
Biophysical Journal, Volume 111
Supplemental Information
Bayesian Statistical Inference in Ion-Channel Models with Exact Missed

Event Correction

Michael Epstein, Ben Calderhead, Mark A. Girolami, and Lucia G. Sivilotti

Bayesian Statistical Inference in Ion-Channel Models with
Exact Missed Event Correction

Dr M. Epstein1,2, Dr B. Calderhead1, Prof. M.A. Girolami3,
and Prof. L.G. Sivilotti4

1Department of Mathematics, Imperial College London, London, UK
2CoMPLEX, University College London, London, UK

3Department of Statistics, University of Warwick, Coventry, UK
4Department of Neuroscience, Physiology & Pharmacology, University College

London, London, UK

June 14, 2016

Supporting Materials

S1 Bayesian Overview

Bayesian approaches in Systems Biology are increasingly popular for charac-
terising the inherent uncertainty observed in biological systems. Such a for-
malism provides a mathematically consistent framework for reasoning with
and propagating uncertainty, from model parameterisation through to model
prediction.

Bayesian reasoning may be implemented through the specification of a
probabilistic model assumed to be the generative process of the data and
the specification of prior probability distributions that incorporate existing
knowledge regarding the model parameters which are to be estimated are
unknown. In the Bayesian framework we model the parameters and the un-
certainty regarding their true, fixed values as random variables. The aim is
to update our knowledge of the model parameters by gathering additional
experimental data and applying Bayes’ theorem, which combines the prior
and the model likelihood to produce a posterior distribution over the pa-
rameter values. These distributions express our updated knowledge of the
model’s parameters after taking into account the experimental data. Our
use of Uniform prior distributions results in point estimates being derived

1

from estimating the mode of the posterior being the same values as the point
estimates derived from an ML analysis.

Mathematically, Bayes’ rule is simply the application of the rules of joint
and conditional probability, which may be stated as,

p(θ | y) =
p(y | θ)p(θ)

p(y)
=

p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

(1)

where θ is the vector of unknown parameters, and y is the observed data. The
main benefit of the Bayesian approach is that uncertainty about parameter
estimates is directly encoded within the well defined posterior probability
distribution obtained after examining the experimental data, rather than
estimating a single “true” parameter value with accompanying assumptions
about estimation errors. Posterior distributions can then be sampled to prop-
agate parameter uncertainty through to the predictions that the model makes
about observable quantities. This can be achieved by sampling parameter
values from the posterior distribution and calculating model predictions from
these samples to see how they vary. A specified model can be judged not
only through its predictive power of the “best” set of model parameters but
also through the certainty of its predictions given the uncertainty of the pa-
rameter values. The posterior distribution represents the uncertainty in our
knowledge regarding the true values of the rate constants.

S2 Sampling from the Posterior Distribution of Ion-
channel models

Computing posterior probability distributions, as opposed to maximum like-
lihood estimation, often faces significant statistical challenges as the posterior
distributions of interest are often known pointwise up to a normalising con-
stant. Many challenges in Bayesian statistics, for example the estimation of
the normalising constant for model evidence, arise from the need to calculate
expectations with respect to probability distributions whose analytic form
may not be known.

Consider an arbitrary probability distribution g(θ) from which we would
want to estimate an expectation of the form Eg(θ)(f(θ)) =

∫
f(x)g(x)dx.

If we do not know the analytical distribution of g(θ) but are able to draw
realisations from g(θ), we can calculate the function f(θ) and hence the
integral can be numerically estimated. In such instances we can use the
weak law of large numbers, that is, for any ε,

P (| f̄n − µf |< ε)→ 1 as n→∞ (2)

2

where µf is the true expectation of f(θ) and f̄n is the estimator for the ex-
pectation after the nth sample. An ideal estimator for f̄n is the Monte Carlo
integrator f̄n = 1

n

∑n
i=1 f(θi). This requires the ability to draw independent

and identically distributed samples from g(θ). In practice, it is very difficult
to draw such samples but the Monte Carlo estimator remains the ideal esti-
mator as the rate of convergence of the estimator scales favourably with the
dimensionality of the sampled probability distribution.

