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ABSTRACT We present MEMLET (MATLAB-enabled maximum-likelihood estimation tool), a simple-to-use and powerful
program for utilizing maximum-likelihood estimation (MLE) for parameter estimation from data produced by single-molecule
and other biophysical experiments. The program is written in MATLAB and includes a graphical user interface, making it simple
to integrate into the existing workflows of many users without requiring programming knowledge. We give a comparison of
MLE and other fitting techniques (e.g., histograms and cumulative frequency distributions), showing how MLE often outperforms
other fitting methods. The program includes a variety of features. 1) MEMLET fits probability density functions (PDFs) for many
common distributions (exponential, multiexponential, Gaussian, etc.), as well as user-specified PDFs without the need for
binning. 2) It can take into account experimental limits on the size of the shortest or longest detectable event (i.e., instrument
‘‘dead time’’) when fitting to PDFs. The proper modification of the PDFs occurs automatically in the program and greatly
increases the accuracy of fitting the rates and relative amplitudes in multicomponent exponential fits. 3) MEMLET offers model
testing (i.e., single-exponential versus double-exponential) using the log-likelihood ratio technique, which shows whether
additional fitting parameters are statistically justifiable. 4) Global fitting can be used to fit data sets from multiple experiments
to a common model. 5) Confidence intervals can be determined via bootstrapping utilizing parallel computation to increase
performance. Easy-to-follow tutorials show how these features can be used. This program packages all of these techniques
into a simple-to-use and well-documented interface to increase the accessibility of MLE fitting.
INTRODUCTION
Estimating quantitative characteristics of a biophysical
system, such as reaction rates, ligand affinities, or distance
between specific locations within macromolecules often
involves adjusting the parameters of a mathematical model
until it best predicts the relevant experimental data. In
experiments on single or small numbers of molecules, the
stochastic nature of the dynamics leads to probabilistic
models. The corresponding probability density functions
(PDFs) are typically exponentials, Gaussians, or other
forms, and it is common to consider how complex a model
is warranted by the data, such as how many exponential
components are necessary. The simplest and most accessible
method to fit the model involves binning individual data
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points to create histograms and then using least-squares
methods to find the optimized parameters of the PDF.
There are important limitations to this approach, however,
including the choice of bin size on the results and the
assumption of normally distributed variability among ob-
servations. The number of exponential or Gaussian com-
ponents necessary to produce an adequate fit is not easily
resolved. Also, when the timescale of the process being
studied approaches the experimental time resolution,
the fitting procedure can severely bias or distort the re-
sults, especially in certain cases, such as a multiexponential
distribution.

An alternative to using least-squares methods is
maximum-likelihood estimation (MLE) (1), which deter-
mines the optimum parameters of a given probability distri-
bution directly from the data without the need for binning or
other manipulations (e.g., calculation of cumulative density
functions or survivor curves). Least-squares fitting is actu-
ally a special case of MLE that assumes that the variability
of the observed data is normally distributed. MLE makes
no assumptions about the distribution of experimental
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variability, and it is able to accurately fit parameters from
data in which a significant portion of events are not de-
tected due to experimental detection limits (2–4). It excels
at fitting data sets that contain multiple dependent variables.
Additionally, MLE methods can be used for reliable global
fitting of a common model to data sets from multiple exper-
imental conditions. Although many scientific computing
packages (Origin, Scientist, MATLAB, etc.) offer some
MLE-based fitting tools, the powerful capabilities of the
method for fitting all but the simplest data remain relatively
inaccessible for many users who do not write their own anal-
ysis programs. Although methods such as Bayesian estima-
tion also offer advantages for fitting single-molecule data,
they can be significantly more complex, requiring users to
select an appropriate prior probability distribution before
fitting can occur (5). Here, we present a MATLAB-enabled
maximum-likelihood estimation tool (MEMLET), a simple
and powerful MATLAB-based program with a graphical
user interface that allows users to fit a selection of com-
mon PDFs to their data or to easily enter a custom PDF
describing other models. MEMLET also enables compen-
sation for the experimental limits on the minimum or
maximum detectable event size, comparison of models
containing different numbers of fitted parameters using
log-likelihood ratio testing (6), and estimation of confidence
intervals using the bootstrap method (7,8).
MATERIALS AND METHODS

General capabilities of MEMLET

MEMLET provides a simple graphic user interface utilizing MATLAB

(The MathWorks, Natick, MA) that fits data using MLE with the following

features:

� Ability to load data from text files or MATLAB variables

� Built-in PDFs that are commonly used in data fitting, plus the ability to

utilize user-specified PDFs

� Options to easily correct for the loss of events above or below a

maximum or minimum detectable value (e.g., instrument dead time)

for built-in or custom PDFs

� Significance testing of competing nested models

� Determination of confidence intervals of individual parameters by boot-

strapping

� Fitting of data sets with multiple dependent variables

� Global fitting of multiple data sets from multiple experimental conditions

� Availability of command-line interface for integration into existing anal-

ysis workflows

� Availability of MATLAB code or stand-alone executable, which avoids

the need for a MATLAB license

The use of each of these features is more fully described in the User’s

Guide and tutorial that accompanies the program.
Theory

MLE algorithm

The MLE method has been well described previously (1–3,9). Briefly, the

MLE method seeks to determine the parameters (a1, ., am) of a given
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PDF that best describes a data set, X. The likelihood (L) of obtaining a

particular datum, xi, is simply the value of the PDF, fðxi;a1;.;amÞ:
The joint likelihood (P) for the entire data set is the product of the likelihood

at each point:

PðXÞ ¼
Y
i

fðxi;a1;.;amÞ: (1)

In practice, this product of many probabilities typically becomes too small

for standard computing environments. This issue is circumvented by maxi-

mizing the log of the joint likelihood. This procedure results in the same set

of optimal parameters and changes the product of the individual likelihoods

to a summation:

logðPðXÞÞ ¼ log

 Y
i

fðxi;a1;.;amÞ
!

