fig. 2 B(v), shown for reference.
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that the correlation between intensity and mobility differ-
ences is simply due to a difference in aggregate size, it is
better explained by an intensity attenuation due to motion
blurring (see above). To ascertain whether this was the
case, we examined single spots and tracks.

To test for multisubunit states, we measured stepwise
changes in fluorescence intensity. Spots immobilized on
actin stress fibers had the highest intensities, but they ex-
hibited PSF-limited spatial profiles similar to those ob-
tained for single GFP fluorophores (Fig. 2 A). A small
subset of such spots was analyzed (Fig. 3 D). The average
initial intensity was ~8-fold greater (171.6 5 11.5 counts/
pixel) than that measured for individual GFP molecules
in vitro (~27 counts/pixel). We used a running Student’s
t-test to detect significant jumps in local mean intensity
over adjacent sections of data (Fig. S1 in the Supporting
Material). The mean intensity drop for each stepwise
change in intensity was 22.1 5 2.0 counts/pixel and the
mean step duration was 2.6 5 0.4 s, which are similar
to the values obtained for single GFP molecules immobi-
lized in vitro (27.4 5 2.2 counts/pixel and 2.0 5 0.4 s).
Many of these spots showed a severalfold greater final in-
tensity drop (e.g., 90–0 counts/pixel (spot v)) relative to
the 27.4 5 2.2 counts/pixel drops obtained for single
GFP photobleaching. Simultaneous photobleaching of
multiple (three for spot v) GFP fluorophores is not likely.
Instead, the final intensity drops presumably report the
dissociation of b holoenzymes from the fibers and diffu-
sion out of the evanescent field before all their fluoro-
phores have bleached.

Sample tracks and their MSD versus Dt plots were
analyzed next (Fig. S2). In addition to high intensities,
the long-lived tracks had highly nonlinear MSD versus Dt
plots, and the MSD and Dt correlation was abolished for in-
tervals greater than a few frames, consistent with immobi-
lization as validated by an examination of the single tracks.
Centroid intensity inversely correlated with mobility in the
short-lived tracks of diffusing spots, with values consistent
with the motion-induced sevenfold attenuation relative to
the intensity of immobilized holoenzymes. The slopes
(MSD versus Dt) of these short tracks correlated with the
fraction of time during which they were mobile. Analyses
of the single-spot photobleaching and single tracks show
that motion blurring is responsible for the obser-
ved mobility-intensity correlations in the subpopulation
distributions. We conclude that the rapid decrease in the
track population with time is governed predominantly by
the diffusion of unbound molecules out of the evanescent
field.

Filopodia kymographs support the tracking analysis

Cultured HUVECs exhibit numerous filopodia, which are
actin-rich tubular extensions >2 mm long and ~150 nm in
diameter. Some of the filopodia protruded close to the cover-
slip and were visualized in our video recordings by the
Biophysical Journal 111, 395–408, July 26, 2016 399



FIGURE 4 Results from photoactivated localization microscopy TIRFM

and latrunculin treatment show that both CaMKII isoforms associate with

the actin cytoskeleton. (A) Normalized fluorescence decay curves of PaGFP

and PaGFP-CaMKII fusion proteins after photoactivation by a 405 nm laser

(at t¼ 0). Decay was measured as single-molecule track lifetimes. Time 0 is

the time required to exceed the five-frame track duration threshold (0.24 s).

The data were least-square fitted to two exponentials (yellow lines): PaGFP-

a ¼ 0.72 5 0.01(e(�15.250.5t)) þ 0.28 5 0.01(e(�0.3550.07t)), n ¼ 4306;

PaGFP-b ¼ 0.51 5 0.01(e(�3.5650.08t)) þ 0.49 5 0.01(e(�0.2450.07t)),

n ¼ 11,160. In contrast, photoactivated PaGFP fluorescence intensity

measured over the image field decayed by>50% within 0.1 s (two frames).

(B) HUVEC stress fibers after 10 min (10’) treatment with latrunculin

(5 mM). The top panels (red) show the averaged tRFP-actin images:

although there is little change in the total fluorescence (97 5 17 counts/

pixel (before latrunculin treatment); 1005 23 counts/pixel (after latruncu-

lin treatment)), the fibers disappear after treatment. The bottom panels

show PaGFP-CaMKIIa (green) and single-particle tracks (white lines

(n ¼ 3777 (0’) and 1573 (10’)) superimposed on actin (red). Insets: FT

Khan et al.
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evanescent field excitation. This gave us the opportunity to
track GFP-tagged molecules that were essentially con-
strained to a single dimension independently of the depth,
z, of the evanescent field. The molecule movements were
suitable for kymograph analysis. We straightened the image
data by using spline fits to the overall filopodial shape, and
then extracted a linear strip of image pixels to form the ab-
scissa in the kymograph time-series image (Fig. S3).

The b complexes produced punctate images on each
video frame, and their motion within the filopodium then
created a pattern of vertical trajectories (i.e., along the ordi-
nate, time axis). The trajectories consisted of linear, bright
segments that were tilted slightly toward the cell body (at
~1.5 mm/min), consistent with complexes binding tightly
to actin and reporting the slow rearward flow of the central
F-actin bundle of the filopodium (50). These events were
interspersed with haphazard, dim trajectories as the particles
dissociated from actin and diffused within the body of the
filopodium. Both types of trajectories were observed for
closely adjacent objects within the same filopodium over
the same time window, indicating that dim trajectories result
from mobility of the b complexes within the filopodium
rather than movement of the filopodium relative to the glass
coverslip.

Our initial goal was to achieve a time-resolved character-
ization of bound and free episodes of b molecules con-
strained within the evanescent field by the filopodia.
However, to our surprise, the kymographs also revealed
that both a and b associated with filopodial F-actin.

F-actin dependence of CaMKII a and b lifetime distributions
by evanescent field fluorescence photoactivation microscopy

To follow up the finding that both a and b isoforms bind
actin within filopodia, we examined the kinetics of
fluorescence decay after photoactivation of PaGFP fusion
constructs within the cell cortex. A brief flash of TIR laser
light at 405 nm was used to activate PaGFP, and continuous
illumination at 488 nm allowed the activated fluorescence
to be visualized. The fluorescence of PaGFP alone decayed
rapidly, reaching half its initial value within a single
video frame (<50 ms; Fig. 4 A). The decay was two orders
of magnitude more rapid than the photobleaching rate
spectra (tRFP-actin (red); GFP (green)). (C) PaGFP-CaMKIIa fluorescence

decay before and after latrunculin treatment. Dual exponential fits: 0.71 5

0.01(e(�18.150.5t)) þ 0.29 5 0.01(e(�0.3950.01t)) (dashed yellow line) (0’);

0.8 5 0.01(e(�19.950.8t)) þ 0.21 5 0.01(e(�0.9250.04t)) (dotted yellow

line) (10’). (D) Fluorescence intensity decay curves of PaGFP-b at various

times (in minutes) after addition of latrunculin (5 mM) to a Cos7 cell cul-

ture. Intensity was normalized to unity at t ¼ 0 s (t0) and zero at t ¼ 3 s

(t3); (t3/t0) ~50%. Control fit (unnormalized): (0.26 5 0.01) þ (0.74 5

0.01(e(�0.2850.01t)). Fits after latrunculin treatment (green lines):

0.58(e(�24.3t)) þ 0.42(e(�1.2)) (10’); 0.81(e(�29.3t)) þ 0.19(e(�1.8)) (15’).

Inset: Filamentous structures visualized when PaGFP-b was photoactivated

in the absence of latrunculin (0’) were not observed (10’) after addition of

latrunculin. Correlation coefficient R2 > 0.99 for all fits.
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estimated from photobleaching of immobilized GFP mole-
cules or photoactivation of fixed cells (see Materials and
Methods). Therefore, the decay must reflect diffusion of
the photoactivated PaGFP molecules out of the evanescent
field.

