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S1 Data description

With the aim of catching a comprehensive picture of the public transportation (PT) networks in French
municipal areas we made use of datasets provided by local public transportation companies. The charac-
teristics of the datasets used for the different cities are listed in Table S1. Estimated timetable schedules
for the public transport service are made publicly available online and frequently updated by the com-
panies.

City Area Period Companies

Paris 47.96N-49.45N 1.15W-3.51W Sep-Oct 2013
RATP (Bus, Metro, Tram, RER)

SNCF (RER,Train)

Toulouse 43.43N- 43.74N 1.17W- 1.69W Sep-Oct 2014
Tisséo (Bus, Tram, Metro)

SNCF (Train)

Nantes 47.12N- 47.32N 1.75W-1.34W Jan 2015
Semitain (Bus, Tram, Ferry)

SNCF (Train)

Strasbourg 48.46N- 48.68N 7.60W-7.83W Jan 2015
CTS (Bus, Tram)

SNCF (Train)

Table S1. Table listing the main characteristics of the data used for each of the cities

All datasets are provided in General Transit Feed Specification (GTFS) format [1]. GTFS is a
common format for PT schedules and associated geographic information. It is composed of a series of
text files: stops, routes, trips, and other schedule data. In particular, the following objects and associated
attributes are of relevance to the purpose of this study:

• stop: the physical location where a vehicle stops to pick up or drop off passengers. It is associated
to a unique stop id and it has attributes stop name, stop lat, stop lon, respectively the name and the
geographic coordinates. (Example: 4025460, ”PONT NEUF - QUAI DU LOUVRE”, 48.858588,
2.340932)

• route: a public transportation line (in the following we refer to ”line” or ”route” as interchangeable
terms) identified by a unique route id. It has attributes route type, identifying the type of vehicle,
and route name. (Example : 831555, metro, ”14”). Note that the two directions of a same service
are identified by two different routes, and that services with multiple termini are identified by
several different routes.

• trip: a journey of a vehicle, identified by a unique trip id. It refers to the unique route of the
actual line, and also to a set of dates indicating in which days of the year that trip is running. It
is also associated to an ordered sequence of stops of the vehicle, and with the list of arrival and
departure time at each stop.

Example:

trip id stop id arrival time departure time

1013644000942075 4025388 16:10:00 16:10:00

4025390 16:11:00 16:11:00

4025392 16:12:00 16:12:00

4025393 16:13:00 16:13:00

... ... ...

S1.1 Coarse graining network stops

To model the transportation network, it was necessary to coarse grain the data by grouping nearby
stops together. Table S2 summarises the information contained in each of the datasets before and after
coarse-graining.
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Area Stops Routes Train stops Train routes Tot stops after merging

Paris 11850 1058 494 169 5690

Toulouse 1913 106 59 31 1920

Nantes 3412 61 27 18 1038

Strasbourg 1330 53 31 17 601

Table S2. Table illustrating the main characteristics of the PT systems datasets. For each urban
agglomeration (Area), we indicate the number of Bus, Metro, Tram and RER stops and routes before
coarse graining (Stops, Routes), the number of train stops (Train stops) and routes (Train routes), the
total number of stops after coarse-graining and merging the two datasets (Tot stops after merging).

S1.1.1 Paris

The transportation system described in the RATP dataset contains 11850 stops. Some of these stops
closely located to each other can be functionally replaced by a single station via a careful merging method.
In order to merge stops, we used the information provided in the GTFS dataset. Data provides the list of
stop pairs that are located at a short distance from each other, allowing people to transfer walking, from
one route to a different one in a given amount of time (that is also given in the dataset). It is for example
the case of main railway stations or big squares, where many stops are concentrated in a relatively small
area. We merged corresponding stops according to the information provided by the RATP company on
possible transfers, as well as bus stops located in front of each other at the two opposite sides of the
same road. After coarse graining, the total number of stops for the RATP dataset was reduced to 4596.

In the SNCF dataset, there is a total number of 494 suburban railway stations. It is necessary to
identify stops/train stations present both in the SNCF and RATP datasets (i.e ”Gare du Nord” is both
a RER station and a metro stop). To do so we built a grid with a resolution of 0.25 Km and we identified
for each of the train stations the cell it belongs to. A train station was then identified by the closest
RATP stops present in the actual cell or in neighbouring cells otherwise. In the city centre, all the train
stations were identified with RATP stops, while in the suburbs it was not always the case.