¼
X
i

logðfðxi;a1;.;amÞÞ: (2)

The maximum value of this quantity can then be found by minimizing its

negative using a variety of minimization techniques that will find the set

of parameters ða1;.;amÞ most likely to have produced the data.

The actual value of the maximum likelihood (or log of the likelihood)

varies depending on the number of points in X. This is because every

additional data point reduces the joint probability of the model being an

ideal fit to the data set. Thus, there is no target likelihood that directly in-

dicates the model’s goodness of fit. However, the log-likelihood ratio test

can be used to compare the likelihoods from different models fit to the

same data (described below).

Fitting data subject to experimental constraints

Experimental limitations often result in the exclusion of some events from

the data set. For example, an instrument’s finite sampling rate results in a

‘‘dead time,’’ where events shorter than the sampling rate are not detected.

In other cases, averaging of the data over a window can cause the loss of

short-lived events. In situations that contain a dead time (tmin), the standard

form of a PDF will be improperly scaled. This is because, by definition, the

sum of a PDF over its entire domain equals 1, but due to the dead time, there

is a range of the domain where no events can be observed (i.e., the proba-

bility of an event with duration <tmin is 0) (2).

Scaling the standard PDF, g(t,a1;.;am), so that it sums to 1 over the

actual experimental range (tmin through infinity, or upper limit of event

size, tmax) yields a renormalized PDF, f(t,tmin,a1;.;amÞ, that is properly
normalized over the relevant range (2,7):

fðt; tmin;a1;.;amÞ ¼ gðt;a1;.;amÞ
Rðtmin;a1;.;amÞ: (3)

R is a renormalization factor given by

Rðtmin;a1;.;amÞ ¼
ZN
tmin

gðt;a1;.;amÞdt: (4)

Assuming the PDF g(t,a1;.;am) accurately describes the system

being studied, R gives the proportion of the events that were observed with

(1 � R) indicating the proportion of events that were missed because of the

instrument dead time. Note that the application of the tmin correction is not

limited to instrument dead time, but can be applied to any limitation that

restricts a data set (e.g., limitations in signal detection, dynamic range, etc.).

A similar procedure can be used to renormalize a PDF if certain

events are excluded or lost because their size is too large to be included

by replacing the upper limit of the integral in Eq. 4 with this maximum
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size. MEMLET also allows users to specify this maximum detectable event

size (tmax), directing the program to use the appropriately scaled PDF for its

built-in models.

Likelihood-ratio testing

Often, when considering multiple models, one wishes to consider whether

the introduction of more free parameters is justified by the data. MLE

methods offer a simple way to determine whether the increase in the good-

ness of fit from using a PDF with more free variables is statistically justified

compared to using a constrained version of that PDF with fewer free

variables. For example, one can statistically test whether a data set is better

described by the sum of two exponential phases (i.e., unconstrained fit) or if

a single-exponential component (i.e., constrained fit) is sufficient. This

testing can be accomplished by examining a test statistic based on the ratio

of the log likelihoods (RLL) of the constrained fit (LHconst) to the uncon-

strained fit (LHunconst).

RLL ¼ �2 log

�
LHconst

LHunconst

�
¼ 2ðlogðLHunconstÞ � logðLHconstÞÞ: (5)

The RLL value is approximately described by the c2 distribution, with

the degrees of freedom given by the difference between the numbers

of free parameters in each model (6). This approximation has an error

on the order of 1=
ffiffiffi
n

p
, where n is the number of data points being

fit. Thus, for small data sets, this method may exhibit reduced accu-

racy (6). MEMLET allows the user to specify a constrained PDF to be

tested by inputting which variables should be fixed and their values.

The program will generate a constrained version of the PDF, fit it

to the data, and determine the likelihoods for the unconstrained and

constrained fits. A p-value is given that represents the probability

that the model with fewer free parameters is sufficient and that the

one with more free parameters is not justified by the improvement in

likelihood.

Obtaining confidence intervals from the bootstrap method

Estimates of the uncertainties or confidence intervals of parameters ob-

tained by least-squares fitting assumes that the residuals between the data

and the fitted function are normally distributed. MEMLET does not make

this assumption, and it is able to return accurate confidence intervals by us-

ing the well-established bootstrap method (2,7,8).

In brief, synthetic data sets of the same size as the experimental data set

are generated by randomly selecting values from the experimental data set

with inevitable duplication. The synthetic data set is fit via MLE to obtain

best-fit parameters. This process is repeated (~500–1000 times), and 95%

confidence intervals can be obtained by examining the distributions of

the parameter values estimated from the fits of the synthetic data. This

confidence interval provides information about how well constrained the

fitted parameters are for the given data set, and it thus also offers some

indication of the appropriateness of the chosen PDF. The distributions

of the parameter values from the bootstrap method can be used for further

statistical testing, for instance, using Student’s t-test to determine whether

parameters obtained from different data populations are significantly

different.

The reader should be warned that unlike the algorithm used in MEMLET,

MATLAB’s built-in MLE-based solver (mle.m) returns confidence intervals

for custom PDFs assuming that the residuals are normally distributed,

which may not be the case for the given data set.

Global fitting of multiple data sets

In a global fit, multiple data sets (X1, ., X‘), each containing n‘ data points

xi,j, are fit to the same PDF with m fitted parameters being shared between

data sets ðe:g:; a1;.;amÞ and n fitted parameters varying between data
sets ðe:g:; b1;1;b1;2; ::b1;‘.; bn;‘Þ. For example, a binding reaction may

be performed at multiple substrate concentrations, changing the on-rate

of the reaction, but leaving the off-rate unchanged. In these cases, series

of PDFs are generated, one for each data set:

f1
�
X1;a1;.;am; b1;1;.; bn;1

�
;.;

f‘
�
X‘;a1;.;am; b1;‘;.; bn;‘

�
:

(6)

The sum of the log likelihoods of each PDF is then evaluated and mini-

mized as above.

logðPðX1;.;X‘ÞÞ ¼
X‘
j¼ 1

Xn‘
i¼ 1

logðfj
�
xi;j;a1;.;am; b1;j;.; bn;j

�
:

(7)

In MEMLET, each data point, regardless of the data set in which it is con-

tained, has an equal weight in the fitting of the data.

