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I. SI TEXT

A. Neural Network Potentials for Bulk Water

Ab initio-quality neural network potentials (NNPs) for
water were constructed based on the high-dimensional
NNP approach by Behler and Parrinello1. In this
method, the total energy E is written as a sum of atomic
energy contributions Ehydrogen/oxygen,

E =

Nhydrogen∑
i=1

Ehydrogen
i +

Noxygen∑
j=1

Eoxygen
j , (1)

which are expressed by artificial neural networks and de-
pend on the local chemical environment represented by
a set of atom-centered symmetry functions2.

High-dimensional NNPs enable constructing highly ac-
curate and full-dimensional representations of reference
potential-energy surfaces for periodic and non-periodic
systems3. While to date this method has been primarily
applied to solid state systems3, recently high-dimensional
NNPs have been employed to describe water clusters
in the gas phase4, and the interaction between water
molecules and bimetallic nanoparticles5. The present
work represents the first construction of NNPs for a con-
densed molecular system.

We developed a set of four NNPs trained to energies
and forces from reference DFT calculations for a broad
range of condensed water configurations employing the
RPBE6 and BLYP7,8 density-functionals with and with-
out vdW corrections. All DFT calculations were carried
out with the all-electron code FHI-aims9 which uses nu-
merical atom-centered orbitals as basis functions. Since
it has been shown that AIMD simulations with undercon-
verged basis sets yield underestimated water densities10,
we carefully checked the convergence of our DFT calcu-
lations with respect to basis set size (see Fig. S1). For
the chosen “tier 2” basis set, binding energies, forces,
and pressure tensors are well converged, with remaining
errors below 4 meV/H2O, 2 meV/Å, and 1.0 %, respec-
tively.

VdW interactions were taken into account by
Grimme’s D3 method11 using the zero-damping scheme
and neglecting three-body contributions since their effect
on the properties of water is negligible12. Within the D3
approach, computing the vdW correction term for peri-
odic structures is computationally more demanding than
the evaluation of the NNPs. Therefore, vdW energies and
forces were added to the reference data before training
the NNPs (in contrast to previously developed NNPs for
water clusters4 where vdW interactions were computed
on-the-fly in the application of the potentials).

The NNPs were trained using the code RuNNer13. All
NNPs consist of a set of feed-forward neural networks
with two hidden layers containing 25 nodes each, corre-
sponding to a total number of 2,827 parameters per NNP.
For the nodes in the hidden layers the hyperbolic tangent
was used as activation function, while for the node in the

output layer a linear function was used. Local chemical
environments were described by symmetry functions of
type 2 and type 42. The radial extension of each sym-
metry function is restricted by a cutoff function fc that
ensures that value and slope become zero at the cutoff
radius rc,

fc(rij) =

{
tanh3

[
1− rij

rc

]
with rij ≤ rc

0 with rij > rc.
(2)

Here, rij is the distance between atoms i and j. Radial
symmetry functions of type 2 consist of a sum of distance
dependent Gaussian functions multiplied by the cutoff
function,

G2
i =

∑
j 6=i

e−η(rij−rs)2fc(rij). (3)

Here, the center of the Gaussian can be shifted by the pa-
rameter rs and the parameter η can be adjusted in order
to change the Gaussian width. The angular symmetry
function of type 4 consists of an angular term that de-
pends on the angle αijk (centered at atom i and formed
with neighbors j and k) and can be adjusted by varying
the parameters λ and ζ. Additional terms that depend
on the interatomic distances of atoms i, j, and k control
the radial resolution,

G4
i =21−ζ∑

j 6=i

∑
k 6=i,j

[(
1 + λcos(αijk)

)ζ
(4)

× e−η(r2ij+r2ik+r2jk)fc(rij)fc(rik)fc(rjk)

]
.

A total of 27 and 30 symmetry functions were used to de-
scribe the atomic environments of hydrogen and oxygen
atoms, respectively. The parameters of the symmetry
functions are listed in Tables S1 and S2.