S1.1.2 Nantes

The Semitain dataset contains 3412 stops. It indicates for each stop whether it is part of a larger station
complex (stops that are located on the opposite side of a same road are considered part of a unique
station). Using such information, it was straightforward to merge close-by stops. Since transfer time
was not provided, we estimated the time to change line based on the data provided by RATP (average
transfer time, see table S3). After coarse graining, the network includes 1036 stops. The SNCF dataset
was used to include the train stations which are located in the area served by the Semitain company.
Using the same method we used for Paris, we found their corresponding stops in the Semitain dataset.

S1.1.3 Toulouse

The Tisséo dataset contains 5694 stops. As in the case of Nantes, the Tisséo dataset provides information
on parent stations. We merged stops accordingly received 1913 stops in total. Since transfer time was not
provided, we estimated the time to change line based on the data provided by RATP (average transfer
time, see table S3). From the SNCF dataset, we selected 59 stops that located in the same area served
by the Tisséo company.
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S1.1.4 Strasbourg

The CTS dataset contains 1330 stops. Even if it does not provide information on parent station, we
could merge stops based on their stop id. Since transfer time was not provided, we estimated the time
to change line based on the data provided by RATP (average transfer time, see table S3). In fact, in
this dataset all stops that are part of a larger station complex have the same name and in addition a
unique number (Example: stops {DANTE 01, DANTE 02, DANTE 03} are part of a same large station
complex). After coarse graining this way 595 stops were identified in the CTS dataset. From the SNCF
dataset, we selected 31 stops that are located in the same area served by the CTS company.

Mode 1 Mode 2 Average transfer time (sec)

bus bus 70

subway rail 326

tram rail 222

rail rail 60

subway bus 230

tram bus 92

subway subway 172

rail bus 232

tram subway 212

tram tram 66

Table S3. Average transfer time (in seconds) between different transportation modalities

S1.2 Choice of a representative day

The datasets provide the schedule over several months in normal situations (which means no perturbation
due to traffic jams or to system breakdowns) with a 1-minute resolution. We do not consider exact travel
time at a given departure time but an estimation of the time taken in a “typical” day. The description
of a typical day is given below.

In order to draw typical commuting times we first selected a window of Nw = 4 consecutive weeks.
A week wi = {d1, d2, d3, d4, d5} is defined as a set of five consecutive days, from Monday to Friday. The
separation week-end/week days is necessary as the system behaviour is different in these two cases. For
every span of consecutive weeks W = {w1, w2, w3, w4}, we calculated the average daily number of trips
〈NtW 〉 =

∑
d∈W Ntd/D. Here D is the number of days (D = 5 × 4 = 20), Ntd is the number of trips

during day d ∈ W . Then, by looking at fluctuations from the average σ2
W =

∑
d(Ntd − 〈NtW 〉)2/D,

we selected the four weeks span W for which σ2
W is the smallest. For each city the selected period is

indicated in Table S1.

The reason to select a span of time where the number of trips is not fluctuating is motivated by the
need to work with meaningful averaged quantities. We are aware that the results of the illustration may
not generalise well, as they are relative to a specific selected period of time. Future work could include
a comparison to the system behaviour during weekends, and at different times of the year.

For the purpose of this work, as we aimed at comparing our results with the flux of commuters, we
limited the analysis to the 7-10am time interval. Indeed, as a first step, we selected all trips occurring
between h1 = 7am and h2 = 10am within the selected period. Further work could include the study of
the system evolution at different times of the day.

As a second step, we calculated for each route `k and each day d ∈ W the total number Nt`k,d
of trips tr occurring on day d between 7 and 10 am and computed its average over the four selected
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weeks 〈Nt`k〉 =
∑

d∈W Nt`k,d/D. In this way, we received the average frequency f`k = 〈Nt`k〉/3h (3h
is the length of the time interval) in the selected period for each metro, bus or train line. Also, we
computed in equivalent way, the average duration of a trip between any two stops i and j along line `k:
〈∆t`kij 〉 =

∑
tr(∆t`kij )/

∑
d∈W Nt`k,d considering all selected trips tr.