Fitting implementation and method for finding global minima

MEMLET utilizes the hybrid-simulated annealing algorithm built in to

MATLAB (simulannealbnd.m) to minimize the log likelihood (Eq. 2)

(10). The simulated annealing method has the advantage of being

relatively insensitive to the initial user-generated parameter guesses,

making it less likely to get trapped in a local minimum of the multidi-

mensional likelihood surface. Initial parameter guesses are iteratively

perturbed by a random amount and are tested for goodness of fit.

The limit on the size of this initial perturbation is set by the ‘‘Annealing

Temperature’’ parameter. At each iteration, if the goodness-of-fit has

increased, the size of the random perturbation is decreased, and the sys-

tem ‘‘cools.’’ Here, we employ a hybrid method that first uses the simu-

lated annealing technique to find the approximate location of the global

minimum before switching to a direct search (patternsearch.m by default)

or other specified minimization algorithm to finely resolve the global

minimum.
RESULTS AND DISCUSSION

Here we present several sets of simulated data showing the
advantages of using MLE for fitting models to data sets as
provided in MEMLET. Then we show two examples of
using MEMLET to fit previously published data. Although
the shortcomings of some of the procedures that are used
in comparison to MEMLETwill be obvious to investigators
experienced in model fitting, the examples are provided as a
tutorial for those new to the subject.
Advantages of using unbinned data

The MLE method used by MEMLEToffers advantages over
least-squares fitting of binned data, particularly when the
number of data points is small. These advantages can be
illustrated considering a two-exponential process. We per-
formed a simulated reaction where species S1 and S2 were
independently converted to species P with rates of k1 ¼
500 s�1 and k2¼ 50 s�1 (Eq. 8). The percentage of P formed
from S1 was defined as 20%, and 250 simulated data points
Biophysical Journal 111, 273–282, July 26, 2016 275



Woody et al.
representing the time of appearance of P were drawn from
an exponentially weighted random variable (Fig. 1).

k1 ¼ 500 s�1

S1 S2

a c
P

k2 ¼ 50 s�1 : (8)

The appearance of P is described by the sum of two expo-
nential distributions weighted by the relative amplitudes
(A and 1 � A) of each pathway (Eq. 9) (11):

Ak1e
�k1t þ ð1� AÞk2e�k2t: (9)
A

C

E

F

G

D

B

FIGURE 1 MLE fitting outperforms least-squares fitting of binned data.

(A–D) Parameters used for generating data (histograms) according to Eq. 9

are shown in black, whereas the fit to the binned histograms (red) and the

MLE fit (green), which is independent of binning, are plotted in each graph.

The insets in (C) and (D) show the same data and fits with the x axis on a log

scale. (E–G) Average fitted value for the two rates and relative amplitudes,

as well as the 95% confidence intervals (error bars and shaded area)

obtained by 1000 rounds of simulations. The values used to generate the

simulated data are shown by the black dot and black dashed line. To see

this figure in color, go online.
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In the case of single-molecule data, the amplitudes (A or
(1 � A); Eq. 9) of each phase of an exponential distribution
give the proportion of detected events that occur with a
given rate (k1 or k2, respectively). The PDF given in Eq. 9
is properly normalized by first scaling each exponential
function by its rate before multiplying by the relative pro-
portion of each phase. This means that the total scaling fac-
tor for each exponential is the rate multiplied by the relative
proportion of events (e.g., Ak1). This subtlety in the scaling
of amplitudes is important when comparing the equations
used for the fitting of single-molecule data to the equations
used for fitting data curves from ensemble experiments,
such as stopped-flow kinetics, where the amplitudes of the
exponential phases are not scaled by their rates. In such
cases, the relative amplitude of each exponential phase gives
a direct indication of the number of molecules that have un-
dergone a transition.

Least-squares fitting of Eq. 9 to histograms containing
7–60 bins created from the simulated data set show that the
number of bins has a considerable effect on the values of esti-
mated model parameters (Fig. 1). Plots of best-fit parameters
as a function of the number of bins show that the rate (k1) and
amplitude (A) of the fast phase are vastly underestimated
when the number of bins is small (<15 bins; Fig. 1, E
and G), as the information about this rate is lost by grouping
nearly all the fast events into one or two bins (Fig. 1, A
and B). For the slower rate (k2), increasing the number of
bins decreases the precision of the determined parameter
(Fig. 1 F), which is due to increased stochastic variability
in the number of observations in each bin (Fig. 1, C and D).
Least-squares fitting of histograms typically overestimates
the fast phase (Fig. 1 E). When MEMLET fits the same
PDF to the data, it accurately resolves both the fast and
slow phases as well as their relative amplitudes with smaller
confidence intervals (Fig. 1, E–G, green bar). A tutorial
demonstrating how to use MEMLET to perform this type
of fit is given in Fig. 2.
Fitting of data sets limited by experimental
conditions

Data acquisition in most experiments is limited by a tmin,
which can be an instrument dead time or minimum signal
threshold. For example, in fluorescence imaging experi-
ments, the shortest time a molecular state can be observed
will be set by the frame rate of the camera (12–14), whereas
the dead time in optical trapping experiments is often
limited by the frequency response of the intrinsic thermal
noise of the system (4,15). If the magnitudes of the events
of interest are on the same order as tmin, there may be a sig-
nificant perturbation on the values of the fitted parameters if
the effects of tmin are not considered (4).