The PaGFP-CaMKII fusion constructs (PaGFP-a and
PaGFP-b) showed slower and more complex kinetics
(Fig. 4 A), although it was still rapid relative to photo-
bleaching. Their fluorescence decay could be followed
by single-molecule tracking. The decay profiles were
approximated by dual-exponential fits with a 0.24 s offset
relative to the PaGFP intensity decay due to the five-frame
lifetime tracking filter. Direct image field intensity mea-
surements, analogous to those used for PaGFP but cor-
rected for the offset, showed a twofold difference in the
fast-component, but not the slow-component, decay.
Tracks may terminate for reasons other than fluorescence
loss, specifically crossover of tracks of unbound particles
and imperfections of the tracking algorithm (Supporting
Materials and Methods), that could account for the modest
discrepancy.

The slow components for PaGFP-a (1.9 s) and PaGFP-b
(3.0 s) were incompatible with free diffusion. Therefore,
we used latrunculin B (latrunculin) (51) to test whether
disruption of the actin cytoskeleton affected the mobility
of PaGFP-CaMKII fusion proteins. The effect of latruncu-
lin on HUVEC stress fibers was evident within a few mi-
nutes (Fig. 4 B). Before latrunculin treatment, PaGFP-a
colocalized weakly, generating an anisotropic pattern that
aligned with the stress-fiber arrays as revealed by the ellip-
tical Fourier transform (FT) spectra of the red/green images
(red FT (R(maj/min) (major/minor axial ratio)) ¼ 1.35,
angle ¼ 16� 5 5�); green FT (R(maj/min) ¼ 1.33, angle ¼
24� 5 5�). After incubation (10 min) with latrunculin,
the pattern had disappeared (FT R(maj/min) ¼ ~1 for both
channels; Fig. 4 B, insets). We measured the photoactivated
fluorescence decay kinetics at 0 and 10 min after latruncu-
lin treatment. Dual-exponential fits to the fluorescence
decrease showed that the amplitude and rate of the fast-
decay component increased with time after treatment,
consistent with a reduced F-actin-immobilized fraction
(Fig. 4 C). We repeated the experiment with PaGFP-b.
Photoactivated PaGFP-b formed brightly fluorescent fila-
mentous substructures that disappeared after latrunculin
treatment. The kinetics of PaGFP-b fluorescence decay
also changed (Fig. 4 D) concomitantly with the observed
structural changes. The fluorescence decay after photoacti-
vation revealed a substantial fast-decay component for
pulses applied 5 min after latrunculin treatment. The fast
component increased with incubation time, so for photoac-
tivation pulses 15 min after latrunculin treatment, the decay
was similar to that seen for photoactivated PaGFP-a
10 min after latrunculin treatment. The fast-component
decay was consistent with the formation of a PaGFP-like
inert species.
Structural determinants of the CaMKII F-actin
interaction

Having established single-molecule imaging techniques us-
ing native a and b isoforms, we next examined the GFP fu-
sions of a panel of functionally significant CaMKII mutants.
The mutations are mapped onto the CaMKII structure in
Fig. 5 A (residue positions are incremented by one in the
corresponding b sequence). The primary phosphorylation
site, aT286, is important for long-term depression (LTD)
as well as LTP since these functions are impaired in
<aT286A> mutant mice (52,53) and are affected or abol-
ished, respectively, by overexpression of a constitutively ac-
tive<aT286D> (54). To explore its role in single-molecule
binding to cytoskeletal actin, we studied the homologous
bT287A and bT287D mutants (1). Phosphorylation of the
secondary sites aT305 and aT306 is known to inhibit kinase
activity (33). We compared differences among the aT286D/
T305/T306 triple mutants with both secondary sites mutated
to either aspartate or alanine. Other mutations/lesions of
interest were aK42M, which blocks ATP binding necessary
for CaMKII activation, LTP, and spine enlargement (55);
aA302R, which disrupts calmodulin binding and transloca-
tion to the PSD (9); and the bE0 splice variant, which lacks
linker sequences encoded by exons I and IV (56). Finally,
we used the tatCN21 inhibitor, which competes with the
NR2B NMDA receptor subunit for binding to the T-site
(57), to see whether CaMKII binding targets elicit structural
changes (58) that affect F-actin association.

The primary phosphorylation site mutants have dramatically
different effects on F-actin binding

Averaged images show that the phosphorylation-incompe-
tent bT287A mutant decorates cortical actin structures
(Figs. 5 B(i) and S4). In contrast, the bT287D videos
(Movies S2 and S3) show an isotropic distribution of fast-
moving spots in the cell cortex that did not map onto the
stress fibers (Figs. 5 B(ii) and S4). As for b, the tracks of im-
mobilized bT287A spots have initial intensities that are
several multiples of individual GFP fluorophores and show
multistep photobleaching time courses. A rare example of
a long-lived track reveals 10 steps (Fig. 5 C), consistent
with the intensity ratio of the immobilized bT287A spot
relative to single GFP fluorophores. In contrast, averaged
images of the phosphomimetic bT287D mutant show no ev-
idence of actin colocalization.

The difference between the two mutant proteins was
emphasized by an analysis of MSD versus Dt plots (Fig. 5
D). For bT287A, the initial slope and subsequent behavior
were superimposable with results obtained using native
CaMKIIb. The addition of tatCN21 (1 mM) had no effect
on the association of bT287A with F-actin (two different
cultures, >10,000 tracks). In contrast, the initial (MSD
versus Dt) slope for bT287D was much greater than that
for b and bT287A, with virtually no (<7%) tracks of
Biophysical Journal 111, 395–408, July 26, 2016 401



FIGURE 5 The T287D point mutation downregulates association with

the actin cytoskeleton. (A) Atomic structure (PDB: 3SOA) of rat CaMKII

(18). The positions of the mutated sites (K42 (yellow), T286 (red), A302

(peach), and T305/T306 (magenta)) studied; the junction of kinase (green)

and association (blue) domains where the splice E0 linker segment would be

located; and the substrate-binding T-site (white) are shown in relation to the

Khan et al.
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duration longer than 0.4s (þ0.24 s offset), consistent with
fast-moving objects that diffused rapidly out of the evanes-
cent field.

All of the mutant isoforms showed similar single-object
intensities but formed two distinct mobility groups

ANOVA was used to test for significant differences in Dlat

values for the panel of CaMKII mutants (Fig. 6 A) based
on estimates of variance within and between data sets (Table
S1). Variances were normalized for different degrees of
freedom, and the probability, p, that differences between
populations were significant (p < 0.05) was computed.
Consistent with a visual inspection of the data (Fig. 6 A),
the results showed two distinct groups: a low-mobility group
comprised of the b proteins (native b, bK43R, bA303R, and
bT287A) and a high-mobility group comprised of all the a
isoform mutants together with bT287D and bE0. A similar
pattern was obtained when instantaneous velocities were
compared (Fig. S5). The modal, single-spot intensity values
(Fig. 6 B) obtained across all proteins are similar and vary
between 50 and 80 counts/pixel, which is four- to sixfold
lower than the anticipated value for the CaMKII holoen-
zyme and twofold greater than for single GFP fluorophores.
The similar values rule out oligomer aggregation as a
possible cause of the mobility differences between species.
The brighter spots seen decorating stress fibers in some
video frames are due to PSF overlap of closely opposed
spots; however, their tracks can be separated provided the
spots are not stationary (27). Spot intensity measurements
suggest that the expression level affects only the holoen-
zyme number and not the subunit stoichiometry (Fig. S5
B). Disassembly is also not the cause of the interspecies
mobility differences, since the distributions lack peaks for
the single GFP intensity and monomeric a could not be
tracked (see ‘‘Visualization of homomeric GFP-CaMKIIb
complexes in the cellular cortex’’ above). The intensity his-
tograms of b, bT287D, and a (Fig. S5 C) are differentiated
by their skewness rather than their modes. The skewness re-
flects long-lived track lifetimes and results from oligomer
secondary-structure elements (cartoon representation). (B) Superimposed

averaged images, processed as in Fig. 3 A, show localization of single mol-

ecules (Fig. S4; Movies S2 and S3) of (i) the dephosphorylated mimic,

b287A (550 frames, Ppix ¼ 0.29, Prand ¼ 0.16 5 0.07, n ¼ 6511) and

(ii) the phosphomimic, b287D (475 frames (Ppix ¼ 0.08, Prand ¼ 0.0 5

0.08, n ¼ 1020) with tRFP-actin (red, 100 frames). The mean tRFP inten-

sities were 105 5 6 (bT287A) and 213 5 75 (bT287D) counts/pixel. (C)