In figure S1, we show the characteristics of the PT datasets for the 4 cities considered. We observe
that stops are highly heterogeneous with respect to the number of routes in all the cities considered,
with few highly connected stops and a considerable number of stops served by only one or two routes.
The number of stops per route vary greatly for all transportation modalities in Paris; for other cities
only buses routes have more than 40 stops, and rail routes are relatively short (up to 10/15 stops). Also
service frequencies have large varitations depending on the transportation modality, with metro lines
running considerably more frequently than other services (up to ∼ 45 times per hour), and rail services
running at most ∼ 10 times per hour.

S1.3 The INSEE datasets

In order to analyse commuting patterns, we gathered two datasets of the French Institute of Statistics
(INSEE): the Enquête Nationale Transports et Déplacements 2007-2008 [2] used for computing the
commuting travelling times, and the 2010 French census (Recensement de la population 2010 ) [3] to
extract origin-destination commuting patterns.

We used the file “Q ind lieu teg.csv” of the first dataset providing for each individual several infor-
mations about their daily journey to work/school. We estimated the average time needed to commute
a specific distance by car by scanning over the following variables V1 BTRAVDIST, i.e. the distance
covered daily (resolution 1Km), V1 BTRAVTEMPSA i.e. the time needed to cover such distance (5
minutes resolution), and V1 BTRAVMOYEN1S, i.e. the transportation mean used. The time computed
for a given distance is the time average over the trips with the same distance and travelled by car.

The flow of commuters for each origin-destination trip was estimated using the file “FD MOBPRO 2010.txt”
of the second dataset, in which each line provides several variables related to an individual interviewed.
In particular, the following variables were needed: COMMUNE and ARM, respectively indicating the IN-
SEE code associated to the municipality and the arrondissement (available only for central Paris) where
the individual interviewed lives, DCLT the INSEE code indicating the municipality and the neighbour-
hood (only for Paris) of work, and TRANS referring to the transportation mean used to commute (either
by foot, two-wheeler, car/camion/van, PT). We also considered the variable IPOND to take into account
that, because not every single citizen is interviewed for the census, each individual has a statistical weight
to infer a representative behaviour. Tables S4 and S5 provide an overview on the data for each of the
urban agglomerations considered for this study.

Area Mun O-D pairs Tot comm Car comm PT comm

Paris 460 61897 4321011 1542640 2017768

Toulouse 89 2319 363679 249642 57269

Strasbourg 57 618 170337 92275 36576

Nantes 26 524 225026 143441 45455

Table S4. For each one of the urban areas considered (Area), the table provides with the number of
municipalities considered (Mun), the number of origin-destination pairs travelled by commuters (O-D
pairs), the total number of commuters (Tot comm), the number of commuters travelling by car (Car
comm), the number of commuters travelling by PT (PT comm).
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Figure S1. Characteristics of the PT datasets for the 4 cities considered. For Paris, Toulouse,
Nantes, and Strasbourg (top to bottom), we show the probability density distribution of the number of routes
per stop after coarse-graining (left), the probability density distribution of the number of stops per line, for
different transport modalities (center) and the probability density distribution of the number of transits per hour
on each route, considering the period between 8 and 10 am (right).6



Area IC comm IC car comm IC PT comm

Paris 1369535 390105 429735

Toulouse 187797 99142 40553

Strasbourg 99041 40579 23098

Nantes 111434 55444 25957

Table S5. For each one of the urban areas considered (Area), the table provides with the total number
of intra-city commuters (IC comm), the number of intra-city commuters using the car (IC car comm),
the number of intra-city commuters using PT (IC PT comm).

S1.4 Matching the INSEE datasets and the PT datasets

In order to establish a comparison between the commuting patterns and the efficient connections of the
transportation systems, we matched the INSEE dataset with the PT data by associating to each of
the stops in the PT data its corresponding municipality (or neighbourhood in the case of Paris). We
made use of the Google Maps API [4] to assign to the latitude-longitude coordinates of each PT stop its
corresponding address. Then, we matched the municipality to its corresponding INSEE code via the file
Base communale des aires urbaines 2010 provided by INSEE. [5]

S2 Structure detection with Non-Negative Matrix Factorisa-
tion

In this section, we explain non-negative factorisation was achieved in order to extract structures from
the transportation system dataset.

