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Supplementary Note 1 – Assessing spectrum clustering accuracy 

209 human datasets (test dataset, Supplementary Table 1) from PRIDE Archive were reprocessed 

using SpectraST at a 1% peptide FDR (Online Methods). This dataset was used as the basis to analyse 

clustering accuracy and to compare spectra-cluster’s performance with two alternative clustering 

algorithms, MSCluster2 and MaRaCluster3. 

 

Figure 1.1: The spectra-cluster algorithm leads to less cluster fragmentation as compared to the MaRaCluster 
algorithm. Clustering sensitivity (y-axis) was assessed based on the number of clustered spectra (shown as 
relative to the total number of spectra in the test dataset). Clustering specificity (x-axis) was assessed based 
on the proportion of spectra that were not identified as the most common peptide in a cluster.  

As shown in Figure 1.1 both spectra-cluster and MaRaCluster outperformed the MSCluster algorithm 

when clusters larger than 5 and 10 spectra were considered. However, when only taking larger 

clusters into consideration (containing at least 50 spectra) the spectra-cluster algorithm 

outperformed MaRaCluster. This is in-line with the results presented recently by The and Käll, where 

MaRaCluster outperformed the MSCluster algorithm but generated smaller clusters3. This is a known 

trade-off in clustering approaches where higher cluster purity leads to smaller clusters and thereby 

to cluster fragmentation (spectra that should be clustered together are included in different 

clusters). The results shown in this analysis however show a worse performance of MaRaCluster than 

shown in the original publication3. This is mainly due to the design principles of MaRaCluster: the 

algorithm was explicitly developed for homogenous datasets. Therefore, a worse performance is to 

be expected in highly heterogeneous data. 

Taking the size of the test dataset into consideration, the chosen peptide FDR of 1% may seem too 

high. Nevertheless, we argue that any incorrect identification in the reference data will only decrease 

the measured clustering accuracy. As a proof-of-concept we re-analysed the clustering results of the 

spectra-cluster algorithm using the “Used settings” (as in Figure 1.1) taking only PSMs identified at 
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0.01% FDR into consideration. As expected, the proportion of clustered spectra remained unchanged 

while the proportion of incorrectly clustered spectra decreased from 1% (Figure 1.1) to 0.5%. 

We also want to highlight that, in terms of scalability, only the MSCluster algorithm and the spectra-

cluster algorithm were able to process a large repository-scale dataset. In its current implementation 

MaRaCluster compares all combinations of spectra within the defined precursor tolerance. While 

generating the results using our test dataset, MaRaCluster generated roughly 172 GB of intermediate 

data (input size of 22 GB, as uncompressed MGF files). If the amount of data would increase linearly 

(which is unlikely based on the MaRaCluster algorithm) MaRaCluster would generate roughly 3 TB of 

intermediate data for analysing the same dataset used in this manuscript. However, the fact that the 

relationship between the number of analysed spectra and the intermediate data generated is most 

likely exponential, this fact alone would currently prevent MaRaCluster’s use for a repository-sized 

dataset.  

1.1 Influence of Chimeric spectra in the clustering process 

To assess the influence of chimeric spectra on the spectra-cluster‘s accuracy 30% in-silico generated 

chimeric spectra were added to the test dataset. Chimeric spectra were generated per dataset by 

randomly merging spectra with precursor masses within 2 m/z units at different random mixture 

coefficients of 0.1, 0.2, 0.5, and 1 (both spectra represented at the same abundance). Spectra were 

generated until the dataset contained 30% of chimeric spectra. 

 

Figure 1.2: Accuracy of the spectra-cluster algorithm is not influenced by chimeric spectra. The plots shown 
only take clusters with at least 5, 10, and 50 spectra, respectively into consideration. 

As shown in Figure 1.2 the addition of chimeric spectra did not influence clustering accuracy. The 

slightly higher proportion of incorrectly clustered spectra (1.2 % instead of 1% without chimeric 

spectra) is due to the fact that only the most abundant peptide was taken into consideration. 

Chimeric spectra with a mixture coefficient of 1 (both spectra represented at the same abundance) 
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that were clustered with spectra from the second peptide were therefore counted as incorrect 

matches. 

1.2 Influence of the probabilistic similarity function on clustering accuracy 

The spectra-cluster Java API is completely modular. Therefore, it is possible to replace, for example, 

only the similarity function and assess the influence of the different components of the algorithm 

separately. 