Photobleaching profile of a long-lived b287A-GFP track (upper black line

plot) with the corresponding t-test statistic (t-stat) based on a rolling,

nonoverlapping 12-frame window (lower red line plot). The t-stat axis de-

notes the probability that successive 12-frame segments have the same

mean. The probability threshold was set to 10�5 for detection of a step

change. The bars on the time axis of the upper plot mark the 10 steps iden-

tified by the t-test. The mean lifetime and intensity decrease per step were

2.6 5 0.4 s and 15.5 counts/pixel, respectively. (D) Average track MSD-

versus-Dt plots for the b287D and b287A populations. The dashed line is

the plot for the native b population redrawn from Fig. 3 C.



FIGURE 6 Characterization of the mutant pro-

teins. (A) Mobility (Dlat (mean 5 SE)) values for

the protein populations. Red bars indicate a-iso-

forms; white bars indicate b-isoforms. bT287D

and bE0 have mobility similar to that of the a pro-

teins. (B) Mode (5 SE) intensities for the native

and mutant GFP-CaMKII fusion protein popula-

tions. The bar colors indicate isoforms as in (A).
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immobilization on actin stress fibers (as shown in Fig. 3, A
and B).

CaMKII dissociation from cytoskeletal actin

Thus far, our analysis indicates that the track lifetimes for
both b and a are biphasic, with MSD versus Dt plots of
the short-lived population being consistent with diffusion
out of the evanescent field (e.g., Figs. 3 B and 5 D). The
photoactivation experiments in the presence and absence
of latrunculin demonstrate that the population track lifetime
is dramatically reduced coincidently with stress-fiber disas-
sembly. The reduction is mainly due to loss of the long-
lived population, implying that these population lifetimes
are limited by dissociation from the actin cytoskeleton
(Fig. 4). With this in mind, we used track lifetime histo-
grams to estimate the bound fraction and the F-actin disso-
ciation rate for different CaMKII mutants.

The lifetime of the phosphomimic bT287D was taken as
representative of unbound molecules, based on bT287D’s
failure to decorate cytoskeletal structures (Fig. 5 B; Movie
S3) and its high mobility (Fig. 6 A). Consistent with
this idea, the bT287D track lifetime data were also fairly
monotonic with single exponential decay (rate constant ¼
6.85 s�1 (1–0.05, R2 ¼ 0.99); Fig. S6). We then fitted all
of the other track distributions over this range to a function
that assumed there was a nonbinding fraction (i.e., like
bT287D) and another longer-lived fraction (Ao) that repre-
sented actin-binding complexes with an unknown but slower
dissociation rate (k):

At ¼ A0

�
e�kt

�þ ð1� A0Þ
�
e�6:85t

�
: (3)

The cytoskeletal actin content was assumed to be the same
for all experiments, consistent with the modest variation
(127 5 49 counts/pixel) in the mean tRFP-actin intensities
in the images (Figs. 3, 4, and 5). The additional information
obtained from Eq. 3 is the estimate of the bound (A0) to
freely diffusing pools (1� A0) of molecules and of the
dissociation rate, k, of molecules from the actin cytoskel-
eton. The bound fraction, Ao, was 0.22 5 0.02 for all
strong-binding b fusion proteins (minus bE0). A0 was
~2-fold lower for (a) proteins. The overall group pattern
was similar to the pattern observed in the Dlat analysis.
The k-values were 2.9 s�1 and 1.3 s�1, respectively, for
native (a) and (b) (Fig. S6).

Equation 3 would be valid over the complete (1–0) range
only for homogeneous populations that follow single-
parameter Poisson probability time distributions. This is
not the case for the two populations. For the unbound pop-
ulation, as represented by the bT287D proteins, the Dlat

value for the most mobile among them (~0.5 mm2/s;
Fig. 6 A) was ~18-fold lower than the DStokes value calcu-
lated for free-diffusing (b) holoenzymes (~10 mm2/s; Eq.
1). This discrepancy, as well as the deviation of the
bT287D distribution from the single exponential fit
(Fig. S4), indicates hindered diffusion, although bias intro-
duced by exclusion of rapidly diffusing objects by the five-
frame (0.24 s) track filter would also contribute. Power-law
distributions due to hindered diffusion have been character-
ized for F-actin gels in vitro (59), as well as in vivo for
membrane proteins confined by the actin cortex (60,61).
The tRFP-actin labeling does not resolve F-actin single fil-
aments in the dense cortex or F-actin spacing in stress fi-
bers, but limits on physical entrapment may be estimated
(Supporting Materials and Methods) to rule out this sce-
nario for stress-fiber decoration. For the bound population,
a single k will obtain only if the dissociation of CaMKII
from F-actin subunits does not depend on neighboring sub-
units. This is not the case, since the detachment probability
of a subunit will be lower if neighboring subunits partici-
pate in binding together the CaMKII holoenzymes and
F-actin.
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Therefore, we replotted all of our data on log-log axes.
We found that they deviated markedly from a dual-exponen-
tial process once the population fraction was <5% (Fig. 7
A). All distributions showed the same convex log-log rela-
tion, consistent with a multiexponential, log-normal distri-
bution of dissociation times. The initial phase of the log
plots over which Eq. 3 is valid provides important estimates
of the major binding modes. Nevertheless, it was clear that
at longer times the data deviated from a single-parameter,
two-population model, and this observation was consistent
across all data sets.

We compared the times required to reach 10% of the
initial amplitude (t1/10) between data sets (Fig. 7 B) to better
represent the log relations. We found the same grouping of
different mutants as observed in the Dlat analysis. ANOVA
(Table S2.I) did not reveal significant differences between
the grouped (a) proteins, but did so when these were group-
ed with bT287D, bE0.

As expected, t1/10 was lowest for bT287D (1.14þ 0.02 s),
the reference unbound state, and highest for native b (3.15
0.08 s). We further analyzed differences between the data
sets by conducting pairwise t-tests against the bT287D
reference (Table S2.II) to parse out differences between
group members that were not revealed by the ANOVA.
The t-tests revealed a and aK2M as outliers within the
weak-binding group, whereas the t1/10 values measured
for bE0 and the aT286D proteins with and without second-
ary phosphorylation site mutations were not significantly
different from those obtained for bT287D (Fig. 7 B).

