Supplementary Information for:

Strain and substrate dependent redox mediator and electricity production by *Pseudomonas aeruginosa*

Running Titel: *P. aeruginosa* strain variability of current production

Erick M. Bosire, Lars M. Blank, and Miriam A. Rosenbaum#

Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.

This supplementary information contains background information on the phenazine voltametric and sequence analysis as well as a table with primers used for molecular work.

Figure S1: Cyclic voltamograms of PCA (30 μ g mL⁻¹), PYO (15 μ g mL⁻¹) and their mixture at the same concentrations at pH 6.9. Redox peak systems of PCA (solid arrows) and PYO (dotted arrows) in the mix are shown.

Figure S2: Analysis of transcription regulatory elements of the phenazine gene clusters. All indicated transcription regulator bindings sites (BS) have been identified for all three P. with the following aeruginosa strains consensus sequences: Lux-Box ACCTACCAGATCTTGTAGTTGAGCCGGTACGAGCGTTCTGTGTTTTATGCAATCCACATCAGCGACC AGGGATGCTGGCTATTTGAAACACTTCACGGAATGACGCTGAAAGTCTTCGCGACCTCGTCTGTCG CACCTTAACGAAAGCATTGCGAATCCATTACCGACAGGTTTCCAAAAGAAACCCGGGATGAAACTC CTATTGCCTTTCGAAAATTGGAAACGACAGGCGAACATATGTAACGCGAAA; LasR-BS ACCTACCAGATCTTGTAGTT; RsaL-BS - TATGCAATCCACATC; QscR-BS (=PhzR-BS) -ACCTGCCCGGAAGGGCAGGTTGTCCC; VqsR-BS - TCGCCCGGCGGCGGCGA; AmrZ-BS - (i) CGAATTGCCATGA, (ii) CAATTCGGCATTA.

Primer name	Sequence 5'→3'	Application		
PA14Aphz knockout generation				
Op1_left_for	gaattcgagctcggtacGCCTGTCCAAGCTGTACC			
Op1_left_rev	cgatccgctCGACCGAAGACTGAGAAGAG	Knockout PA14		
Op1_right_for	cttcggtcgAGCGGATCGTCGACCTG	phzA1-G1,S,M		
Op1_right_rev	gtcgactctagaggatccCGGCTTCATCGGTTTCTTCG			
Op2_left_for	gaattcgagctcggtacATGCATATCCCGCCCGAG			
Op2_left_rev	ttgaaagggTTGGAGCCCATCCAACCG	Knockout PA14		
Op2_right_for	ggctccaaCCCTTTCAACCGTTGGTACTCTC	phzA2-G2		
Op2_right_rev	gtcgactctagaggatccCGGTGGGCAAGACCTACG			
pEMG_for	CGGGCCTCTTCGCTATTAC			
pEMG_rev	TTATGCTTCCGGCTCGTATG			
Op1_Gen_L_for	AAGGTCAACGCGGTACAG	Confirmation of		
Op1_Gen_R_rev	CACCGCCGAACTCTATCC	contragration and		
Op1_KO_rev	GCGCGAATACGAAGAAGC	knockout		
Op2_Gen_L_for	CGCATCGACGATATGAAACG	KIIOCKOUL		
Op2_Gen_R_rev	CGTCCCGGAAAGCAATGTG			
Op2_KO_rev	AGATTCCCTACGGGCAGCAG			
Strain KRP1 Sequencing of phenazine gene regions				
OP1-1 (for)	TGCCCGGTGTTGCTAGCG	KRP1: phz operon 1		
OP1-2 (rev)	TCGGCAGGTCGACGATCC			
OP2-1 (for)	TCGTCTGGCGCGAATTCTG	and 2 FCK		
OP2-2 (rev)	GAGAGCCGTTCTACGGTTTCC	amprincation		
OP1-1-S1	TTCCACCTGGTTGCGGTAG			
OP1-882-S2	GCAGGATCATCTGCAGTTC			
OP1-1861-S3	GGCCGTTGAGGATGATCTG			
OP1-2618-S4	GGTAGACCTCGATGGGAAAG			
OP1-3610-S5	GGCGATCATCGAGGTGAAG	KDD1 · nhz operon 1		
OP1-4451-S6	AGCAACTGGCGGAAGAAAC	sequencing		
OP1-5453-S7	GGAAGTAGCGCTGCATGTC	sequencing		
OP1-6326-S8	CGCATAGCCCTTGAGAATC			
OP1-7219-S9	GTCCTGGCCTTTGGTATTC			
OP1-8052-S10	TGGAAACCTGTCGGTAATGG			
OP1-8916-S11	TCGGCGAAGACTTCTACAG			
OP2-1-S1	TCGTCTGGCGCGAATTCTG			
OP2-940-S2	GTGAGGGACTCGGAAATG			
OP2-1701-S3	TCTCCGACAGGTTCATCTC			
OP2-2624-S4	ATCGGAGTGACGCACGATG	KPD1 · nhz Operon 2		
OP2-3518-S5	GATCTGCCGGTAGGGAATC	sequencing		
OP2-4449-S6	ATCGCAGAGGCTGGTGTAG	sequencing		
OP2-5333-S7	CGTTCTCGGCATGGTGGTC			
OP2-6334-S8	CTCGAAGATCCGCACGTTG			
OP2-7244-S9	CTTGAGCATCTCGGTTTCC			