 

Figure 1.3: Replacing the probabilistic similarity function with the normalised dot-product (spectra-cluster 
Dot) clustering accuracy was reduced. Nevertheless, this alone does not explain the increased accuracy 
observed compared to the MSCluster algorithm. 

As shown in Figure 1.3 the performance of the spectra-cluster algorithm using the normalised dot-

product as similarity function performed worse than the probabilistic similarity function. 

Nevertheless, this effect only plays a small part in the total improvement in clustering accuracy 

compared to the MSCluster algorithm. Since most features are implemented in a highly similar way 

as in the MSCluster algorithm (Supplementary Note 7) we are currently unable to identify the 

primary reason for the observed increase in clustering accuracy in spectra-cluster. 

1.3 Clustering accuracy in the PRIDE Cluster dataset 

As additional validation we analysed the frequencies of the most common and second most common 

peptide per cluster in the complete PRIDE Cluster dataset. These analyses are based on the originally 

submitted identification data. The shown estimates therefore represent a worst case scenario since 

most submissions to PRIDE Archive contain the complete set of identifications before any FDR 

related filtering was performed. 

The average fraction of the most common peptide per cluster is an estimate of cluster purity. Even 

based on the originally submitted identification data, cluster purity does not decrease with increasing 
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cluster size as compared to MSCluster3 (Figure 1.4). Additionally, we observed a marked increase in 

purity starting from clusters with at least 3 spectra. The slight decrease in cluster purity in very large 

clusters (250+ spectra) is caused by very large clusters where only 2-5% of the spectra were 

identified as the most common peptide. These clusters were reanalysed as part of the analysis of 

incorrect clusters (see the main manuscript). In all of these cases, we were unable to derive reliable 

identifications for the vast majority of the originally submitted spectra. Therefore, these spectra may 

represent consistently observed peptides that are prone to (incorrect) identifications but are either 

not present in the commonly used sequence databases or contain unexpected PTMs. 

 

Figure 1.4: The average relative number of spectra identified as the most common (upper panel, red line) 
and the second most common (lower panel, blue line) show that cluster purity remained stable across the 
complete PRIDE Cluster dataset. The estimates are based on the originally submitted identification data and 
therefore represent a worst case scenario. 

The analysis of the average proportion of spectra identified as the second most peptide should 

answer the question of whether the clustering algorithm has difficulties to separate certain peptide 

species or not. This would be observed in the data as a high proportion of clusters where the second 

most common peptide occurs nearly as frequently as the most common one (Figure 1.5). Similar to 

the observed increase of cluster purity in larger clusters, the proportion of spectra identified as the 
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second most common peptide decreased with an increasing cluster size. This is additional evidence 

that the quality of data in PRIDE Cluster increases in parallel to the size of the dataset. 

 

Figure 1.5: The fraction of spectra identified as the second most common peptide was very low across 
different subsets of clusters (reliable clusters, clusters with >= 5 and >= 10 identified spectra shown). The x-
axis represents the N% of spectra identified as the second most common peptide in the cluster. 

As shown in Figure 1.5, in only a very small fraction of clusters, a larger proportion of spectra were 

identified as the second most common peptide. In less than 3% of clusters with at least 5 identified 

spectra more than 30% of the spectra were identified as the second most common peptide. More 

than a third of these clusters contained five to ten identified spectra (seen in the difference between 

the two groups). The larger clusters become, the less frequent this phenomenon occurs. 

In reliable clusters more than 15% of the spectra are identified as the second most common peptide 

only in less than 2.5% of the clusters. In roughly 1% of the reliable clusters a second common peptide 

(more than 20% of the spectra) is observed. We believe that these cases demonstrate the current 

limit of the algorithm, where two peptide species cannot be reliably separated. Therefore, we 

deliberately do not consider these other identifications as incorrect but only define identifications of 

the most common peptide as reliable. 
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Supplementary Note 2 – Defining reliable peptide identifications 

based on the clustering results 

The original PRIDE Cluster algorithm was primarily developed to identify reliable identifications in the 

data submitted to PRIDE Archive. To identify the required parameters that define these reliable 

identifications we originally performed a machine learning approach on three test datasets4. We now 

repeated this machine learning approach based on the data generated during the analysis of the 209 

human test datasets (Supplementary Table 1). Since these represent a representative sample of all 

data in PRIDE Archive, we are confident that these parameters are suited to define reliable 

identifications in all of PRIDE Archive. 