The functional form of the atomic neural networks de-
scribing hydrogen and oxygen atoms is then given by,

Ehydrogen =f3
1

(
b31 +

25∑
k=1

a23
k1f

2
k

(
b2k +

25∑
j=1

a12
jk (5)

× f1
j

(
b1j +

27∑
i=1

a01
ijGi

)))
,

and,

Eoxygen =f3
1

(
b31 +

25∑
k=1

a23
k1f

2
k

(
b2k +

25∑
j=1

a12
jk (6)

× f1
j

(
b1j +

30∑
i=1

a01
ijGi

)))
,

respectively. Here, the weight parameters aklij together

with the bias weights bij are the fitting parameters of the
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NNP and f1, f2, and f3 are activation functions with
the following functional form:

f1(x) =tanh(x), (7)

f2(x) =tanh(x), (8)

f3(x) =x. (9)

The force component Fαk
acting on atom k in direction

α = x, y, or z, given by the negative gradient of the
energy with respect to αk, is obtained from,

Fαk
= − ∂E

∂αk
= −

N∑
i=1

∂Ei
∂αk

= −
N∑
i=1

Mi∑
j=1

∂Ei
∂Gi,j

∂Gi,j
∂αk

,

(10)

where the derivatives ∂Ei/∂Gi,j and ∂Gi,j/∂αk are de-
fined by the functional form of the atomic neural net-
works and the symmetry functions, respectively. Here,
N is the number of atoms and Mi the number of sym-
metry functions of atom i.

In order to avoid a saturation of the activation func-
tions in the first hidden layer, the initial symmetry func-
tion values G0

i are always centered and rescaled,

Gi =
G0
i −G0

i,average

G0
i,max −G0

i,min

, (11)

using the average, maximum, and minimum symmetry
function values obtained from the full reference data set.
The derivatives are modified correspondingly:

∂Gi
∂αk

=
∂G0

i

∂αk

1

G0
i,max −G0

i,min

. (12)

Parameter sets (weight parameter and bias weights) as
well as average, minimum, and maximum values for each
symmetry function are available online for all NNPs14.

Comparisons of potentials with and without explicit
consideration of long-range electrostatics15,16 have shown
that there is no significant difference in the accuracy of
the energies and forces in the training and in the test set
for the chosen cutoff radius of 6.35 Å. Consequently, long-
range electrostatics were not included explicitly and the
use of Ewald summation techniques is avoided, ensuring
a linear scaling of the computational costs with system
size.

Individual data sets for each reference method were
generated in an iterative process starting with initial data
sets that were systematically extended. Reference data
sets were always randomly split into a training set, con-
taining 90% of all configurations, and an independent
test set, containing the remaining 10% of configurations.
Initial reference configurations contain crystalline config-
urations obtained from DFT relaxations and liquid con-
figurations from force field MD simulations. Configura-
tions of eight different ice polymorphs (ice Ih, XI, IX,
II, XIV, XV, VIII, and X) at different lattice constants

were included. In addition to the fully relaxed config-
urations, also distorted structures with randomly dis-
placed atomic positions were used. Initial configurations
for liquid water were taken from force field MD simula-
tions at different temperatures, employing the simulation
package GROMACS17 and the flexible non-polarizable
SPC/Fw18 water model, and recomputed with the re-
spective reference method. Simulations with 16 and
32 water molecules were performed at the experimen-
tal density of water, while unit cells containing 64 water
molecules were employed for NpT simulations at various
densities. Based on these data, preliminary NNPs were
constructed and employed in structural relaxations and
MD simulations (with units cells containing up to 128
water molecules) at various temperatures and pressures
to generate new configurations, which were then recom-
puted by DFT and added to the initial data sets. After
four cycles of refinement the NNPs were converged and
applied in production runs. Final reference data sets con-
tain about 7,000 periodic configurations per NNP, corre-
sponding to ≈ 1,700,000 force components, which have
also been used for training the NNPs. As illustrated in
Fig. S2, the energy error does not grow with increasing
binding energy, and all configurations, independent of
their location in the energy vs. volume phase space, are
equally well represented.

B. Viscosities and Diffusion Coefficients

Shear viscosities η were computed from the Green-
Kubo relation,

η =
V

kBT

∫ ∞
0

〈
Pαβ(t)Pαβ(0)

〉
dt, (13)

where
〈
Pαβ(t)Pαβ(0)

〉
is the autocorrelation function of

the stress tensor element Pαβ . Autocorrelation functions
(cf. Fig. S4a) were averaged over the five independent
components Pxy, Pxz, Pyz,

1
2 (Pxx − Pyy), and 1

2 (Pyy −
Pzz). A value of 3 ps was chosen for the upper limit of the
integral (see Fig. S4b). As shown in Fig. S4c, the final
viscosity values are essentially system size independent.