Algorithm

Aiming at minimising the Euclidean distance loss function between the original matrix and the factorized
one, we implemented the standard multiplicative rule developed by Lee and Seung in [6]:

Hci ← Hci
(WTV)ci

(WTWH)ci
Wic ←Wic

(VHT )ic
(WHHT)ci

Initialisation

The NMF algorithm may not converge to the same solution at each run, depending on the initial
conditions. To address this problem we initialise the matrices W and H randomly and run the algorithm
500 times. At each iteration we compute the divergence ‖V −WH‖2F and we select the iteration for
which the error was minimal.

In the present case, the algorithm turns out to be stable and the results are robust for large networks,
future development of this work could however include the study of a consensus clustering procedure.
Consensus clustering is the problem of reconciling clustering information about the same data set coming
from different runs of the same algorithm. For NMF, some efforts have been done in this directions [7],
however, as the result of the clustering is described through two different matrices and the partitioning
is soft, the problem is not trivial to solve.
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Soft/Hard partitioning

The results of NMF provide a soft clustering of the stops to the structures. Such information is included
in matrices W and H. For a given node i and a given structure k, Wik is the out-going affiliation of
node i to structure k, while Hki is the in-going affiliation. As the original matrix can be very sparse,
and the NMF algorithm can hardly produce zero-values, many of the values in W and H are positive
but very close to zero. In order to overcome this problem and to make sure we are capturing only the
most relevant information, we applied a method to binaries the matrices W and H as follows: For each
structure c, vectors Hc and WT

c contain respectively the in-going and out-going affiliation of each node
i ∈ V to the structure c. With the goal of selecting only nodes that are strongly affiliated to c, we
applied k-means clustering on these two vectors. k-means clustering partitions the |V | affiliation values
into k clusters. By choosing k = 2 for each of the structures c we distinguished a subset of not-affiliated
nodes, whose affiliation value was very small, and a subset of affiliated nodes, whose affiliation value
was significantly different from zero. Using this partitioning we defined a binary matrix H′ such that
H′

ci = 1 if node i is in-going affiliated to community c and H′
ci = 0 if it not. In the same way, we define

W′, for the out-going affiliation.

S3 The modified Dijkstra algorithm

We devised a modified version of the Dijkstra algorithm allowing to compute approximated shortest
paths in a weighted, labeled-edge graph. Below we present the pseudo code of the modified algorithm.

The algorithm requires:

• A graph G = (V,E, tE , T, tT ) with vertex set V with cardinality N , edge set E with weight function
tE , and set of transfers T with weight function tT

• A cut-off Lmax(the maximal number of line changes allowed)

The algorithm returns:

• An array dist of length N − 1, where dist[u] is the approximated shortest path length between
nodes s and u

• an array Πnode of length N − 1, where p = Πnode[u] is the parent node of node u, that precedes it
in the shortest path between the source s and u itself

• the array of parent edges Πnode, of length N − 1, where Πedge[u] is the edge connecting u and its
parent node p in the approximated shortest path connecting u and the source s

In the pseudo-code, the following notations are introduced: lenPath assigns to each vertex v the number
of edges to reach source s, Q is a min-priority queue initialised with all nodes in VG, where priority is
given to nodes that are at shortest distance from the source s, EXTRACT −MINQ is the operation of
selecting and removing the node with highest priority from Q, e`kuv is an edge in E connecting nodes u
and v via line `k, and u is a neighbour of v if at least one of such connections exists and em is the edge
connecting two nodes in the fastest way, also taking into account possible line transfers when coming
from an other node, tm is the associated time.
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Algorithm 1 Dijkstra on P-Space Multiplex network

1 for each vertex v ∈ VG

2 dist [v ] = ∞
3 Πnode [v ] = NIL
4 Πedge [v ] = NIL
5 lenPath [v ] = 0
6 dist [s] = 0
7
8 Q = VG

9 while Q 6= ∅
10 u = Extract-MinQ
11 for each v in neighbors u:
12 if Πedge [v ] == NIL:
13 tm, em = min, argmin(tE(e`kuv))
14 else
15 tm, em = min, argmin(tE(e`kuv) + tT (Πedge(u), e`kuv))
16
17
18 if dist [v ] > dist [u] + tm AND lenPath [u] + 1 <= Lmax

19 dist [v ] = dist [u] + tm
20 Πnode [v ] = u
21 Πedge [v ] = em
22 lenPath [v ] = lenPath [u] + 1
23
24 return dist,Πnode,Πedge

Two main approximations are introduced in order to reduce the computation time, reduce the com-
plexity of the PT system representation, and to account for individuals transportation strategy. We show
that the approximations introduced do not affect the results on the overall efficiency of the PT systems.