We used the photoactivation data to estimate the dissoci-
ation constants (KD)

app of CaMKII for actin. These data pro-
vide a more valid estimate of the actin dissociation rate, koff,
since locally activated PaGFP-tagged molecules essentially
only leave the evanescent field, whereas GFP-tagged mole-
cules can both exit and enter from the bulk cytoplasm
(Supporting Materials and Methods), resulting in a seven-
FIGURE 7 Track lifetimes show log-normal decay. (A) Log-log plots of the

show a downward curvature that is most evident at longer times (i, b proteins;

10% amplitude. Asterisks mark species that associate with F-actin.
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fold difference in the observed decay (Fig. 7). Our t1/10
decay rates for PaGFP-a (3.4 5 0.4 s) and PaGFP-b
(9.4 þ 0.2 s) give koff (¼ k10 ((log (10))/t1/10) estimates
of 0.68 s�1 and 0.23 s�1, respectively. If we assume
that the rate of actin association (kon) is in the middle
(5� 105 M�1s�1) of the narrow (105–106 M�1s�1) diffu-
sion-controlled range (62) applicable to high-ionic strength
media such as cell cytoplasm (63), (KD)

app (¼ koff/kon) is
0.5 mM for b and 1.4 mM for a. The estimate for b is com-
parable to its measured 2.4 mM affinity for G-actin (24). It is
consistent with the simplest scenario of a common binding
surface for both G- and F-actin, although more complex sce-
narios are possible (64,65).
DISCUSSION

In this work, we used TIRFM-based single-molecule imag-
ing experiments, based on dual-color and photoactivation
techniques, to study the dynamics of the interactions of
CaMKII isotypes with F-actin within live cultured cells.
Our ability to detect micromolar-affinity, weak-binding in-
teractions at subsecond resolution provides information
that complements classical sedimentation and gel chroma-
tography assays, and leads to important new, to our knowl-
edge, insights.
CaMKII binding to cytoskeletal actin

We conducted mutant analyses to characterize CaMKII
binding to cytoskeletal actin. Substitution of the primary
phosphorylated threonine residue by aspartate (bT287D
and aT286D) abolished F-actin association for both iso-
forms, whereas substitution with alanine had no effect.
The aT286D mutation abrogated affinity for actin and this
effect was independent of mutations at the secondary phos-
phorylation sites. The bT287A and bT287D data are
CaMKII track lifetime distributions deviate from dual exponential fits and

ii, a proteins). (B) Histogram of rates (k10) computed from decay times to
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consistent with the idea that primary-site phosphorylation
acts as a single-stage toggle switch, in line with some acti-
vation scenarios (66), to control F-actin binding affinity.
Consistent with this idea, the bK43R and aK42M mutations
that abolish ATP binding had no effect on F-actin associa-
tion. Both b and a isoforms should bind ATP in HUVECs,
since the CaMKII Michaelis constant for ATP is ~40 mM
(58) and the cytoplasmic ATP concentration is typically
2–5 mM (67). In addition, the bK43R/aK42M data show
that, in contrast to association with the receptor subunit
GluN2B (68), the association with CaMKII F-actin is insen-
sitive to ATP binding and subsequent hydrolysis per se.
Elimination of calmodulin binding by the bA303R mutation
or use of the peptide inhibitor tatCN21 had no effect on F-
actin association. These observations are most simply
consistent with low basal Ca2þ and CaMKII activity within
HUVECs. Finally, the splice segment that is absent in bE0 is
essential for actin binding by the b isoform, consistent with
sedimentation assays (22).

Using single-molecule live-cell imaging, we built upon
the initial report of stress-fiber decoration in fixed cells
(20), which established the CaMKII-F-actin interaction.
Our direct observation of actin stress-fiber decoration by
immobilized GFP-CaMKII holoenzymes in the presence
of a mobile background fraction is consistent with specific
binding to F-actin and is incompatible with nonspecific
entrapment based on the known stress-fiber architecture.
This is also the case for mobility distributions in other
actin-rich regions of the cell, based on the known cortical
F-actin density and calculated filament mesh size (Sup-
porting Materials and Methods). We found no evidence
for higher-order clustering of holoenzymes into larger ag-
gregates that could become either entrapped within or
excluded from the actin cortical network or stress fibers.
The multistep photobleaching behavior of static spots,
along with our histogram analysis of single-object fluores-
cence intensities, establishes that holoenzymes of CaMKII
were the predominant species analyzed in our assays. The
presence of larger aggregates is further ruled out by the
fact that mutations that abolish Ca2þ/CaM binding
(A303R) or nucleotide binding (K42M/K43R) required
for aggregate formation (36,69) did not alter the native
a/b mobility and lifetime distributions. Thus, the mobility
differences between the b287D/aT286D proteins and
other CaMKII species, as well as the differences between
weak- and strong-binding groups analyzed in this study,
can only be explained by differences in F-actin binding
affinity.

Although the possibility of CaMKII association with
other stress-fiber actin-binding proteins (ABPs) cannot be
eliminated, three considerations argue for direct association
with F-actin. First, the ABP would need to be abundantly
and uniformly distributed along the fibers to be consistent
with our images (Figs. 3 A and 4 A; Movies S1 and S2).
Other stress-fiber structural ABPs (a-actinin and nonmuscle
myosin II) display periodic banding (42). CaMKII binds to
a-actinin (70), but this binding is not affected by primary-
site phosphorylation (71) and thus may be ruled out. Sec-
ond, although activated CaMKII has multiple binding
targets, there are few binding partners for inactive CaMKII
(2), which, as argued above, may be the dominant form in
our HUVEC cultures. Third, the relative binding strengths
of the CaMKIIbmutant proteins in our measurements corre-
late well with results obtained with synthetic F-actin fila-
ments in bundling assays (22).

In neuronal cultures, differences in dendritic arborization
(31) and mobility (32) between native and mutant (A303R
and K43R) b GFP fusion proteins have been reported, but
these differences are probably due to spontaneous neuronal
activity that triggers Ca2þ.CAM binding for CaMKII activa-
tion. Hence, although we do not think that multiple binding
partners play a role in our assays, they likely do so in den-
dritic spines. The reported multiple CaMKII kinetic spine
subpopulations (16) may also be due, in part, to multimodal
interactions with the F-actin network documented in this
study.
Mechanisms for the log-normal bound lifetime
distribution

The estimated dissociation constants, (KD)
app, for actin are

on the order of micromolar for both isoforms. The weak
(micromolar) binding of the major bmode is in the ballpark
of its reported G-actin affinity. The log-normal distribution
of track lifetimes indicates that stronger binding modes
exist in addition to the dominant initial mode. These modes
may arise from engagement of a variable number of
CaMKII subunits with one or more actin filaments
(Fig. S7). The fact that the log-normal relation holds for
both isoforms and their mutant variants is consistent with
the notion that both have a common F-actin binding
determinant that is more accessible in b due to its longer,
more flexible linker. The alternatively spliced linker re-
gion encoded by exons I and IV may increase flexibility
between subunits comprising the multimeric complex,
thereby ameliorating the geometrical mismatch between
CaMKII subunits (72) and binding sites on actin (73).
The increased flexibility would optimize contact at the
CaMKII and F-actin binding interface and facilitate simul-
taneous binding at two or more sites, thereby increasing
binding avidity. This flexibility could also contribute to het-
erogeneous binding kinetics, as single-molecule studies
indicate that proteins may exist as fluctuating conforma-
tional ensembles that lead to power-law distributions in
enzyme-turnover experiments over the 10�3 to 10 s time-
scale (74). Phosphorylation or substitution of serine/threo-
nine residues within the linker may also attenuate
flexibility, based on differences in residue size and charge,
to regulate persistent CaMKII association with F-actin
(13). The possibility that the two isoforms have distinct
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binding determinants for F-actin cannot be ruled out,
but we favor the idea of a common determinant as an expla-
nation based on linker length, which would also account for
the difference seen between b and bE0.
Physiological implications of the log-normal
binding curve

The log-normal binding curve extends the concentration
range for interaction with the actin cytoskeleton. It has
two consequences, as described below:

First, it explains why the temporal resolution of the
assay determines the detection sensitivity (Fig. S7). Our
ability to detect weak-binding species will decrease as
the time resolution of the assay increases. The likely
explanation for the inability of classical assays to resolve
the weak F-actin binding of <a> is that they only detect
long-lived, tight-binding states. The binding of <a> to
F-actin, thus established, must have a physiological ratio-
nale. Variations in isoform expression ratios occur as
neurons develop. The binding ensures that CaMKII
holoenzymes, predominantly composed of a subunits,
can also target the actin cytoskeleton. Although the noted
functional effects of aT286D mutation are thought to be
mediated by a kinase activity, F-actin association may
also play a role. <aT286D> has reduced synaptic lo-
calization (75,76) even though it binds GluN2B in vitro,
and loss of F-actin association could account for this
effect.