Diffusion coefficients DPBC were computed from mean
squared displacements,

DPBC = lim
t→∞

1

6

d

dt

〈∣∣r(t)− r(0)
∣∣2〉. (14)

In order to correct for finite size effects, we obtained
system size independent diffusion coefficients D0 (cf.
Fig. S4d) from the relation19,20,

D0 = DPBC +
kBTξ

6π

1

ηL
, (15)

where L is the length of the cubic simulation cell and ξ =
2.837297. The viscosity values and diffusion coefficients
shown in Fig. 1 in the main text were computed for 512
water molecules. Error bars were estimated from the
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standard error of the mean of the values obtained from
the 32 independent NVE trajectories. Due to the very
low water mobility in the BLYP simulations, converged
viscosity values could not be computed for T = 275 and
300 K.

C. Hydrogen Bond Analysis

The hydrogen bond (HB) autocorrelation functions
c(t) and n(t), shown in Fig. 1 in the main text, were
obtained employing the HB criterion by Luzar and Chan-
dler21 (wherein a pair of water molecules is considered hy-
drogen bonded if rOO < 3.5 Å and β = 6 HD−OD· · ·OA <
30◦). The autocorrelation function c(t) is given by,

c(t) =

〈
h(t)h(0)

〉
h

, (16)

where h(t) is unity if a particular pair of water molecules
is hydrogen bonded at time t and is zero otherwise22. c(t)
is the intermittent HB autocorrelation function which
does not require that a particular HB remains contin-
uously intact but also counts HBs that break and subse-
quently reform. The autocorrelation function n(t) gives
the time-dependent probability that a water pair that is
not hydrogen bonded remains within a distance of 3.5 Å
from each other and is defined by,

n(t) =

〈
h(0)[1− h(t)]H(t)

〉
h

, (17)

where H(t) is set to unity if the water pair is closer than
3.5 Å and is zero otherwise. In addition to the correla-
tion functions, forward and backward rate constants and
HB relaxation times and lifetimes were computed based
on the Luzar-Chandler model22 and are reported in Ta-
ble S3.

D. Properties of Crystalline Water

Structural and energetical properties of seven low- to
high-pressure ice polymorphs (ice Ih, XI, IX, II, XIV, XV,
and VIII) were computed using the NNPs and DFT and
compared to the corresponding experimental values23–28.
Experimental lattice energies (taken from Ref.26) are ex-
trapolated to 0 K and do not contain zero-point contri-
butions. Energy vs. volume curves were computed by
isotropic variation29 of the experimental lattice parame-
ters followed by a full relaxation of all atoms in the unit
cell employing the L-BFGS algorithm30. As shown in
Fig. S5, curves obtained from NNP calculations closely
reproduce the reference DFT values and the inclusion of
vdW interactions leads to a significantly improved agree-
ment with experiment. Equilibrium lattice energies and
volumes were obtained by fitting the Murnaghan equa-
tion of state31 to the energy vs. volume curves. Devia-
tions of the equilibrium values between NNP and DFT

are only a small fraction of the errors of the DFT values
with respect to experiment.

E. Dielectric Properties

Molecular dipole moments µ and dielectric constants
εr were obtained by post-processing independent config-
urations from NNP simulations in the NV T ensemble at
T = 300 K employing unit cells containing 128 molecules
at the experimental density (ρ = 0.9965 g/cm3). Af-
ter equilibrating for 1 ns, simulations were carried out
for 3 ns and 7 ns for the RPBE- and BLYP-based poten-
tials, respectively. Due to their reduced water dynamics
(cf. Fig. 1 in the main text), longer simulation times
were employed for the BLYP-based NNPs. Configura-
tions were extracted every 20 ps and maximally localized
Wannier functions32 (MLWFs) were computed using the
projector augmented wave33,34 (PAW)-based Vienna ab
initio simulation package35–38 (VASP, employing a plane-
wave cutoff of 700 eV) and the WANNIER90 program39.
Molecular dipole moments µ were computed using the
Wannier function centers (WFCs) of the four MLWFs
representing the valence electrons. The dielectric con-
stant εr was calculated using the the relation,

εr =
1

3kBε0TV

(〈
M2
〉
− 〈M〉2

)
+ ε∞, (18)

where T is the temperature, V is the box volume, M =∑N
i µi is the total dipole moment of the simulation box

and ε∞ is the permittivity of vacuum (ε∞ = 1.840).
Fig. S6 shows the distribution of the molecular dipole
moment and the convergence of εr with simulation time
for all NNPs. The average magnitudes of the molecu-
lar dipole moment and the final values for the dielectric
constant are reported in Table S8.