Such effects of a tmin in the form of an instrument dead
time are demonstrated in Fig. 3, where we simulated a
1000-point data set representing the duration of time that



FIGURE 2 Tutorial 1: Performing a Simple Fit. To see this figure in co-

lor, go online.
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molecules remain in state A until they transition to state B
(Eq. 10) at a rate of 50 s�1.

A !k¼ 50 s�1

B: (10)

The lifetime of the population of A is described by a single-
exponential distribution (Fig. 3 A, blue). In the absence of an
instrumental dead time, the transition rate can be determined
from the simulated data by calculating the inverse of the
mean of the durations.

However, when a tmin threshold is imposed by removing
all durations <10 ms, 40% of the events are removed
from the analysis (Fig. 3 A, red). Because the events that
are missed are the shortest events, the inverse of the mean
duration (33 s�1) underestimates the true rate of the process.
(Fig. 3 A, dashed red line). A faster rate constant (Fig. 3, B
and C, blue) or a longer dead time would result in an even
more substantial underestimation of the rate.

Missing events due to a dead time may lead to a reduc-
tion in the numbers of events in the shortest-duration bins
(Fig. 3 A, red histogram), which can lead to inaccurate rates
obtained by least-squares fitting. Fitting the uncorrected
single-exponential PDF to the full, binned data set using
least-squares fitting yields a rate of 49.5 s�1 (95% confi-
dence interval 48.6–50.4) (Fig. 3 A, blue line), whereas
the data subject to the 10 ms dead time yields a rate of
42.5 s�1 (95% confidence interval 39.5–45.6) (Fig. 3 A,
red line). Notably, the binned data that are truncated due
to tmin can resemble a double-exponential or g PDF, result-
ing in the application of an inappropriate kinetic model.

Fig. 3 B shows the effect of a 10 ms dead time on fitted
rates obtained via different methods as a function of the
rate constant used to simulate the data (k in Eq. 10). As
the rate constant is increased, more events are missed
from the original 1000 simulated events, until at a rate
of 500 s�1 only six events remain. Fitting the standard,
uncorrected PDF to histograms using least-squares fitting
(Fig. 3, B and C, yellow) will often underestimate the simu-
lated rate when a tmin is present. Adding an additional fitting
variable to account for the amplitude when fitting to a cumu-
lative distribution function helps to increase the accuracy of
the fit (Fig. 3, B and C, red); however, this method fails at
rates >200 s�1 when tmin is more than twice the mean life-
time of the events. Use of MEMLET to fit a dead-time-
corrected PDF (as described in Materials and Methods)
yields accurate fitting (error<10%), even when tmin is nearly
four times larger than the mean lifetime (Fig. 3, B and C,
green). Keeping the number of data points constant at
1000, as shown in dark green in Fig. 2, B and C, allows the
correctedMLE fit to produce very accurate results with small
confidence intervals (Fig. 3 B, dark-shaded regions).
Assuming that tmin is known, this MLE method requires
fewer free parameters than the cumulative distribution with
a free amplitude term. A tutorial demonstrating how to use
MEMLET to fit data subject to a dead time is given in Fig. 4.

The effect of tmin on the fit can impact the conclusion of an
experiment. For example, the data shown in Fig. 2 could
represent fits to a data set produced by an instrument with a
10 ms dead time under various experimental conditions
that affect the rate of a studied process. It is clear that as
the rate of the reaction increases, the fitted rates plateau for
all tested fitting methods except for the corrected MLE fit,
leading to a possiblemisinterpretation of the experimental re-
sults. Although othermethods exist that can correct for tmin in
simple cases such as a when the data are best described by a
single-exponential function,MEMLETprovides a consistent
way to account for tmin across a variety of complex models.

As an aside, which would be a footnote if Biophysical
Journal allowed it, for the single-exponential example, a
very simple method of estimating the time constant is to
subtract tmin from the raw average of the sample durations:

test ¼ S ti=n� tmin; (11)

where n ¼ number of samples. This relationship gives the
same values as the green symbols in Fig. 3 B. However, it
is only useful for a single-exponential process and does
not provide confidence intervals or the other features of
MEMLET. Performing such dead-time corrections allows
the other methods to perform better than shown in Fig. 3,
but MLE will still outperform in challenging circumstances,
such as when the number of points is low (Fig. S1 in the
Supporting Material).

When a process includes transitions to a state via multi-
ple pathways (Eq. 8), it is important to know the relative
contribution of each of these pathways, which can be
derived from the amplitudes of each exponential compo-
nent. Estimates of the amplitudes are highly susceptible
to distortion when tmin exists. When the simulated data
from Fig. 1, which contain two exponential phases, are
subjected to a tmin, data originating from the faster phase
Biophysical Journal 111, 273–282, July 26, 2016 277
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FIGURE 3 Effect of instrument dead time on determination of the best-fit parameters for different fitting procedures. (A) A simulated single-exponential

data set shown as histograms for the complete data set (blue) and the data set subjected to tmin ¼ 10 ms (red). (B) Rates obtained from single exponential fits

plotted versus the actual rates of the simulated data, with tmin ¼ 10 ms imposed on the data set. Shown are the rates obtained using the inverse mean method

(blue), histogram fits (yellow), cumulative distribution fits (red), and MLE method (green) with the PDFs used for fitting specified for each method. Five

hundred rounds of fitting unique simulated data sets yields 90% confidence intervals for each method (shaded areas). The dark shaded areas and closed

symbols show how each method performs when the number of points is held constant at 1000 data points, whereas the light-shaded areas and open symbols

describe the fit when the number of fitted points is reduced as the rate increases due to tmin. The difference between light and dark is most obvious for the