Fortunately, Markov chain Monte Carlo methods are an invaluable tool
that can be used to perform sampling in this context. These methods employ
a probabilistic process whose stationary distribution is our target probability
distribution and hence allows us to draw samples from it. The most widely
known algorithm for such a process is the Metropolis-Hastings algorithm
[1, 2].

MCMC methods typically require significantly more computational power
than optimisation methods for Maximum Likelihood inference. This means
that the efficient design of these sampling algorithms is of crucial importance
particularly as the dimension of models increase. Although the converged
Markov chain defined by the Metropolis-Hastings algorithm will draw sam-
ples from the exact target distribution, they will not be uncorrelated as the
next proposed point depends on the current position for the chain. The pres-
ence of autocorrelation within the samples drawn increases the variance of
the Monte Carlo estimator. We can assess the impact of autocorrelation on
our sampling by considering the Effective Sample Size (ESS) of our samples.
This is the equivalent number of independent samples given the autocorre-
lation present in the samples. The ESS for a given parameter θ is given
by:

ESS(θ) =
N

(1 + 2
∑L

l=1 γ(l))
(3)

where
∑L

l=1 γ(l) is the sum of the L significant autocorrelation lag coefficients
of the converged chain and N is the number of samples drawn. A lag is
determined to be significant if its coefficient is different from zero. The
total number of significant lags can be established by visually examining
the autocorrelation plot or with by calculating a confidence interval for the
autocorrelation sequence of a white noise process with which to compare with
the empirical coefficients.

The auxiliary proposal distribution Q(. | x) is often manipulated to speed
up the convergence of the chain and reduce the level of autocorrelation in
collected samples. Such schemes often use information that is available at the
current point in the parameter space. These schemes often integrate gradient

3

information about the log-target density e.g. HMC[3] or MALA [4] or utilise
Riemannian geometry [5] in order to make more informed proposals. These
schemes work well when analytic derivatives of the log-likelihood are available
to use, or at least can be approximated in a computationally timely fashion.
Unfortunately the missed events correction in Equation 3 (main text) does
not have analytical expressions for the derivatives and the computational
expense of evaluating derivative information numerically outweighs the gain
in sampling efficiency for these models.

4

S3 Algorithms

Algorithm S1 Multiplicative Metropolis-within-Gibbs algorithm [6] with
scaling during burn-in
1: i = 0
2: burnin = N/2 . Set number of burn-in samples
3: AC(1 : K) = 0 . Number of acceptances over each adjust period
4: adjust(1 : K) = X . Consider adjusting SF every X samples during

burn-in
5: SF (1 : K) = 1 . Initialise scale factor for proposal covariance
6: θi = θ
7: Σ = I
8: while i < N do
9: for each k in K do

10: q = N (θ(k)i, SF (k) ∗ Σ(k, k))
11: Y ∼ q(θ | θ(k)i)
12: θ(k)∗ = θ(k)eY

13: α = min

(
1,

p(θ(k)∗)q(θ(k)i|θ(k)∗)[
∏K

j 6=k θ(j)]θ(k)
∗

p(θ(k))q(θ(k)∗|θ(k)i)
∏K

j (θ(j)i)

)
14: if u ∼ U [0, 1] < α then
15: θ(k)i+1 = θ(k)∗

16: AC = AC + 1
17: else
18: θ(k)i+1 = θ(k)i
19: end if
20: if mod(i, adjust(k)) == 0 and i <= burnin then
21: if AC/adjust(k) < 0.1 then . reduce the step size
22: SF (k) = SF (k) ∗ 0.9
23: else if AC/adjust(k) > 0.5 then . increase the step size
24: SF (k) = SF (k) ∗ 1.1
25: end if
26: AC(k) = 0
27: end if
28: end for
29: i = i+ 1
30: end while

In Algorithm S1, an iteration of the MCMC sampler proceeds as follows.
At the ith step for parameter k, the proposal distribution q is constructed
as a univariate Gaussian distribution with mean θ(k), the current parameter

5

value, and standard deviation Σ(k, k) where Σ(k, k) is the diagonal element of
the covariance matrix Σ scaled by the individual scaling factor for parameter
k.