Every sequence was represented using a vector of properties: the sequence’s ratio (the proportion of 

spectra identified as this sequence within a given cluster), its rank among the sequences identified in 

the cluster, the total size of the cluster, the number of projects that identified the sequence, the 

precursor m/z range of the cluster and the number of assays in which the sequence was identified. 

All consensus spectra were identified using SpectraST against the NIST human spectral library at a 1% 

peptide FDR (see Online Methods). Consensus spectra were deemed reliable if they were identified 

as the same sequence and the most common sequence identified within the cluster. The machine 

learning analysis was performed using the Waikato Environment for Knowledge Analysis (WEKA) 

version 3.6.12. The dataset was randomly split 2:1 in two parts where the larger part was used as 

training set and the second part as validation dataset. To learn the rules to classify reliable and 

unreliable sequences the “Conjunctive Rule Learner” was used with the following parameters: 3 

folds, minimum total weight 2.0, number of antecedents -1, seed 1. This approach was chosen since 

it is one of the simplest machine learning algorithms that results in simple, human understandable 

results. Additionally, we used several tree-learning approaches to test whether these would result in 

better classification accuracy by choosing different parameters. 

All used approaches only selected the sequence’s ratio as the most important parameter. As 

expected, the various tree-based learning approaches led to marginally better classification results. 

The Conjunctive rule learner, as well as the tree-based learning approaches both selected the 

sequence’s ratio of 0.68 as primary splitting point. The cluster size was never used for the 

classification by any of the algorithms. The fact that this ratio is comparable to the one found in our 

original paper (0.62 using a more than ten-fold smaller test dataset)4 gives us confidence that the 

employed threshold of 0.7 is suited to identify reliable identifications. 

In addition, the fact that the cluster’s size was not chosen as a classification parameter, even when 

the size of the test dataset was more than 10-fold larger, made us change the minimum cluster size 
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from originally 10 spectra to now 3 spectra. Therefore, reliable identifications are defined as clusters 

with at least 3 spectra where at least 70% of the spectra were identified as the same peptide (e.g. in 

a cluster with 3 spectra all have to be identified as the same peptide; in a cluster with four spectra 

one spectrum may be differently identified). 
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Supplementary Note 3 – The PRIDE Cluster Resource 

3.1 Architecture Overview 

The PRIDE Cluster architecture consists of two main components (Figure 3.1): (i) the Clustering 

Pipeline enables to extract and cluster spectra in scale using the spectra-cluster algorithm. (ii) Web 

and Web Services are responsible for serving all the external requests for viewing and download the 

clustering results. 

 

Figure 3.1: The PRIDE Cluster architecture consists of two components: The PRIDE Cluster Pipeline is 
responsible to create the actual clustering results while the PRIDE Cluster Web & Web Services presents 

these results to the user. 

3.2 Clustering Pipeline 

The clustering pipeline consists of three main tasks (Figure 3.2.2): (i) Extract, filter spectra and their 

peptide identifications from public experiments in PRIDE Archive; (ii) Cluster the extracted spectra 

using Hadoop “Map Reduce” and the spectra-cluster algorithm; (iii) Extract, transform, and load the 

clustering results into the data store and/or generate spectrum libraries.  

 

  

Figure 3.2: The PRIDE Cluster Pipeline is performing the actual clustering of the public data in PRIDE Archive. 



 9 

The implementation of the clustering pipeline is done using Hadoop “Map Reduce” 

(http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html).  

3.3 Web interface & Web Service 

The mission of the Web and Web Service is to provide external access to search the clustering 

results: (i) Search using a peptide sequence; (ii) Filter the results using species and/or PTMs; (iii) 

Download spectral library files or the clustering result files for further analyses. 

The architecture of the Web and Web Service follows the Layered Architecture Pattern 

(https://en.wikipedia.org/wiki/Multilayered_architecture), where each layer serves only one main 

responsibility and can only access the layer below (Figure 3.3). An Oracle database 

(http://www.oracle.com/) is used as the relational store for the clustering results, and one Solr store 

(http://lucene.apache.org/solr/) is used for storing and enabling the searches. The Spring Framework 

(http://projects.spring.io/spring-framework/) is the main framework used for implementing both the 

Web and the Web Service.  

The complete source code from both the Web and the Web Service is available on GitHub 

(https://github.com/PRIDE-Cluster).  

 

Figure 3.3: PRIDE Cluster Web architecture. 