MLE, whereas for the other methods, the dark shaded areas appear as lines and the open and closed symbols are on top of each other. (C) The distribution of

fitted rates (histograms) compared to simulated rates (black dashed line) from the 500 simulated data sets subjected to tmin ¼ 10 ms used to generate (B). For

the MLE fits, the labels on the left y-axis give the counts for the light areas, whereas the right y-axis labels are the counts for the dark areas. Other methods

share the left-axis labels. To see this figure in color, go online.
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are more likely to go unobserved (Fig. 5 A). This causes the
relative amplitude of the faster phase to be underestimated
when using least-squares fitting to a histogram (Fig. 5 B,
yellow). Cumulative distributions with an extra free ampli-
tude term yield accurate fits for very small tmin (<0.5 ms,
half of the mean lifetime of the fast phase (Fig. 5 B, red)).
However, the tmin-corrected MLE fit performed by
MEMLET is able to faithfully report the relative ampli-
tudes of each phase to within 10%, even when tmin is the
same size as the mean lifetime (2 ms) of the fastest events
278 Biophysical Journal 111, 273–282, July 26, 2016
(Fig. 5 B, green). The ability of MEMLET and other
methods to accurately fit double-exponential functions de-
pends greatly on the difference between the two rates of the
processes, as shown in Fig. S2.
Fitting data with multiple dependent variables

Fitting data consisting of multiple dependent variables
can become difficult when the relationship between the
variables is not simple. When the residuals of a fit are not
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FIGURE 5 Effect of instrument dead time on multicomponent models for

different fitting procedures. (A) The empirical cumulative density function

(CDF) for the entire simulated data set from Fig. 1 (blue), and the CDF

when events <2 ms are removed (red). Vertical dashed lines show the

dead time, whereas horizontal dashed lines show the proportion of events

missed. The inset shows a zoomed-in view of the same plot. (B) Performance

of histogram fits (yellow), cumulative distribution fits (red), and MLE fits

(green) in estimating the proportion of fast events as a function of increasing

tmin. Shaded areas indicate 95% confidence intervals for the fits estimated

from 500 rounds of simulations. To see this figure in color, go online.

FIGURE 4 Tutorial 2: Performing a Fit Subject to a Dead Time. To see

this figure in color, go online.
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normally distributed (e.g., observations of photon counts
that follow a Poisson distribution), it is inappropriate to fit
the data using least-squares fitting, as the assumptions
necessary for least-squares fitting are not met (2). As
mentioned, the accuracy of MLE fitting is not dependent
on this assumption, and MEMLET can be easily used in
cases where two or more dependent variables are present.
A tutorial for using MEMLET to fit a data set with two
dependent variables is given in Fig. 6.

When optical trapping experiments are used to study the
force dependence of an association lifetime between two
molecules, both the force applied to the molecules and the
duration of a single interaction are recorded (4,16,17). In
Fig. 7, MEMLET has been used to fit a data set from an op-
tical trap experiment studying the durations of attachment
between myosin 1b and actin (16). The experiment reveals
durations of attachments over a wide distribution of forces
(Fig. 7 A). The standard deviations of the grouped data
show that at each force, the spread in the durations differs.
At forces <1.2 pN, the value of the durations is strongly
affected by force, whereas at forces >1.2 pN, there is little
change in the mean duration as force increases (Fig. 7 B).
This suggests that the overall rate of dissociation, k, is given
by the sum of a force-independent rate (ki) that dominates at
high forces and a force-dependent rate (kF) that dominates
at lower forces, as shown by the scheme in Eq. 12 and
Eq. 13:

Attached
kFðFÞ Y Y ki

Detached
; (12)

k ¼ k þ k ¼ k � e
�F , d
kBT þ k ; (13)
F i 0 i

where k0 is the rate of the force-dependent transition at zero
load, F is the force, d is the ‘‘distance parameter,’’ which

indicates the sensitivity of rate on force, kB is Boltzmann’s
constant, and T is the temperature. The distribution of
attachment durations will be exponentially distributed at
this summed rate (ki þ kF) at each force, but the overall dis-
tribution of all attachment durations will not be exponen-
tially distributed, causing the data points to appear very
disperse (Fig. 7 A).

MEMLET is capable of fitting this complex model to the
data while taking into account an instrument dead time
(Fig. 7 A; Table S1). A simulated data set of similar char-
acteristics and the corresponding fit are shown in Fig. S3
and Tables S2 and S3, alongside other possible parameter
values, illustrating the program’s ability to accurately fit
this type of complex distribution.
Determining the statistical justification of
additional fitted parameters

It is often nontrivial to decide which model is the appro-
priate choice to describe a given data set. The program
Biophysical Journal 111, 273–282, July 26, 2016 279



FIGURE 6 Tutorial 3: Fitting 2D Data Sets. To see this figure in color, go

online.

Woody et al.
presented here provides a log-likelihood-based method
(described above in Theory: Likelihood Ratio Testing) for
quantitatively determining whether a PDF with more free
fitting variables fits significantly better than a constrained
version of that PDF with fewer free parameters. To demon-
A

B

FIGURE 7 MEMLET can determine nonlinear relationships among mul-

tiple dependent variables. (A) Data points representing actomyosin attach-

ment duration data from Laakso et al. (17) (blue), with data grouped by

force in 0.5 pN bins with standard deviations (green bars; no binning

was used for fitting). The MLE fit (red) using the PDF in Eq. 13 describes

the scheme in Eq. 12 with 90% confidence intervals (gray shaded area)

determined from 500 rounds of bootstrapping. (B) The calculated CDF of

the data in (A) grouped in specified force ranges, showing that the rate of

the process is force dependent at low forces (0–1.2 pN), but force indepen-

dent at higher forces (>1.2 pN), as shown in Eq. 12. To see this figure in

color, go online.
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strate this functionality in MEMLET, Tutorial 4 (Fig. 8)
shows how to determine if adding an additional exponential
phase to a single-exponential distribution is statistically
justified in a simulated data set. After following the
described procedure for statistical testing, MEMLET pro-
vides a p-value giving the probability that the model with
fewer fitted parameters is a statistically better fit over the
more complex model when accounting for the increased
number of free parameters (i.e., if p ¼ 0.05, there is 95%
confidence that the model with the additional parameters
is a statistically better fit). An example of how well this
test can discriminate the two phases of a double-exponential
distribution as a function of the difference between the two
rates is shown in Fig. S2.