Table S1. Primers used in this study.

Gene	PA14-PAO1	PA14-KRP1	PAO1-KRP1
phzA1	98.98%, (5)	98.98%, (5)	100%
phzB1	98.36%, (8)	99.18%, (4)	98.77%, (6)
phzC1	99.26%, (9)	98.85%, 14	98.61%, 17
phzD1	99.36%, (4)	99.84%, (2)	98.87%, (7)
phzE1	99.15%, (16)	99.30%, (13)	99.42%, (11)
phzF1	99.52%, (4)	99.16%, (7)	99.40%, (5)
phzG1	99.38%, (4)	99.54%, (3)	99.84%, (1)
phzM	99.30%, (7)	99.40%, (6)	99.70%, (3)
phzS	98.10%, (23)	98.18%, (22)	99.59%, (5)
phzA2	98.98%, (5)	99.59%, (2)	98.98%, (5)
phzB2	99.18%, (4)	99.59%, (2)	99.59%, (2)
phzC2	99.43%, (7)	98.77%, (15)	98.85%, (14),
		(88.92% with 120n gap) ^a	(89.00%, with 120n gap) ^a
phzD2	99.20%, (5)	99.68%, 2	98.88%, (7)
phzE2	98.99%, (19)	99.15%, 16	99.42%, (11)
phzF2	99.52%, (4)	99.16%, 7	99.40%, (5)
phzG2	99.23%, (5)	99.38%, 4	99.85%, (1)

Table S2. DNA sequence identity (in %) of the phenazine genes in a pair-wise comparison of the three *P. aeruginosa* strains. The number in the bracket indicates the number of nucleotide miss-matches.

^a The obtained sequences for phzC2 from KRP1 contained a 120 nucleotide gap. It is not clear yet, if this is due to difficulties in sequencing for this area or if the gene contains a 120bp deletion.

References:

Pearson JP, Pesci EC and Iglewski BH. 1997. Roles of *Pseudomonas aeruginosa* las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology. 179(18): 5756-5767.

Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, Zennaro E, Leoni

L.2007. RsaL provides quorum sensing homeostasis and functions as a global regulator of

gene expression in Pseudomonas aeruginosa. Molecular Microbiology. 66(6): 1557-65.

Chugani SA, Whiteley M, Lee KM, D'Argenio D, Manoil C, et al. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in *Pseudomonas aeruginosa*. Proc.Natl.

Acad. Sci. USA 98:2752-57.

Lee JH, Lequette Y, Greenberg EP. 2006. Activity of purified QscR, a *Pseudomonas aeruginosa* orphan quorum-sensing transcription factor. Molecular Microbiology. 59:602–9.

Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, et al. 2004. Global regulation of quorum sensing and virulence by VqsR in *Pseudomonas aeruginosa*. Microbiology 150:831–41.

Granero FM, Nieto MR, Vesga P, Martin M and Rivilla R. 2013. AmrZ is a global transcriptional regulator implicated in iron uptake and environmental adaption in *P*. *fluorescens*F113. BMC genomics. 15: 237.