F. Density Isobars

In order to evaluate the influence of system size on
the computed density isobars, we performed additional
NNP simulations at temperatures around the density
maximum for a larger system (nH2O = 360) which are
compared to the results obtained for the smaller system
(nH2O = 128). As shown in Fig. S7, no significant differ-
ence between the two density isobars is visible, indicating
that the results obtained for 128 molecules are converged
with respect to system size.

Values for the temperature of maximum density, the
density at the maximum, and the thermal expansivity,
α,

α = −1

ρ

(
∂ρ

∂T

)
p

, (19)

at ambient conditions obtained for simulations cells con-
taining 128 molecules are reported in Table S4.
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G. Melting Temperatures

Melting temperatures of ice Ih were computed employ-
ing the interface pinning method41,42. The method is
based on stabilizing a liquid-solid interface in an elon-
gated simulation box (see Fig. 2d in the main text) by
pinning it with an order parameter-dependent bias en-
ergy VB(R) = κ

2 [Q(R)− a]
2
, where κ is a spring con-

stant and a is the anchor point. The order parame-
ter Q(R) quantifies the crystalline fraction of the sys-
tem. The difference ∆µ in chemical potential between
the solid and the liquid phase follows from the average
deviation of the order parameter from the anchor point.
The melting temperature is then determined via an it-
erative scheme based on the Newton-Raphson method
described in Ref.42. The order parameter was chosen42

as Q(R) = |ρk| where k = (2πnx/X, 2πny/Y, 0) and
nx = 6, ny = 12. The spring constant and anchor point
of the interface pinning term were set to κ = 0.05 eV
and a = 19.0. All interface pinning simulations were
performed using 2304 water molecules, a time step of
1 fs and a pressure of p = 1 bar. The total simulation
time was 15 ns. The melting temperatures and corre-
sponding errors were derived as follows: from interface
pinning simulations we extract pairs of (T,∆µ ± σ∆µ),

where ∆µ = µliquid − µsolid = κ∆Q
N

[
〈Q〉′ − a

]
and σ∆µ

is determined from block averages. In the vicinity of Tm
we assume a linear dependency ∆µ(T ) = kT + d and use
the pairs (T,∆µ±σ∆µ) to fit k and d. We derive Tm via
∆µ(Tm) = 0 and the errors using 68% confidence interval
bands.

H. Melting Point Correction

Due to small differences between the NNP and the
DFT energies, the melting temperature TNNP

m obtained
with the NNP may differ from the melting temperature
TDFT
m of the reference method. Using thermodynamic

perturbation theory, we next derive a correction term,

∆Tm = TDFT
m − TNNP

m , (20)

which accounts for this difference.

We first approximate the DFT Gibbs free energy of the
liquid phase GDFT

l (p, T ) and the solid phase GDFT
s (p, T )

by a Taylor expansion at T = TNNP
m , truncated after the

linear term (see Fig. S8a, p omitted for clarity),

GDFT
l (T ) ≈ GDFT

l (TNNP
m ) +

∂GDFT
l

∂T

∣∣∣∣
TNNP
m

(
T − TNNP

m

)
,

GDFT
s (T ) ≈ GDFT

s (TNNP
m ) +

∂GDFT
s

∂T

∣∣∣∣
TNNP
m

(
T − TNNP

m

)
.

Using the equivalence GDFT
l = GDFT

s at T = TDFT
m and

the relation ∂G
∂T = −S we obtain,

∆Tm =
GDFT
l (TNNP

m )−GDFT
s (TNNP

m )

SDFT
l (TNNP

m )− SDFT
s (TNNP

m )
. (21)

By expressing GDFT and SDFT in terms of GNNP and
SNNP, respectively, and inserting in Eq. (21) we arrive at
the final equation for ∆Tm,