  

http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://en.wikipedia.org/wiki/Multilayered_architecture
http://www.oracle.com/
http://lucene.apache.org/solr/
http://projects.spring.io/spring-framework
https://github.com/PRIDE-Cluster
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Supplementary Note 4 – Analysing Clustering Results Through the 

PRIDE Cluster Web Interface 

The PRIDE Cluster web interface is available at http://www.ebi.ac.uk/pride/cluster and provides 

access to the raw clustering results, the pre-compiled sets of interesting clusters (e.g. large 

unidentified clusters, reliable phosphopeptide clusters), the spectral libraries and through the 

“Peptide Search” functionality, a visualization of the clustering results and the links to the originally 

submitted data to PRIDE Archive.  

The search box on the upper right corner allows the user to search for peptide sequences, filtering by 

post-translational modifications, as well as species. The peptide search page then displays the results 

of this search (Figure 4.1). Each cluster is represented as one row in the table with multiple filtering 

options of the results on the left. 

 

Figure 4.1: The PRIDE Cluster Peptide Search provides a visualisation of the clustering results. 

If the user clicks on one of the entries, the cluster’s details are displayed (Figure 4.2). As shown in this 

example, most clusters contain one dominant peptide sequence (in this case 92% of the cluster’s 

spectra were identified as the most common sequence). The other spectra are most commonly 

identified as other random peptides, where each peptide is often supported by a single spectrum. 

We believe that these differently identified spectra represent random incorrect identifications. 

http://www.ebi.ac.uk/pride/cluster
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Figure 4.2: The cluster detail view displays a summary of all sequences that are present in the respective 
cluster. 

The user can view all PSMs that correspond to a given peptide (as displayed in the “Peptides” table) 

or to a given dataset (as displayed in the “Original Experiments” table) through the respective links. 

These lists then contain additional links to the originally submitted data and the complete submitted 

identification details. Finally, the cluster’s consensus spectrum (Figure 4.3) and the distribution of 

precursor m/z deltas (Figure 4.4) are displayed as additional means to assess a cluster’s reliability. 
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Figure 4.3: Consensus spectra together with the corresponding peak annotation are visualized using the 
Lorikeet spectrum viewer (http://uwpr.github.io/Lorikeet). 

 

Figure 4.4: The precursor m/z delta mass distribution (difference to the theoretical mass of the most 
common peptide) is visualized as a box plot. The “Consensus Peptide” plot only takes spectra into 
consideration that were identified as the most common peptide. The “Cluster” plot visualizes the 

distribution of all spectra within the cluster. 

 

  

http://uwpr.github.io/Lorikeet


 13 

Supplementary Note 5 – Benchmarking the PRIDE Cluster Human 

Spectral Library  

As a benchmark we used a combination of NIST's (National Institute of Standards and Technology) 

human Orbitrap (November 2014), iontrap (May 2014) and the global proteome machine's (GPM) 

common Repository of Adventitious Proteins' (cRAP) (downloaded on July 2014). The PRIDE Cluster 

human spectral library (version 2015-04) contains the consensus spectra of all reliable clusters that 

contain spectra observed in human datasets in PRIDE Archive. Thereby, it does not only contain 

spectra coming from peptides with multiple different PTMs, but also automatically the spectra from 

common contaminants found in human datasets. 

First of all, we identified the consensus spectra of both libraries using X!Tandem5 (version 

Sledgehammer, 2013.09.01.1) using UniProt's human proteome library (release 2014-07) 

concatenated with the cRAP sequence database (downloaded on July 2014) and reversed decoy 

sequences. The precursor tolerance was set to 3 m/z units, fragment tolerance to 0.4 m/z units and 

the refinement mode disabled. Carbamidomethylation was set as fixed modification and oxidation of 

M and N-terminal acetylation as variable modifications. The search results were filtered at 1% 

peptide FDR. Both libraries showed similar accuracy based on this assessment (Table 5.1). The lower 

fraction of identified spectra from the PRIDE spectral library can be explained by the fact that the 

library also contains modified peptides whose modifications were not considered as parameters 

during the search. 

 Identified Spectra Identical Identifications 

PRIDE human 34% 96% 

NIST human 49% 95% 

Table 5.1: Identified library spectra using X!Tandem. 

We additionally searched the spectra available in the PRIDE human spectral library using SpectraST 

(version 5.0)6 and the NIST’s library (see above). Decoy spectra were created using SpectraST and 

appended to the library. The results were again filtered at a 1% peptide FDR and deviating results 

compared to the X!Tandem search were discarded. This search identified 37% of the library’s spectra 

and identified 96% of the spectra as the same peptide. 