• We limit the number of total line changes to Lmax to account for individual choices of not changing
line several times. This may lead to overestimate the shortest path lengths for paths with Lmax

changes. In this case, under a locally optimal strategy, one may change line before the best moment.
As an example let’s consider the following network:

(A,B, l1, w = 1)
(B,C, l1, w = 2)
(B,C, l2, w = 1)
(C,D, l2, w = 3)
(C,D, l3, w = 1)
The shortest path from A to D with Lmax = 1 is {el1A,B , e

l1
B,C , e

l3
C,D} with total weight = 4. However,

the algorithm will find the path {el1A,B , e
l2
B,C , e

l2
C,D} with total weight = 5.

• The representation includes labelled edges but not labelled nodes, to compromise between a complex
description of the system and an efficient one. One way to resolve this issue would be to introduce
transfers as links between labelled nodes, which would dramatically increase the network size.
Instead, the algorithm includes the transferring time by adding its value to edge weights. The
algorithm may overestimate the shortest path lengths in cases were the local optimal strategy of
choosing the fastest transportation mean does not provide a globally optimal solution due to long
transfer times. However, it provides a very good approximation when the transfer weights are small
in comparison with edges weights (i.e. for long distances).

9



To quantify the impact of the approximations introduced, we calculate shortest paths for the 4 cities
considered using both the approximated and the traditional version of the Dijkstra algorithm, where
Lmax = ∞, and both nodes and edges are labelled, resulting in a much larger network. For all pairs
of nodes (s, t), such that a path with less than Lmax changes exist, we compute the ratio r(s, t) =
distcorrect(s, t)/distapprox(s, t), where distcorrect(s, t) and distapprox(s, t) are the lengths of the shortest
paths computed with the traditional and the approximated versions of the algorithm, respectively. We
show the probability density distribution of r(s, t) in figure S2. We find that in all cities the 95% of all
paths have the same length in the two cases (see figure S2).
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Figure S2. Comparison between the approximated and the traditional Dijkstra algorithm. For
each of the cities considered, we show the probability density of paths between nodes s and t with respect to the
ratio r(s, t). The 5% percentile is equal to one for all cities.

S4 Pattern detection for Strasbourg, Nantes, and Toulouse

For the urban agglomerations of Strasbourg, Nantes, and Toulouse we detected structural patterns by
considering intervals for distances with esolution of d2 − d1 = 5 kilometers. An example of struc-
ture detected for each city is shown in Fig.S3. For an interval range (d1, d2) = (5, 10)km, both for
Strasbourg and Nantes, we observed that the BiCross validation error computed for the adjacency
matrix XSP (5Km, 10Km) is similar to the BiCross validation error of the associated random ma-
trix XSPrandom(0Km, 5Km) (Fig.S4). This suggests that there is a lack of structure in the subgraph
GSP (5Km, 10Km).

S5 Comparison of the patterns detected and the commuter
flows

We further investigate commuters behaviour, by identifying each pair of municipalities such that a flow
of commuters exists between them and computing the corresponding PT-car flow ratio as the fraction of
commuters using PT over the total people commuting between the two cities. We then compare the cases
where the two municipalities are well (Figure S5, A,C,E,G) or badly (Figure S5, B,D,F,H) connected by
PT according to our definition, considering the distribution of the PT-car flow ratio.
More precisely, we consider the PT structural pattern network GC = (VC , EC), and the commuter flow
network GTM

com = (VM
com, E

TM
com,W

M
com), where M = car or M = PT ; first for each edge (u, v) ∈ EC ,

we compute the fraction of commuters using PT, f(u, v) = (WPT
com(u, v) + WPT

com(v, u))/(WPT
com(u, v) +

WPT
com(v, u) +W car

com(v, u) +W car
com(v, u)).Then, we compute the same quantity for all edges (u, v) ∈ Ecom

that are not in EC . For each city, we finally look at the distribution of f(u, v) for both well and badly
connected municipalities (Figure S5).