∆Tm =
∆Gl −∆Gs

SNNP
l − SNNP

s + ∆Sl −∆Ss
, (22)

where ∆G = GDFT − GNNP and ∆S = SDFT − SNNP.
All quantities of Eq. (22) are evaluated at T = TNNP

m .
The difference SNNP

l −SNNP
s is the entropy of fusion and

is known from the interface pinning simulations (see Ta-
ble S5). With

∆G =
〈
E
〉

DFT
−
〈
E
〉

NNP
− T

(〈
S
〉

DFT
−
〈
S
〉

NNP

)
(23)

+ p
(〈
V
〉

DFT
−
〈
V
〉

NNP

)
= ∆E − T∆S + p∆V

we can find an expression for ∆S,

∆S =
1

T

(
∆E + p∆V −∆G

)
. (24)

Here
〈
. . .
〉

NNP
and

〈
. . .
〉

DFT
refer to averages corre-

sponding to the NNP and the DFT potential-energy sur-
face, respectively. Using thermodynamic perturbation
theory, the averages ∆E, ∆V , and ∆G can be expressed
as,

∆E =

〈
e−β∆EEDFT

〉
NNP〈

e−β∆E
〉

NNP

−
〈
E
〉

NNP
, (25)

∆V =

〈
e−β∆EV DFT

〉
NNP〈

e−β∆E
〉

NNP

−
〈
V
〉

NNP
,

∆G =− kBT ln
〈
e−β∆E

〉
NNP

,

where ∆E = EDFT−ENNP and β = 1/kBT . The quanti-
ties needed to compute ∆Tm are obtained in the following
way:

• NNP simulations for the solid and the liquid phase
are performed in the NpT ensemble at T = TNNP

m

and p = 1 bar.

• Independent configurations are extracted from
the trajectories and their energies are recomputed
with the corresponding DFT method in order to
obtain EDFT.

• The averages
〈
e−β∆E

〉
NNP

,
〈
e−β∆EEDFT

〉
NNP

,〈
e−β∆EV DFT

〉
NNP

,
〈
E
〉

NNP
, and

〈
V
〉

NNP
are com-

puted both for the solid and the liquid phase.
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• ∆Gl, ∆Gs, ∆Sl, and ∆Ss are determined from
Eqs. (25) and (24).

• ∆Tm is computed using Eq. (22).

NpT simulation for all NNPs were performed using 128
molecules for both phases and total simulation times of
14 ns per NNP. After discarding 4 ns for the purpose of
equilibration, configurations were extracted every 20 ps
and their energies were recomputed with the correspond-
ing reference DFT method. Fig. S8b-d shows the conver-
gence of ∆G, ∆S, and ∆Tm with the number of config-
urations used to obtain the averages given in Eq. (25).
The final values for TDFT

m , TNNP
m , and ∆Tm are reported

in Table S5. For all NNPs the correction term is positive,
which originates from a positive shift of the NNP ener-
gies of the solid phase with respect to the DFT values
(see Fig. S8e-h).

I. Neighbor Distribution

The structure of water was analyzed by decompos-
ing the oxygen-oxygen radial distribution function into
contributions from neighboring molecules (similar to the
analysis in Ref.43) using the analysis tool TRAVIS44. In
order to visualize the location of first-shell and second-
shell molecules, the centroid of the corresponding distri-
bution functions P1st−4th (rOO) and P5th−8th(rOO) was
computed, and the position of the centroid,

Cx =

∫
P(rOO)rOO drOO∫

P(rOO) drOO
, (26)

was plotted against temperature. Error bars for Cx were
estimated by averaging over values obtained from non-
overlapping time intervals of a length of 0.5 ns.

J. Hydrogen Bond Fluctuation

HB strengths were measured in terms of fluctua-
tions in the distribution P(β) of the HB angle β =
6 HD− OD· · ·OA. Cone corrected45 probability den-
sity functions P(β) were obtained by computing β be-
tween a reference molecule and its four nearest neigh-
bors. Fluctuations were obtained from the half width
at half maximum (HWHM) of a Gaussian fit to the
probability density function. Error bars for HWHM
P(β) were estimated by averaging over values obtained
from non-overlapping time intervals of a length of 0.5 ns.
Angular probability density functions P(β) and com-
bined angular/radial probability density functions were

computed using TRAVIS44. Molecular dynamics sim-
ulations using six empirical water models (TIP3P46,
SPC/E47, TIP4P46, TIP4P-Ew48, TIP4P/200549, and
TIP4P/Ice50) at regions close to their melting tempera-
ture51 were carried out to confirm the correlation between
hydrogen bond strength and melting temperature. These
simulations were performed using 2880 water molecules
with a time step of ∆t = 2 fs. At each temperature, a
trajectory of 5 ns length was generated to extract hydro-
gen bond information. The fluctuations of the hydrogen
bond angle for the empirical water models are depicted
in Fig. S9.