Second, the curve has implications for the transport of
<b> down neuronal processes. in contrast to <a>, <b>
is expressed only in neuronal cell bodies. Increased avidity
due to binding of multiple subunits to F-actin would depend
on both the concentration and geometry of F-actin, as well
as the multimeric state and flexibility of CaMKII. We esti-
mate expression levels of 0.2–0.4 mM in our assays, based
on the density of fluorescent spots in the videos (2000/20
mm2 image field area) and the 100 nm effective depth of
the evanescent field. CaMKII concentrations in neurons
are severalfold higher: above ~10 mM holoenzyme in den-
dritic spines and ~2–5 mM holoenzyme in dendritic pro-
cesses (5). In regions of the cell where the actin
cytoskeleton is sparse (i.e., dendritic and axonal branches
(77)), the low (micromolar) affinity of monovalent <b>
binding would minimize its association with cytoskeletal
actin during transport along the long neuronal processes
(78). However, in regions where the actin cytoskeleton
forms a dense three-dimensional meshwork (i.e., dendritic
spines), binding via multiple subunits would be favored
and <b> would be immobilized. Thus, the extended bind-
ing range would facilitate unhindered transport of CaMKII
along neuronal processes and sequestration at dendritic
spines.

Within dendritic spines, the avidity difference between
the two isoforms and between <b> and <bE0> would in-
406 Biophysical Journal 111, 395–408, July 26, 2016
crease, with qualitatively different effects on the spine actin
cytoskeleton. High avidity mediated by a few b subunits in
the ab hetero-oligomers might be sufficient to stabilize the
dynamic actin cytoskeleton. The <bE0> splice variant is
expressed in immature neurons (21,31) when affinity
for F-actin, which is not required for structural remode-
ling of synaptic sites, would only hinder the transport
needed for targeted kinase activity. Our results provide a
quantitative rationale for the fact that the expression of
<bE0> has different physiological effects compared with
that of <b>.

In conclusion, using single-molecule assays, we were
able to resolve CaMKII F-actin binding events on the
subsecond-to-second timescale in live mammalian cells.
We documented the binding of both neuronal CaMKII
isoforms and measured the effect of mutations that act
at different points in the CaMKII activation cycle.
The behavior of the mutants establishes that binding of
CaMKII to actin only occurs when CaMKII is inactive
(specifically, when it is not phosphorylated at the primary
phosphorylation site). This is in contrast to binding
of CaMKII to GluNB, which is triggered only when
the kinase is active. This new, to our knowledge, infor-
mation should be valuable for modeling the role of the
actin cytoskeleton in CaMKII transport and synaptic
localization.
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                      SUPPORTING MATERIAL   

A. Assay Development  
 

(1) Total Internal Reflection Fluorescence Microscopy (TIRFM) – The microscope workstation was 
mounted on a vibration isolation table (Isostation, Newport Spectra-Physics Ltd., Didcot, UK). 
Laboratory and instrument temperature was maintained at 23.5oC.  

Stage movement in x,y planes and objective focus in the z-direction was effected with 
nanometer precision by piezoelectric positioners (MCS-3D, SmarAct GmbH, Oldenburg, Germany 
and PIfoc P-721.10, Physik Instrumente Ltd, Bedford, UK, respectively). The workstation was 
equipped with four lasers (Crystal Laser CL-2000 (50mW @ 405nm) Reno NV, USA; Protera A488-15, 
(30mW @ 488nm) Laser2000, Huntingdon, Cambridge, UK; DPGL-2200, (200mW @ 532nm) 
Suwtech, Shanghai, China; MGL-FN-561, (200mW @ 561nm) Changchun New Industries Co. Ltd., 
Changchun, China). The laser beams were co-aligned and bought into total internal reflection (TIR) 
mode by a system of mirrors and lenses mounted on a combination of translation mounts and 
kinematic mounts (Thorlabs Inc., Newton NJ, USA). Laser intensities were modulated by variable 
neutral density filters (NDC50C2M, Thorlabs Inc.) or by varying the laser supply current. Power 
output was measured and calibrated using a laser power meter (LaserMate-Q, Coherent, Santa 
Clara, CA, USA). Laser powers were measured at the point where the laser beam exited the final 
objective lens. Lasers were blocked either by TTL modulation of the laser power supplies or by 
electronic shutter (Uniblitz D122, Vincent Associates, Rochester NY, USA).  

Evanescent field excitation was achieved by focusing the laser beams at the extreme edge 
of the back aperture of a high-numerical aperture objective lens (PlanApo 100x, 1.49NA, Olympus, 
Southend-on-Sea, UK) to produce a collimated beam of light that emerged from the objective front 
face at an angle that exceeded the critical angle (>63o). Index-matched immersion oil (Immersol 518, 
Zeiss, Cambridge, UK) coupled the objective lens to the glass-bottomed culture dish (Lab-Tek, Nunc, 
Rochester, NY, USA). Filter cubes, mounted in the microscope’s epifluorescence filter wheel, 
separated the eGFP fluorescence (Excite 488nm Laser, dichroic: Di02-R488; Emission filter: FF02-
520/28, Semrock, Rochester, NY, USA) from the tagRFP fluorescence (Excite 561nm laser, dichroic: 
Di02-R561; Emission filter: FF01-609/54, Semrock).  

For photo-activation studies, cells were co-transfected with tRFP-actin and a PaGFP-CAMKII 
fusion protein. Control cells were transfected with PaGFP. Transfected cells were first located by 
visualization based on their tRFP-actin fluorescence. Photo-activation occurred within one video 
frame and then increased during the duration of the flash, determined by a balance between the 
rate at which fluorophores were generated by photo-activation and lost by diffusion from the 
evanescent field and by photo-bleaching. Fluorophore excitation in the z-axis is determined by the 
evanescent field decay distance (1/e ~ 100 nm). Consistent with this interpretation, termination of 
the photo-activation flashes resulted in a rapid decay of fluorescence signal back to the starting 
level. Fluorescence changes were averaged over several cycles to obtain the rise and decay kinetics. 
For each genetic construct the mean decay profile was obtained by pooling video-records from 
different experiments (n >= 2). Photo-bleaching rate determined from photo-activation of a cell 
culture fixed with 1% paraformaldehyde was < 10% in 10 seconds. PaGFP and GFP photo-bleaching 
rates are similar (1). 

The sample fluorescence was imaged by an electron-multiplying, EMCCD, camera (iXon-
897bv, Andor, Belfast, UK) camera at 96 nm/pixel magnification and 20 fps readout of the full image 
field (512x512 pixels). Two-fold higher frame rates were achieved when desired by reducing the 
pixel readout area. Input to the laser shutters and image acquisition were controlled by a personal 
computer with custom software. Video data was stored on computer hard disc. Images were 
subsequently analyzed using either GMimPro (2)  or ImageJ (3). 

Live cells are more challenging than fixed cells for co-localization analysis. In fixed cells 
movements of cellular sub-structures or loosely-attached membrane relative to the glass coverslip 
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are not issues. Loss of soluble contents during fixation eliminates the high background in the red 
channel due to G-actin and labile F-actin microfilaments. In the TIRFM images, spatial differences 
due to cell body versus periphery, inhomogeneous cell attachment to the cover-glass and inexact 
coincidence of the red / green laser beam profiles will additionally be aggravated by the high camera 
gain required for single-molecule tracking. In addition, stress fiber labeling by RFP-actin (red 
channel) is punctate due to its low expression level compared to endogenous actin, while  single 
molecule imaging (green channel) is inherently stochastic. Co-localization of red / green channel 
pixel intensities from selected quadrants, reported as the Pearson’s correlation coefficient (Ppix), was 
computed using the Image J Manders coefficient plugin. The images were background subtracted 
and quadrants chosen to maximize the signal from the stress fiber array and minimize noise due to 
spatial inhomogeneity. Scatter plots gave an objective sense of co-localized pixel frequencies relative 
to non-overlapping pixels, as described (4). To assess significance the green (GFP) image was 
scrambled by shuffling pixel blocks to generate 25 randomized images. Ppix was then compared 
against the mean (+σ) correlation (Prand) of the randomized images with the red (tRFP-actin) image 
(5).  