A parameter value for θ(k)∗ is then proposed by exponentiating a sample
drawn from the proposal distribution and multiplying it by the current pa-
rameter value θ(k)i. This proposal is accepted with probability α according
to the Metropolis-Hastings acceptance ratio which has been adjusted to ac-
count for the fact that proposals are being made in log-space. If the move is
accepted, the value of the i + 1th iteration of parameter k is set to the pro-
posed parameter θ(k)∗ and the acceptance counter for parameter k, AC(k)
is iterated. If the move is not accepted, the value of the kth parameter set
to the current value. At this point, if we are still in the burnin phase and
the current iteration is a multiple of the adjustment period (denoted by the
modulus of i and adjust(k)), then a decision is made as to whether to adjust
the scale factor for the proposal distribution for parameter k. Briefly, if the
proportion of acceptances in the last X samples is less than 0.1 then the scale
factor for parameter k is reduced and if it is greater than 0.5 the scale factor
is increased.

Regardless of whether an adjustment is made, the acceptance counter is
reset to 0 for the next set of X samples. If we are not in the burn-in phase
or the current iteration is not a multiple of the adjustment period then the
algorithm updates to the i+1th iteration and the next sample is drawn. The
process continues until N iterations have been performed.

6

Algorithm S2 Adaptive algorithm of [7]

1: i = 0
2: θ = θi
3: while i < N do
4: if i <= 2K then
5: q = N(θ, (0.1

2)
K

I) . where K is number of params
6: else
7: q = (1− β)N(θ, (2.38

2)
K

Σ̂ + βN(θ, (0.1
2)

K
I) . where β is the mixture

parameter
8: end if
9: θ∗ ∼ q(θ | θi)

10: α = min
(

1, p(θ
∗)q(θi|θ∗)

p(θ)q(θ∗|θi)

)
11: if u ∼ U [0, 1] < α then
12: θi+1 = θ∗

13: else
14: θi+1 = θi
15: end if
16: Σ̂ = cov(θ(.)) . Update the covariance matrix with all the samples
17: i = i+ 1
18: end while

In Algorithm S2, an iteration of the MCMC algorithm proceeds as fol-
lows. If the current iteration i is less that 2K where K is the number of
parameters, then the proposal distribution q is set to a multivariate Gaus-
sian distribution with mean vector of θ, the current set of parameter values,
and a scaled identity matrix for the covariance matrix. This is to ensure
that the process proposes moves with a small step size at the start, in order
to build up the initial estimation of the sample covariance. If the current
iteration is greater than 2K then the proposal distribution is made up of a
multivariate Gaussian mixture distribution composed of an estimate of the
current covariance distribution Σ̂ and an uncorrelated Gaussian. The frac-
tion of each is decided by the β parameter which is fixed at β = 0.05 as
per [7]. A vector of parameters θ is then proposed from this distribution,
and the vector is accepted according to the probability derived from the
Metropolis-Hastings ratio. The final step of the iteration is to update the
sample covariance Σ̂ with all of the samples derived so far. The process
terminates after N samples have been drawn. Similarly to Algorithm S1, a
burn-in phase was also incorporated where a global scaling factor is used to
increase or decrease the proposal step size according to the global parameter
acceptance rate. This has been omitted from Algorithm S2 for clarity.

7

References

[1] Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller.
Equation of state calculations by fast computing machines. J. Chem.
Phys., 21(6):1087–1092, 1953.

[2] Hastings, W. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, 1970.

[3] Neal, R. MCMC using Hamiltonian dynamics. In Handbook of Markov
Chain Monte Carlo, pages 113–162. CRC Press, 2011.

[4] Roberts, G. and R. Tweedie. Exponential convergence of Langevin dis-
tributions and their discrete approximations. Bernoulli, pages 341–363,
1996.

[5] Girolami, M. and B. Calderhead. Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol.,
73(2):123–214, 2011.

[6] Sherlock, C., P. Fearnhead and G. Roberts. The random walk metropolis:
Linking theory and practice through a case study. Statist. Sci., pages
172–190, 2010.

[7] Roberts, G. and J. Rosenthal. Examples of adaptive MCMC. J. Comp.
Graph. Stat., 18(2):349–367, 2009.

8