This test can be applied to the data presented in Fig. 7 to
determine whether the observed data require a force-depen-
dent term for significance or can be adequately described by
a simpler model function. For the data in Fig. 7, it was pre-
viously determined using MLE-based methods that the data
are well described by a process that includes a force-depen-
dent process as well as a parallel, force-independent pro-
cess, as shown in Eq. 12 (16). A PDF describing a
process with both a force-dependent and a force-indepen-
dent process can be input as a custom PDF into the fitting
program, and the log-likelihood testing function can be
used to determine that this indeed yields a better fit to the
data than either a single force-dependent or a single force-
independent process (p < 10�6; see Table S1), and that
the free parameters, ki, k0, and d, are all statistically
justified.
Global fitting

In some cases, multiple data sets might be described by dis-
tributions that share some, but not all, of the same parameter
FIGURE 8 Tutorial 4: Performing Model Testing. To see this figure in

color, go online.



A

B

FIGURE 10 Global Fitting in MEMLET improves precision of fitting

multiple data sets. Fitting of FRET efficiency data from Fig. 3 D of Chen

et al. (18) shows two populations of FRET efficiencies in two data sets,

referred to as (A) stable and (B) fluctuating. Each data set was fit indi-

vidually with a double-Gaussian PDF (dashed red lines; solid lines show

individual Gaussian components). The global fit (yellow) constrained the

position and width of both Gaussian components while allowing the relative

amplitudes to vary between the data sets. Vertical lines show the fitted

position of the high FRET peak for the individual (red) and global (yellow)

fits. To see this figure in color, go online.

MEMLET: An MLE Fitting Tool
values. For example, by changing the value of an indepen-
dent variable across experiments, such as the concentration
of a solute (ions, nucleotide, etc.), one rate of a multirate
process may be changed without affecting the other rates
present. MEMLET is capable of using multiple data sets
acquired under various conditions to fit a given model,
letting the user specify which fitting parameters are shared
between the data sets and which vary in different experi-
mental conditions, as demonstrated by the global fitting
tutorial (Fig. 9).

As an example, we apply this procedure to single-mole-
cule Förster resonance energy transfer (FRET) data from
Chen et al. (18), shown in Fig. 10, where the FRET value
signals the distance between a fluorophore on a ribosomal
subunit (L11) and a fluorophore on a tRNA during the trans-
lation of a peptide sequence (18).

The ribosomes were in a pre-translocation complex
waiting for the translocase, elongation factor G, to bind.
As evidenced from time courses of the FRET efficiency
(Fig. 3, A and B, in (18)), some of the ribosomes fluctuated
between two pre-translocation structures, termed ‘‘classic’’
and ‘‘hybrid,’’ whereas other ribosomes stably occupied
either the classic or hybrid pre-translocation state. For
both stable and fluctuating ribosomes, the distributions of
FRET efficiencies between two fluorophores were best
described by the sum of two Gaussian distributions, the
two components being justified by the log-likelihood-ratio
test described above (p-value of 2 � 10�12 and 0.00319
for the stable and fluctuating data sets, respectively).
Are the mean positions of the FRET peaks the same in
both data sets? When fitting the data sets independently
(Fig. 10, red), the apparent position of the higher FRET
FIGURE 9 Tutorial 5: Performing Global Fits. To see this figure in color,

go online.
peak differs between the stable and fluctuating ribosomes.
This might be due to the high FRET peak containing a small
percentage of events in the stable data (~10%), thereby
biasing or reducing the precision of the fitted peak. The
global fitting feature of MEMLET allows the peak positions
and widths to be specified as shared parameters, with only
the relative amplitude of each peak being unique between
the data sets. This global model (Fig. 10, yellow) yields a
good fit to the data, and it allows the relative amplitudes
of the two FRET values to be accurately compared between
the stable and fluctuating ribosome classes. The log-likeli-
hood-ratio test shows that using the individual fit parameters
for each data set is not statistically justified (Table S4).
A simulated data set with similar parameters (Fig. S4;
Table S5) demonstrates that the global fitting implementa-
tion is capable of increasing the accuracy and precision
of fitting in such cases when the number of points in a partic-
ular data set is small. In such situations, where multiple-
component distributions are used, users are encouraged to
perform similar simulations that emulate their experimental
data to ensure that their fitted parameters can be reliably
determined.
CONCLUSIONS

The provided program offers an easy-to-use and accessible
method for researchers with a wide range of computational
expertise to utilize MLE to fit their data. In addition to a
Biophysical Journal 111, 273–282, July 26, 2016 281
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simple graphical user interface, many of the program’s
functionalities are accessible and can be enhanced by edit-
ing and writing further scripts in MATLAB. The included
documentation makes it easy to fit the data to predefined
PDFs, utilize custom PDFs, estimate uncertainties using
bootstrapping, and test whether adding additional parame-
ters to a model is statistically justified. By easily allowing
users to automatically renormalize a PDF to account for
the size of their minimum or maximum detectable event
(tmin or tmax), the accuracy of fitting is greatly improved.
For more complex data sets, the ability to perform global
fitting and utilize multidimensional data enables thorough
analysis. The program runs in the MATLAB programming
environment, and is also available as a stand-alone applica-
tion that only requires the freely available MATLAB Run-
time Program. Both versions of the program, as well as
the associated help files, are available on GitHub for
download.
Program availability

The program is available on the GitHub repository hosting
service and includes the program files, stand-alone installer,
documentation, and demo data at: http://dx.doi.org/10.5281/
zenodo.55586

An accompanying web site can be found at http://
michaelswoody.github.io/MEMLET/
SUPPORTING MATERIAL

Four figures and five tables are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(16)30465-9.
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Figure S1. Comparison of fitting techniques with dead-time correction 

techniques used for all method for single exponential data. 