Finally, we used the above mentioned NIST spectral library and the PRIDE human library to identify 

the spectra from a state of the art experiment: an HeLa digest recently published by Köcher et al. 

measured on a QExactive mass spectrometer7 (PRIDE Archive identifier PXD000396, using the run 

120312QEx2_RS1_20nl-min_0k1HeLa_14h_01.raw). The raw file was converted using ProteoWizard’s 

msconvert (216,102 MS/MS spectra)8. The NIST search results were filtered at 1% peptide FDR. 
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Unfortunately, SpectraST was not able to generate decoy spectra for our library since several 

reported PTMs from the PRIDE library are not supported by SpectraST. Work is under way to resolve 

this issue and add support for additional PTMs in SpectraST. Therefore, for this comparison the 

results gathered using the PRIDE spectral library were filtered at the same p-values derived from the 

NIST library.  

Using these settings, 32,351 and 42,265 spectra were identified using NIST’s and the PRIDE library, 

respectively. Nevertheless, it must again be highlighted that the larger number of identifications 

using the PRIDE library is most likely due to the inadequate filtering of the search results, for the 

limitation mentioned above. Nevertheless, 19,951 spectra were identified by both libraries of which 

98% were identified as the same peptide. 
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Supplementary Note 6 – Probabilistic Scoring Approach 

The probabilistic scoring approach used in the spectra-cluster algorithm is an adaption of the 

probabilistic matching used in Pepitome9. 

After the initial peak filtering (the 70 highest peaks per spectrum are used), a second filtering step is 

added where only the peaks that explain 50% of the total ion current but at least the 25 highest 

peaks are used for the matching between the two spectra. If multiple peaks match within the user-

defined fragment ion tolerance, the matching pair with the lowest m/z difference is selected. 

The Hypergeometric Score estimates the probability that the number of matching peaks occurred by 

random chance. This is modelled by a hypergeometric distribution described by the equation: 

𝑝(𝑘) =  
(𝑠

𝑘)(𝑁−𝑠
𝑛−𝑘)

(𝑁
𝑛)

  

Where k is the number of matched peaks, N the total number of bins (determined by the fragment 

tolerance), s the number of peaks from spectrum 1, n the peaks from spectrum 2.  

In contrast to Pepitome we only calculate point probabilities to increase performance and make the 

scoring usable for clustering. Additionally, the similarity between the intensity ranks of the matched 

peaks is assessed using the Kendall-Tau score10. The raw Kendall-Tau score is converted into a 

probability of obtaining better than the observed intensity correlation by random chance, which is 

approximated using a normal distribution with μ = 0 and σ 2 = 2(2k + 5)/9k(k − 1). 

These two probabilities are combined into a single p-value using Fisher’s method11 which is then 

reported as its negative logarithm. 
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Supplementary Note 7 – The spectra-cluster algorithm 

The spectra-cluster algorithm is mostly based on the MSCluster algorithm by Frank et al.2. 

7.1 Spectrum Filtering 

First, precursor ion associated peaks, taking potential neutral losses into consideration are removed. 

Then, only the 70 highest peaks from the spectrum are retained and the intensities normalised so 

that the total spectrum intensity (sum of intensities of all peaks) is 1,000. 

7.2 Clustering 

The spectra-cluster algorithm uses a greedy clustering approach where spectra (or clusters) are 

merged to the first cluster exceeding the set threshold. To alleviate the main disadvantage of this 

approach (since sub-optimal matches may occur early in the clustering process and thereby lead to 

sub-optimal results) an iterative approach is used starting with very stringent thresholds that are 

subsequently decreased to reach the target accuracy. The accuracy is defined as the proportion of 

correctly classified spectra (ie. 99%). The similarity score returned by the used similarity function is 

converted into this measurement of accuracy using an empirically derived cumulative distribution 

function (CDF, Supplementary Note 8). 

7.2.1 Pre-iterative clustering 

In the first clustering round, spectra are binned in 0.2 m/z units wide bins. Only spectra that share 

one of the five highest peaks are compared and clustered at a target accuracy of 99.9%. Additionally, 

if more than 10,000 clusters are in memory, these are written to disk and the clustering process is 

continued without these clusters. 