 
(2) Single Molecule Image Analysis - The point spread function (PSF) of a single fluorophore in the 
object plane (here termed the x,y-plane), has a full-width at half-maximum (FWHM) of ~ 0.3 μm. At 
the 0.1 μm / pixel magnification of our imaging system, 95% of the PSF intensity is encompassed by a 
3x3 square pixel region. An automatic single particle tracking (ASPT) algorithm, described previously 
(2) was used to detect fluorescent spots in successive video images based on convolution of a 
moving kernel of an idealized 2-dimensional PSF. Fluorescent spots, identified on the basis of their 
match to the idealized PSF are reinforced relative to other regions of the image. Following spot 
detection, the intensity of the spot was computed by taking the mean intensity of the pixels within 
the 3x3 pixel region surrounding the spot centroid less the intensity of the adjacent ring of pixels. 
The latter operation gave a local back-ground subtraction. The detected spot x-y coordinates were 
then determined with sub-pixel resolution by fitting the PSF to a 2-D Gaussian function. Spot 
locations were then tracked in successive video frames by linking object coordinates using a 
nearest-neighbor algorithm, to give object “tracks” consisting of a series of x-y coordinates, time and 
intensity. An intensity cut-off eliminated spots whose brightness was 20X that expected for single 
GFP fluorophores. A one-frame look up function minimized fragmentation of a trajectory of a 
fluorescent spot into multiple tracks. Fragmentation could be due to frame-by-frame displacements 
larger than allowed by the search area chosen to assign centroids in adjacent frames or to electronic 
camera noise. The object tracks were then further analyzed using either custom software, Excel 
(Microsoft Corp, Redmond, WA), IgorPro (Wavemetrics, Lake Oswego, OR, USA) or MatLab 
(Mathworks, Cambridge, Cambs, UK). Least squares fits based on the Kolmogorov-Smirnov normality 
test were performed in Sigmaplot 12.0 (Systat software, San Jose, CA, USA). 

Our estimation of the lateral diffusion coefficient, Dlat, is derived from the initial gradient of 
mean squared displacement (MSD) versus time interval (Δt) plots. This assumes MSD increases 
linearly with Δt (i.e. the objects exhibit “free-diffusion”, characterized by a Brownian walk). Although 
this assumption is not strictly valid, the estimated Dlat has comparative value as long as any 
anomalous behavior scales linearly, which seems a fair approximation. Although mobility at the 
plasma membrane is essentially constrained in two-dimensions, diffusion within the cytosol is three-
dimensional and can be estimated from the two-dimensional projection of the object’s motion, 
applying a linear, 2/3rds scaling factor. The averaged particle speeds, 𝑉𝑎𝑎𝑎, are normally distributed 
(as expected, from the central limit theorem). 

 
 (3) In situ photo-bleaching of immobilized tracks – The ability to record bound lifetimes of single 
GFP-CaMKII holoenzymes rests on the fact that photo-bleaching of multiple fluorophores takes many 
seconds. T-tests (Fig. S1) show that GFP-CaMKII intensity jumps (Figure 3D) have similar frequency 
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but smaller fractional intensity drops per step (Results Section A4) in comparison to tracks of 
immobilized GFP molecules (Figure 2B),.   
 

 
  
Fig. S1: Step photo-bleaching - T-test statistics (red lines) for the track intensity profiles in Figure 3D. 
The t-test statistic records the probability that the mean intensities of adjacent twelve frame 
segments were the same. Intensity jumps (black markers) were identified when the probability was < 
10-2.5 (dashed lines).  
 
(4)  The relation between intensity, Dlat and track lifetimes – The intensity, duration and 
mobility of six single tracks, selected from the population distribution studied in Figure 3, were 
analysed (Fig. S2A).  The frame centroid intensity determined from the tracking algorithm, is 
computed by local background subtraction. It varies inversely with the frame-to-frame displacement 
being lower when molecules are unbound and their fluorescence is distributed over a larger area 
due to diffusion. The form of the population-averaged MSD-∆t plot reconstructed from plots of the 
individual tracks is governed by differences in track lifetimes. At low ∆t values it is governed by a 
mean Dlat representative of the mobility of all spots. At high ∆t values, its form is governed by the 
decrease in population size as the more mobile spots exit the evanescent field and the immobile, 
long-lived spots dominate as illustrated by the six-track population plot.  

The complete, population distribution is shown (Fig. S2B) to identify how the sub-
populations (Figures 3B, C) were selected based on their lifetimes. There will be a continuum 
between the mobility of unbound versus tightly bound particles if population size is sufficiently large 
(> 103). The population curves (Figures 3B, 5D) for the short lived tracks (Fig. S2B yellow bar) and the 
complete population may be reconstructed based on simple equations, to a good approximation, to 
sharpen intuition. 

For short tracks,  
 
𝑀𝑀𝑀𝑡=1𝑛���������� =  4{∑ (𝑇𝑇𝑇𝑇𝑇𝑇.𝑀𝑙𝑎𝑡)𝑛

𝑡=1 ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑛
𝑡=1⁄ }. 𝑡        A 

 
For the complete population  
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𝑀𝑀𝑀𝑡=1𝑛���������� =  4 {(∑𝑇𝑇𝑇𝑇𝑇𝑇).𝑀𝑙𝑎𝑡����� −  ∑ (𝑇𝑇𝑇𝑇𝑇𝑇.𝑀𝑙𝑎𝑡)𝑛−1
𝑡=0 } {(∑𝑇𝑇𝑇𝑇𝑇𝑇) −  ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑛−1

𝑡=0  }⁄ .  B
    

 
The population curve for the short tracks generated by equation-A mirrors the curve shown in 

Figure 3B well as the plots of the individual tracks are close to the linear MSD versus ∆t relation 
assumed in the equations. This is not the case for the long-lived tracks as seen from tracks 2 and 4 
(Fig. S2A). The deviation from the assumption results in a discrepancy in the rise and decay 
amplitudes between the real curve and the curves generated by equation-B. Nevertheless the basic 
characteristics of the initial rise, peak and subsequent decay are reproduced.      

Kymographs of molecules confined in filopodia (Fig. S3) provide visual illustration of the 
relation between intensity and Dlat for single tracks constrained to move in the (x, y) plane. The mean 
intensity of the kymograph tracks Q =Σq/N where N is the number of frames.  
 

 
  
Fig. S2: Properties of single tracks and their population MSD-∆t plot –A. Panels show single tracks 
linking centroids in successive frames (left) and the resulting MSD plots (right). Centroid colour 
reflects intensity (cyan (40-65 counts / pixel), blue (70 – 95 counts / pixel), dark-blue (100-125 counts 
/ pixel), black (140-165 counts / pixel)). Mean track intensities and derived Dlat values are listed. Error 
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bars for single track MSD plots were computed following (6). Error bars for the population plot (black 
symbols) reflect the variation in population size. Dips in the plot mirror the decreases in the number 
of tracks (solid line). At ∆t = 0.7 s, MSD drops to the value (0.004 µm2) for the 2 immobilized tracks. 
The value reflects the positional uncertainty in centroid determination.  B. The decrease in the size of 
the complete population (Figure 3) with time. Associated changes in Dlat (+ σ) values are shown as a 
histogram, binned according to lifetime. Grey vertical bar is 5-frame lifetime track filter The Figure 3B 
plots for the selected sub-populations (yellow (short tracks); blue (long-tracks)) illustrate the Dlat 

changes.  C. MSD-∆t plots generated from the population histogram (B) by equation A (short-lived 
tracks (yellow)) and equation B (complete population (white)) 
 