 

Data were generated in the same way as in Figure 3, but dead-time corrections were used for all fitting 

methods. The inverse method was corrected as described in the text by subtracting the dead-time from 

the mean duration before calculating the inverse value. The fits to the binned data points were 

corrected by using the same dead-time corrected PDF used in the MLE fit and ignoring any bins whose 

range was less than or included the dead-time. Cumulative distributions were corrected by subtracting a 

floating amplitude term from the PDF given in Figure 3. The corrected mean method gives the same 

result as the MLE method (as expected and described in the main text), however this inverse mean 

method is not applicable to data with multiple exponential components. When the number of data 

points is kept constant at 1000 (closed symbols and dark shaded areas representing 90% confidence 

intervals from 1000 rounds of simulations), the fits all maintain accuracy, but the MLE and mean fits 

show the smallest confidence intervals (mean confidence intervals not shown for clarity, but are the 

same as the MLE).  When the number of points being fit are allowed to decrease with increasing rate 

due to more events being shorter than the 10ms dead-time (open symbols and light shaded areas), the 

MLE (and mean) fit offers the more accurate fit and lowest confidence intervals, particularly at high 

rates.  
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Figure S2.  The Effect of Rates on the Ability to Distinguish Two Phases of a 

Double Exponential Distribution. 

 

Data sets composed of 1000 points each were simulated by drawing from a double exponential 

distribution with k1 = 100 s-1 and varying k2.  50% of events came from the variable rate process, and no 

dead time was imposed on the data. 1000 independent datasets were generated and fit using 

cumulative distributions, histograms, and MEMLET’s MLE algorithm.  (A) The fitted rate for k2 is plotted, 

along with 90% confidence intervals. The variable rate is difficult to accurately fit when it is 2-fold (50-

200 s-1) of k1.  MLE fitting consistently yielded a more accurate rate with lower confidence intervals 

outside of this 2-fold range than the other methods tested.  (B) Plot of the percentage of 1000 

simulations in which the log-likelihood ratio test yields a p-value below 0.05, indicating a double 

exponential fit is justified over a single exponential fit. When the value of k2 approaches k1 (100 s-1), the 

log-likelihood ratio test is unable to distinguish the two components. 
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Table S1. Fit Results and Model Testing from Figure 7 

Model k0 d ki  

Log 
likihood 

value 

p-value 
(cf. Model 1) 

PDF used (not including 
dead-time 

renormalization) 

 One Force 
dependent phase 

and One force 
independent phase 

in parallel 

0.348 12.23 0.0081 -1338 -- (𝑘𝑖 + 𝑘𝑓)𝑒−(𝑘𝑖+𝑘𝑓)𝑡 

where 𝑘𝑓 = 𝑘0𝑒
−(−

𝐹𝑑

𝑘𝐵𝑇
)
 

Bell equation 0.2295 7.956 0 (const) -1350 6x10-7 

Single Exponential 0 (const) -- 0.0260 -1515 <1x10-16 

One Force 
dependent phase 

and One force 
independent phase 

in series 

0.2205 7.81 50.18 -1350 
See note 

below 

𝑘𝑓 ∗ 𝑘𝑖

𝑘𝑖 −  𝑘𝑓
 ( 𝑒−𝑘𝑓𝑡 −  𝑒−𝑘𝑖𝑡) 

where 𝑘𝑓 = 𝑘0 ∗ 𝑒
−(−

𝐹𝑑

𝑘𝐵𝑇
)
 

 

Results of fitting various models to the data show in Fig 7 in the main text.  The Log-likelihood ratio test 

can be applied to determine p-values for whether the first equation (One Force dependent phase and 

One force independent phase in parallel) is statistically justified over other models.  

Note:  The independent series PDF can not be written as a simplified version of the parallel PDF, so it’s 

not strictly possible to perform the log-likelihood testing to compare the two models. However, from 

the log-likelihoods and the fitted values, it can be seen that the series PDF fits no better than the Bell 

Equation, which is statsically less significant than the parallel fit and has one more degree of freedom. 

This shows that the series fit is inferior to the parallel fit for this dataset.  
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Figure S3. Simulated 2D Data Similar to that Shown in Figure 7 with Fits 
 

 

 

 

 

 

 

 

 

 

 

Simulated data using the same kinetic model that was used to fit the data in Figure 7. 500 simulated 

datasets of 329 points each were generated using the “One Force dependent phase and One force 

independent phase in parallel” PDF from Table S1 and then were fit using the MLE fitting method. The 

simulated parameters are given at the top of each panel. 95% Confidence intervals (grey) were 

determined using the results of the 500 independently fit datasets.  The program is able to accurately fit 

the parameters over a wide range of input parameters, including those similar to the data shown in 

Figure 7 (Panel B). The fitting performs worst when the distance parameter (d) is very low (Panel C), or 

very high (Panels A and E), because in such cases the force range being simulated is either too small or 

large, respectively, to show the effect of the force dependent rate. Tables S2 and S3 show the 

performance of the fits from each case.  
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Table S2. Parameters for simulated data from Fig. S3 and fits to data in Fig. 7  
 

Parameters of the simulation shown in Fig S3 that shows MEMLET is capable of accurately fitting data 

similar to that presented in Fig. 7.  Number in parenthesis indicated 95% confidence intervals. Fits to the 

data in Figure 7 with 95% confidence intervals show in the last row.   