7.2.2 Iterative clustering 

The following process is repeated 4 times using decreasing accuracies, starting at 99.9% to the final 

accuracy of 99%. Spectra are binned in 4 m/z units wide bins. In the first of these rounds, again, only 

spectra that share one of the five highest peaks are compared. In subsequent rounds, only spectra 

(or clusters) that were previously compared and scored among the top 30 matches are compared. If 

a spectrum or a cluster exceeds the set threshold it is merged with the existing cluster and from that 

point, only the new consensus spectrum is used for further comparisons. 

7.3 Consensus spectrum building 

The algorithm used to build consensus spectra is the same than the one used for the previous PRIDE 

Cluster algorithm4 and originally described here2, 12. The final m/z threshold used is set to 0.4 m/z 

units starting from 0.1 m/z units, using 0.1 m/z units step increases. 
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7.3.1 Algorithm 

For every peak in the consensus spectrum, information about the m/z value, intensity and in how 

many spectra the peak was observed is stored. Since the total number of spectra contributing to the 

consensus spectrum is known, a peak’s probability to be observed in a spectrum can be calculated. 

1. Add all peaks from all spectra to the consensus spectrum (CS). In case two peaks have an 

identical m/z value, add the intensities and increment how often the peak was observed. 

2. Merge identical peaks. 

a. Start at a tolerance of 0.1 m/z units- increment by 0.1 m/z units until 0.4 m/z units 

are reached. 

b. Merge peaks within the tolerance. Use the weighted average m/z (weighted based 

on the peak’s intensities) as the new m/z. 

3. Adapt peak intensities based on how often they were observed (Pi): 𝐼 = 𝐼 ∗ (0.95 + 0.05 ∗

(1 + 𝑃𝑖)5) 

where: 

I is the peak’s intensity. 

Pi is the probability the peak is detected in a spectrum. 

This formula multiplies the observed intensity by 1 - 2.55. 

4. Filter the consensus spectrum: 

a. Keep only the top 5 peaks within every 100 m/z units window. 
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Supplementary Note 8 – Cumulative Distribution Function 

To benchmark various combinations of scoring functions and peak picking methods, we generated 

so-called cumulative distribution functions based on the 209 human datasets used to evaluate 

clustering accuracy (Supplementary Table 1). We evaluated the hypergeometric score (as point 

probability and cumulative probability), Kendal-tau statistics, dot-product and the combination of 

these scores. Additionally, we evaluated the following peak picking algorithms: no peak picking, N 

highest peaks with 50, 70, and 100 peaks, total ion current filter (percentage of peaks explaining X% 

of the spectrum’s total intensity) for 50% and 70%, and a filter retaining the 6 highest peaks per 100 

m/z units.  

Spectra were randomly selected from a single dataset and compared using the evaluated scoring 

function. Only incorrect matches were evaluated (defined by a differently identified peptide 

sequence and a precursor m/z difference of at least 4 m/z units) and the corresponding similarity 

score recorded. A maximum of 1 billion comparisons were performed per dataset leading to a total 

of >100 billion comparisons per score and peak picking combination. 

 

Figure 8.1: The derived cumulative distribution function (CDF) was highly dependent on the original dataset. 
The plot depicts the CDFs for the entire 209 test datasets, split by datasets submitted to PRIDE (datasets 
submitted to PRIDE before mid 2012) or to ProteomeXchange (more recent dataset submissions, since mid 
2012, once the ProteomeXchange data workflow was implemented). One line represents the results from 
one single dataset. 



 19 

Figure 8.1 shows the results for the new probabilistic score using the cumulative probability split by 

all the evaluated test datasets. As reported previously, the score shows different behaviour in 

different datasets. This seemed to be independent of the time when the data was originally 

submitted to PRIDE Archive (PRIDE represents dataset submissions up to mid 2012, 

ProteomeXchange includes dataset submissions since mid 2012). This behaviour was observed for all 

evaluated scores and score combinations.  

During the spectral clustering process, a single spectrum is compared to potentially thousands of 

other spectra. Therefore, we need to correct the acquired scores for this multiple testing. This was 

based on the average Cumulative Distribution Function (CDF) observed for the score. To account for 

the large variability of the observed distributions, we added a conservative error margin and set the 

minimum number of observations to 5,000. This means, that even if a spectrum is compared to less 

than 5,000 other spectra, the probability still is adapted as if 5,000 comparisons were performed. 

This approach gave us comparable results across most datasets. When setting the specified accuracy 

to 99%, the proportion of incorrectly clustered spectra found was exactly 1%, as expected (see Figure 

1, main manuscript). 
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