In the case of Paris agglomeration, there is a significant difference between the case of privileged
connections, where the distribution is left-side skewed (figure S5 A), and not privileged connections,
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Figure S3. Pattern detection using the multi-edge P-space representation. For Strasbourg, Toulouse,
and Nantes, we show respectively in A,E and I the geographic representation of graph GSP , where links correspond
to the 1% best shortest paths of the public transportation network. In B, F and J, we show the normalised BiCross
validation errors computed for the adjacency matrix XSP (0Km, 5Km) (grey full line) of the same graphs, for
the associated random matrix XSPrandom(0Km, 5Km) (dashed line). The selected number of structures ks is
marked with a red rhombus. In C and D,G and H,K and L, two examples of structures revealed in the PT system
are presented. Green dots are in-going, while red dots are out-going affiliated.
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(A) Strasbourg,d = 5 − 10Km (B) Nantes,d = 5 − 10Km

Figure S4. For the cities of Strasbourg (a), and Nantes (b), the normalised BiCross validation error
computed for the adjacency matri XSP (5Km, 10Km) (grey full line) is similar to the BiCross validation
error of the associated random matrix XSPrandom(0Km, 5Km) (dashed line). Therefore, no rank is
selected and structures were not extracted.

where the distribution is more symmetrical (figure S5 A). This indicates that when the PT provides with
good transportation according to our method, commuters prefer PT with respect to car. On the other
hand, for Toulouse, Nantes and Strasbourg agglomerations, there is significantly less difference in the
distribution of the PT-car flow ratios for well and badly connected pairs of cities. On the one hand, this
may suggest commuters tend to use the car even where good connections are provided. On the other
hand, we have to consider both that our selection was less strict for these cities, and that self loops
(inter-city connections) may play an important contribution which could not be considered here due the
resolution limit of the commuter dataset.

S6 Characteristics of privileged connections

In this section we show some of the characteristics of the selected privileged connections. For each city,
we show the distribution of the number of line changes (Figure S6), of the number of different modalities
in the same path (Figure S7), and the occurrences of each possible transportation modality (Figure S8),
as a function of the shortest path distance.

S7 Comparison with the single-layer representations

The straightforward graph representation S9, widely used for PT systems, where for each modality stops
correspond to PT stops, and edges connect consecutive stops (connected by a vehicle without stopping
between stops) does not allow to identify privileged connections and well-connected areas within the
city.
In the MS (MS, figure 4A) we showed the city profile obtained considering privileged connections in
the multilayer representation. Here, we compare the city profile with the one obtained considering the
transportation modalities separately. We compute the shortest paths taking into account only buses,
metro and rail connections, and we select privileged connections in the same way detailed for the entire
multi-layer (see MS, section 3a). We show on the same figure (Figure S10, left) the profiles obtained for
each transportation modality in Paris. The city single-layer profile differs from the one obtained consid-
ering all transportation modalities (Figure S10, right) since the advantages due to the interconnectedness
of several transportation modes are not accounted.
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Figure S5. For each city, we show the distribution of the PT-car flow ratio f(u, v) when u and v are
well (as defined in the main text) connected (A) or badly (the complementary connections) connected
(B)

.

13



Figure S6. We show for each city the fraction of privileged shortest paths with 0, 1, or 2 number of
line changes in different colors, as a function of the shortest path distance.

.

Figure S7. For each city, we consider all edges occurring in privileged shortest paths. As a function of
the shortest path distance, we show the fraction of edges according to their transportation modality.

.

Figure S8. We show for each city the fraction of privileged shortest paths including 1, 2, or 3 trans-
portation modalities in different colors, as a function of the shortest path distance.

.
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Figure S9. Naive representation of the multi-layer PT system of Paris. For each modality (Tram, Bus,
Metro, from left to right), dots correspond to nodes, and connecting edges have a thickness proportional
to edge the number of transits per day

.

Figure S10. Comparison between the city profile of Paris considering the single-modality single-layer
representation (left), and the multi-layer representation (right).

.
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