 

Table S3. Relative errors in fits to simulated data in Fig. S3 
Panel kf (s1) sim kf error d (nm) sim d error ki (s1) sim ki error 

A 3.55 18.3 % 127 -1.84 % 0.1 -1.42 % 

B 0.355 1 % 12.7 -0.803 % 0.01 2.31 % 

C 0.0355 -27.8 % 1.27 483 % 0.001 1500 % 

D 3.55 1.58 % 12.7 0.0101 % 0.01 2.96 % 

E 0.355 15.5 % 127 -12.3 % 0.01 -4.41 % 

F 0.355 3.27 % 12.7 0.769 % 0.1 0.347 % 

Values of the simulated parameters from Fig S3 and the percent error of the fits from the simulated 

values.  

 

  

Panel Fitted kf (s1) Fitted  d (nm) Fitted ki (s1) PDF used  

A 4.20 (2.13-5.90) 125 (95.5-157) 0.0986 (0.0944-0.106) 

(𝑘𝑖 + 𝑘𝑓)𝑒−(𝑘𝑖+𝑘𝑓)𝑡 

 

where 𝑘𝑓 = 𝑘0𝑒
−(−

𝐹𝑑

𝑘𝐵𝑇
)
  

B 0.359 (0.312-0.417) 12.6 (11.6-13.9) 0.0102 (0.00876-0.0115) 

C 0.0256 (0.0183-0.0331) 7.41 (2.53-5.87) 0.0160 (0.0120-0.0209) 

D 3.61 (3.19-4.06) 12.7 (12.1-13.4) 0.0103 (0.00851-0.0118) 

E 0.410 (0.133-0.596) 111 (71.6-155) 0.00956 (0.00890-0.0104) 

F 0.367 (0.271-0.459) 12.8 (9.39-16.4) 0.100 (0.0905-0.110) 

Fig 7 
data 

0.355 (0.204-0.684) 12.70 (9.63-16.28) 0.00920(0.00490-0.0110) 
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Table S4. Model Comparision and Fitted Values for Data in Figure 10 

Individual Fits 

 A mu1 sig1 mu2 sig2 Log-Likelihood 

top 0.0598 0.734 0.109 0.332 0.153 467.603 

bottom 0.2086 0.629 0.116 0.310 0.132 -77.49 

    Sum of Individual LL  390.113 

Global Fit (mu1,sig1,mu2,sig2 shared) 

glob top 0.1196 0.635 0.143 0.318 0.145 467.043 

glob bot 0.1843 0.635 0.143 0.318 0.145 -76.169 

    Sum of Global LL 390.874 

    

2* Ratio of Sum of 
Global & Indiv LL  1.522 

    

p value for 4 degrees of 
freedom 0.82 

 

Table S3 shows the values of the fits from Figure 10, inlcuding the log-likelihoods for both the 

inidivudual and global fits, where the amplitude was allow to vary between datasets. The goodness-of-

fit of the global fit compared to the individual fits can be compared using the log-likelihood ratio test by 

considering both datasets together. The sums of the log-likelihoods of the two datasets combined can 

be compared between the individual and global fits. There is a difference of four degrees of freedom 

between the global and inidivdual datasets (10 free fitting variables versus 6). This yields a p-value of 

0.82 between the global and individual fits, indicating that the inidividual fits are not statistically justified 

over the global fit.  
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Figure S4. Simulated Double Gaussian Data with Global Fits vs. Individual fits 

 

Simulated data with the same number of points as the data shown in Figure 10. Panel A shows a 

simulated dataset with similar values to that of Figure 10. Other panels show how the global fit can 

improve or match the accuracy of the fitted parameters compared to individual fits for a wide variety of 

parameters. Black dashed lines show the simulated peak positions, while the red line shows the peak 

positions from individually fitting the top and bottom datasets separately. Yellow lines show the peak 

positions when the top and bottom datasets were fit globally with only the amplitude of each of the two 

Gaussian components varying between the two datasets. Simulation and fitted parameters are given in 

Table S5.  
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Table S5. Simulation Parameters for Simulated Data in Figure S4. 

 Panel A Panel B 

 
Simulated 

Value 
Individual 

top 
Individual 

bottom 
Global fit 

Simulated 
Value 

Individual 
top 

Individual 
bottom 

Global fit 

Atop 0.88 -4.59% -- 0.01% 0.25 -0.1% -- -0.1% 

Abot 0.82 -- -11.29% -0.67% 0.6 -- 0.1% 0.1% 

mu1 0.32 0.34% -0.44% 0.72% 0.25 -0.1% -0.4% -0.2% 

sig1 0.144 7.28% -10.96% 0.96% 0.03 1.3% 1.3% 0.0% 

mu2 0.64 -2.48% -6.54% 1.12% 0.75 0.1% 0.0% 0.1% 

sig2 0.144 -3.04% 17.60% -0.16% 0.03 0.3% -3.7% 0.3% 

 

 Panel C Panel D 

 
Simulated 

Value 
Individual 

top 
Individual 

bottom 
Global fit 

Simulated 
Value 

Individual 
top 

Individual 
bottom 

Global fit 

Atop 0.8 -5.6% -- 0.0% 0.25 25.2% -- -0.1% 

Abot 0.4 -- -15.1% 0.6% 0.6 -- 15.8% 0.3% 

mu1 0.35 -1.7% -6.7% -0.5% 0.2 34.8% 28.1% 2.7% 

sig1 0.1 -4.4% -14.2% -2.6% 0.25 8.8% -6.5% 0.5% 

mu2 0.65 -4.1% -2.3% 0.1% 0.8 1.1% 8.1% -0.2% 

sig2 0.1 9.8% 10.4% -0.6% 0.25 -2.6% -9.0% -2.4% 

  

Simulated values and the percent error of the individual fits to the top and bottom datasets from each 

Panel in Figure S4 compared to the percent error of the Global fit to each Panel. Panel A most closely 

resembles the data shown in Figure 10.  In Panels A, C, and D, the global fits have a lower error than the 

individual fits.  
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