 
 
 
Fig.S3: CaMKII molecules in filopodia -A. Creation of a kymograph. A single frame image of a 
filopodium (highlighted) was skeletonized, the skeletonized outline padded (5 pixels), then 
computationally straightened. The intensity along the length of the filopodium was measured with 
ImageJ. The stack of intensity profiles obtained from several frames formed a kymograph (length 
(abscissa), time (ordinate)). Bound or weakly bound molecules persist at one position along the 
filopodium generating a track in the stack. 5 tracks (yellow numerals) are seen in the kymograph. 
Tracks 3 and 5 have bright linear segments indicative of bound states and dim wavy segments 
indicative of unbound, diffusive states. Track 1 is predominantly bound. Track 4 is predominantly 
unbound. B. Schematic over seven frames of a segment from track 5 shows displacements within 
frames (δt = 50ms).  The fluorescence image of a freely diffusing unbound molecule will be spread 
over an area greater than that occupied by its PSF when bound and immobilized. Colour (white = 
high, black = low) denotes intensity, q, of the computed centroid for each frame. C. Kymographs of 
native GFP-α and GFP-β homomeric complexes visualised within filopodia of HUVECs. The intensity 
profiles were summed over frames (white lines above the kymographs). The summed pixel intensities 
(Σqt)x were fitted to Gaussian curves of form (Σqt)x = a(exp(0.5((x-x0)/b)2)), where “a” is the peak 
amplitude (counts/pixel), “x0” the position of the peak along the filopodium,  and “b” the distance x - 
x0 (pixels) where the intensity is 1/e of the peak value. β and α have average (a / b) values of 23.5 / 
4.4 and 10.7 / 3.8 respectively.  
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B. Mutant Analyses 
 
(1) The GFP-CaMKII fusion proteins form 2 distinct groups based on mobility – Co-localization of 
the proteins βT287A, βK43R and βA303R with stress fibres is comparable to β (βstrong group). In 
contrast, βT287D does not co-localize with the fibres (Fig. S4).   ANOVA shows that α and βstrong form 
two distinct groups (Table S1). Mobility, as measured by Vavg has similar trend as measured from Dlat 
values. The intensity distributions are distinguished by their skewness. The skewness is due to long-
lived tracks (Fig. S2). Control β populations have comparable mobility, independent of tRFP-actin 
(Dlat = 0.23+0.02 µm2/s (Figure 6A) (+), 0.21 µm2/s (-)) (Fig. S5). 
 

 
 
Fig. S4: Co-localization of βT286 point mutant proteins – Left: Selected quadrants from the full 
image fields seen in Movies S2 (βT287A) and S3 (βT287D). The red and green images were merged 
for composite images in Figure 5B. Right: Scatter plots display pixel intensities with values along the 
diagonal indicating overlap, and non-diagonal values adjacent to the ordinate (ch 1: red) or abscissa 
(ch2: green) non-overlap. The plots give a visual representation of the overlap measured by the Ppix 
coefficients (Figure 5B).    
 
 

Data-Set DfB |DfT F-Value p-Value 

   Dlat(Total)     10|101 21.24    2.2xe-16 

   Dlat(α)       3|27 1.98 0.125 

   Dlat(β)       5|74 17.28    2.7xe-11 

   Dlat(βstrong)       3|78 1.31 0.276 
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Table S1: Mobility statistics. Datasets drawn from different cultures for each GFP-CaMKII fusion 
were grouped (Total = all GFP-CaMKII proteins, α = GFP-CaMKIIα proteins, β = GFP-CaMKIIβ proteins, 
βstrong = β – βT287D, βE’). F = σ2

B/σ2
T, where σ2

B is the normalized variance between groups and σ2
T is 

the normalized pooled variance. DfB and DfT are the degrees of freedom for σ2
B and σ2

T respectively. F 
= 1 in absence of any difference (null hypothesis). The p value is the probability that the null 
hypothesis is correct. 

(2) The mobility difference is not due to physical size - The magnitude of hindered diffusion has 
been measured for F-actin gels (7). Diffusion of 70 nm particles, twice the Stokes diameter, 𝑑 of 
CaMKII holoenzymes, was not affected at 2 mg/ml F-actin. Mean mesh size, ε, scales with c(-3/4), 
where c is F-actin concentration, with the proportionality constant (=0.9) obtained from the 
diffusion of latex spheres (7). The relation between these parameters in cross-linked gels, derived by 
de Gennes as cited in (7), is 

 𝑀𝑙𝑎𝑡 =  𝑀𝑆𝑡𝑆𝑆𝑆𝑆′ �𝑒𝑒𝑒 �−𝛽�𝑑 𝜀� �
2.5
�� ,         C 

where 𝑀𝑆𝑡𝑆𝑆𝑆𝑆′   is the Stokes diffusion coefficient in water times a correction factor for non-
spherical shape. The dimensionless coefficient 𝛽 is close to one. For stress fibres, the F-actin spacing 
determined by the α-actinin crosslinks (8)  is 30 nm (9). Physical entrapment of the 25 nm CaMKII 
holoenzymes within fibres would decrease 𝑀𝑆𝑡𝑆𝑆𝑆𝑆′  2.7 fold to 3.7 µm2/ s. The predicted 𝑀𝑙𝑎𝑡 would 
have the decorating particles diffuse 10 µm2 in 4 seconds in contrast to observation (Movie S1). 
Given an actin mesh size equivalent to an F-actin concentration of 1 mM (42 mg/ml), twice the value 
measured within the actin-rich lamellipodium (10); the diffusion coefficient of the particles would 
still be 80% of the value measured in pure water.  The  𝑀𝑙𝑎𝑡 after retardation by the cortical actin gel 
is predicted to be at least 15 fold and 7.5 fold greater than the 𝑀𝑙𝑎𝑡 values for the strong and weak 
binding groups (Figure 6A) respectively. The low group 𝑀𝑙𝑎𝑡s can only be due to binding interactions. 
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Fig. S5: Mobility differences are not due to aggregation / disassembly. A. Vavg (mean + se) values 
for the protein populations Red and open bars indicate different isoforms as in Figure 6. B. Spot 
intensity of αT287DT305306A variation with spot density (per 10 µm2 evanescent field). Spot 
intensities were measured with the single fluorophore detection algorithm (SFDA) (2) that separates 
spots with PSF overlap, provided peak separation exceeds 1σ. Same culture imaged 24 hrs (closed 
symbols) and 38 hrs (open symbols) after transfection. Since αT287DT305306A does not bind F-actin, 
density in the evanescent field is an indicator of intracellular concentration. The concentrations 
estimated from the spot densities are in the nano-molar range but probably 10-fold higher since 
spots must be immobilized over 2 frames for detection. Linear regression (dashed line). C. i. Track 
population intensity histograms, with each normalized by the corresponding mode values. ii. βT287A 
and βT287D population track lifetime distributions. Control β populations with (green symbols, red 
edges) and without co-expressed tRFP-actin (green symbols, black edges. The distributions are 
normalized by the number of tracks in the first bin after the 5 frame (0.24 s) lifetime threshold. 
Horizontal dashed line indicates 10% of the initial population fraction.  

 (3) Estimation of bound fraction and bound lifetimes – Track populations were divided into 
unbound and bound fractions based on a two-exponential best-fit (Fig. S6). The dwell-time in the 
evanescent field for the unbound population was set to the value obtained from the fit to the 
βT287D distribution. The dwell-time for the bound fraction was taken as the time for dissociation 
from F-actin. One bound species accounts for > 95% of the α and β populations. Bound fractions 
computed based on these majority species fall into two groups. Deviation from the two-exponential 
fits in the residual 0.05 population fraction reveals heterogeneity. A more refined statistical analysis 
(Table S2) based on a decade population decrease was not successful in establishing differences 
between βT287D and βE’ or between βT287D and the three αT286D species. 



9 
 

 

 
 

Fig. S6: Characterization of major binding modes. A. The βT287D distribution was fit with a single 
exponential (black line). Two exponential best fits for the (β), (α) and PaGFP-β  track distributions 
(coloured lines). B. Bound fractions (+ standard error) for the major bound CaMKII protein species 
estimated from two exponential fits with one exponent term fixed to the value determined from the 
βT287D fit (Equation 3) (k = 2.9 s-1 (α); 1.3 s-1 (β)). Cytoskeletal actin content was assumed to be the 
same. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Table S2: Track lifetime statistics. The video-records used for the analysis of mobility were re-
analysed for track lifetime differences. DfB, DfT, F-value, p-value and groups (α, β and βstrong) are as in 
Table S1. (α + βweak) = α + (βT287D, βE’). I. ANOVA demonstrates that the GFP-CaMKII species 
partition into two groups based on bound life-times as well as mobility. II. Simultaneous pairwise t-
tests conducted against βT287D, the reference for unbound species, dissect the basis for the group 

I. ANOVA 
   Data-Set Df|Residuals F-Value p-Value 

   Plotlog(α)       3|27 2.08 0.125 

   Plotlog(β)       5|29 18.46 
                
3.14xe-8 

   Plotlog(βStrong)       5|17 8.24 0.001 

   Plotlog(α+βweak)       5|38 3.85 0.004 
II. t-test (wβT287D) 

   CaMKIIβ p-Value CaMKIIα p-Value. 
   β         1.70E-07    α 0.0206 
   βA303R 1.20E-05    αK42M 0.0046 
   βK43R 1.80E-07    αT286D 0.2405 

   βT287A 0.00075    αT286D305306D 0.5471 

   βE' 1    αT286D305306A 1 
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differences. The p-values indicate that the (α) and (β ) isoforms as well as mutant species (βA303R), 
(βK43R), (βT287A) and (αK42M) bind; while absence of the spliced linker segment (βE’) reduces 
binding to undetectable levels. T-D substitution at the primary phosphorylation site reduces binding 
in the β-isoform independent of the modification state of the secondary phosphorylation sites. 

(4) Decay kinetics from PaGFP-fusion and GFP-fusion experiments - The difference in the track 
lifetime distributions measured from PALM experiments (PaGFP-fusions) and the GFP-fusion 
experiments (Fig. S6) is due to the different number of free (X) and bound (Y) fluorescent molecules 
imaged per unit area of the evanescent field in the two types of experiments. The number of 
fluorescent molecules N = (X+Y). At equilibrium; �𝑌

𝑋
� =  𝑒−∆𝐺/𝑆𝑘, where ∆𝐺 is is the free energy 

change upon binding. ka+ and ka- are the rates, for the X -> Y, Y -> X transitions respectively. 
 In PALM experiments, the number of photo-activated, fluorescent molecules N will have the 

equilibrium �𝑌
𝑋
� ratio. The fluorescence decay will be proportional to the loss  𝑑𝑑/𝑑𝑡 over time, t.  It 

will have a fast component due to diffusion (D = diffusion coefficient) of unbound molecules from 
the evanescent field (depth l) and a slow component due to dissociation of bound molecules.  

 

𝑑𝑑/𝑑𝑡 = 𝑋𝑒
−4𝐷𝑡

𝑙2� + 𝑌𝑒−𝑆𝑎−𝑡, 

In the absence of tracking errors, N tracks whose duration is determined by their lifetimes in 
the evanescent field will be generated from the N molecules. The comparison between the 
fluorescence intensity decay and the track lifetime distributions (Results A6) shows that tracking 
errors, like photo-bleaching, have a small (~10%) effect.   

For GFP-fusion experiments, track lifetime distributions will, in addition, to GFP-CaMKII 
molecules present at the start of the video record contain contributions from molecules (𝑑𝐹) 
entering the evanescent field during the video record. NF is negligible in PALM experiments since the 
incoming molecules will predominantly be non-fluorescent PaGFP-CaMKII. The  𝑑𝐹   molecules 
effectively available to bind F-actin will be: 

𝑇𝑇+

(�4𝑀
𝑙2� � +  𝑇𝑇+)

 

 
Therefore: 
 

𝑌𝑁
𝑋𝑁

<  
𝑌
𝑋

 given �4𝑀
𝑙2� � 

 
is comparable or greater than ka+. Hence, the fast component of the decay rate will be over-

estimated, and the bound fraction under-estimated.  
 

𝑑𝑑/𝑑𝑡 = (𝑋 + 𝑋𝑁)𝑒
−4𝐷𝑡

𝑙2� + (𝑌 + 𝑌𝑁)𝑒−𝑆𝑎−𝑡, 

The difference would increase if additional binding states are generated from the initial 
binding state, consistent with the log-normal lifetime distributions, as the apparent ka+ will 
decrease. Tracking errors due to the greater density of fluorescent spots will also increase for the 
GFP-fusion experiments.  
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    C. The Log-Normal Relation 

Simulated log-normal plots (Figure S5) illustrate that the discrimination between the (β) and 
(α) isoforms depends on the time window accessed by the assay. The plots have the form “Log(F) = 
C1(Log(1+C2t))”, where F = fraction of the initial bound population, t = time, C1 is slope. The scaling 
factor C2 = 10. The log-normal relation is a consequence of the fact that both binding partners are 
multi-subunit assemblies that permit multiple binding reactions. Conformational flexibility of both 
CaMKII and F-actin will facilitate multi-subunit engagement. 

 

 
 

Figure S7: Simulated log-normal plots. C1 was taken as 1 for α and 1.5 for β to match the 
experimentally observed slope difference in the track lifetime relations between the two isoforms 
(Figure 7A). Single molecule assays monitor dissociation kinetics over a few seconds with sub-second 
resolution. The time for the first ten-fold population decrease (F (Log (F)) = 1(0) to 0.1(-1)) complete 
within 1 ((Log (1+10t)) ~ 1) second, differs by a factor of 4.7 fold for the two isoforms. In vitro 
bundling assays, limited by sedimentation times, capture interactions that are stable for one to many 
minutes. They monitor the decrease of the bound population over the second F decade (0.1 to 0.01). 
The β isoform takes 15.7 times as long as the α isoform over this range (1-100 seconds) for a ten-fold 
population decrease. Fixation times, typically minutes, limit co-localization assays in fixed cells. These 
assays visualize stably-bound complexes. For t>100 ((Log(1+10t)) ~ 3)  seconds, < 0.1% of the bound 
α isoform population would remain, but probably would not be detected, as opposed to > 5% of the β 
population. Inset: Complex multi-subunit interactions between CaMKII (stars) and F-actin (rods) 
(schematized) can form utilizing combinations of reactions involving 2 F-actin or 2 CaMKII subunits.    
 

D. Supporting Movies 
 

Movie SR1: Video-record for Figure 3A. The first section of the video shows tRFP-actin (red) 
and gfp-CaMKII-beta (green), played back in real time; the middle section shows the averaged 
intensity for both channels overlaid as a static image; the final section shows a section of the 
separate averaged images after local background subtraction). Co-localisation of β and F-actin is 
seen at actin stress fibres (long white arrows) as well as regions (membrane ruffles (short yellow 
arrows) expected to be rich in F-actin. CaMKII / stress fibre co-localization was quantified. 
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Movie S2: Video-record for Figure 5Bi. The first section of the video shows tRFP-actin (red) 
and βT287A (green), played back in real time; the middle section shows the averaged intensity data 
for both channels overlaid as a static image; then the single particle tracks are overlaid and finally 
the averaged tRFP-actin image is shown. 
 

Movie S3: Video-record for Figure 5Bii. The first section of the video shows tRFP-actin (red) 
and βT287D (green), played back in real time; the middle section shows the averaged intensity data 
for both channels overlaid as a static image; then the single particle tracks are overlaid and finally 
the averaged tRFP-actin image is shown. 
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