K. van der Waals Interactions

We employed the DFT-D3 method11 in order to ac-
count for vdW interactions. In this approach the two-

body van der Waals interaction E
(2)
vdW for atom pairs AB

at distance rAB is computed from 6th- and 8th-order dis-
persion coefficients CAB6/8 that depend on their chemical

environment (by being a function of fractional coordina-
tion numbers CN , cf. Ref.11),

E
(2)
vdW =−

Npairs∑
A<B

(
CAB6 (CN)

r6
AB

fd,6(rAB) (27)

+ s8
CAB8 (CN)

r8
AB

fd,8(rAB)

)
.

The range of the vdW correction is determined by damp-
ing functions fd,n, which screen the vdW contribution to
zero at short distances (zero-damping) in order to avoid
near singularities,

fd,n(rAB) =

(
1 + 6

(
rAB

sr,nRAB0

)−αn
)−1

. (28)

The parameters s8 and sr,6 are the only two density-
functional dependent parameters of the D3 method
(cf. Table S6). Van der Waals pair interactions,
EvdW(OH/OO), for oxygen-hydrogen and oxygen-oxygen
pairs (shown in Fig. 5 of the main text and in Fig. S10,
respectively), and average values of CAB6/8 coefficients re-

ported in Table S6 were computed by employing a mod-
ified version of the dftd3 program52.

As shown in Table S6, for both density-functionals the
CAB6/8 coefficients are essentially identical, responsible for

the different range of the vdW pair interaction are solely
the sr,6 and s8 parameters.

II. SI FIGURES
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Figure S1. Basis set convergence. Convergence of binding energies, EBind (A), forces, F (B), and instantaneous pressure, pint
(C) with basis set size for two typical liquid water configurations containing 64 water molecules. ∆EBind = EBind−EBind, tier 3,

|∆F | = 1
3Natoms

∑3Natoms
i=1 |Fi − Fi, tier 3|, |∆F |rel = 100 × |∆F |/ 1

3Natoms

∑3Natoms
i=1 |Fi, tier 3|, pint = − 1

3
tr(stress tensor), and

|∆pint| = |pint − pint, tier 3|. The tier 2 basis was chosen as production basis set for all reference calculations used to train the
NNPs.
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III. SI TABLES

Table S1. Symmetry function parameters for hydrogen.

No. Element j Element k rs η λ ζ

1 H — 0.0 0.001 — —
2 O — 0.0 0.001 — —
3 H — 0.0 0.010 — —
4 O — 0.0 0.010 — —
5 H — 0.0 0.030 — —
6 O — 0.0 0.030 — —
7 H — 0.0 0.060 — —
8 O — 0.0 0.060 — —
9 O — 0.9 0.150 — —
10 H — 1.9 0.150 — —
11 O — 0.9 0.300 — —
12 H — 1.9 0.300 — —
13 O — 0.9 0.600 — —
14 H — 1.9 0.600 — —
15 O — 0.9 1.500 — —
16 H — 1.9 1.500 — —
17 O O 0.0 0.001 -1.0 4.0
18 O O 0.0 0.001 1.0 4.0
19 H O 0.0 0.010 -1.0 4.0
20 H O 0.0 0.010 1.0 4.0
21 H O 0.0 0.030 -1.0 1.0
22 O O 0.0 0.030 -1.0 1.0
23 H O 0.0 0.030 1.0 1.0
24 O O 0.0 0.030 1.0 1.0
25 H O 0.0 0.070 -1.0 1.0
26 H O 0.0 0.070 1.0 1.0
27 H O 0.0 0.200 1.0 1.0 a

a Parameters rs (in Bohr), η (in Bohr−2), λ, and ζ of atom-centered symmetry functions of type G2 (radial, nos. 1 – 16) and type G4

(angular, nos. 17 – 27) used to describe the local chemical environments of hydrogen atoms. The cutoff radius rc is 12 Bohr (≈ 6.35 Å)
for all symmetry functions.



15

Table S2. Symmetry function parameters for oxygen.

No. Element j Element k rs η λ ζ

1 H — 0.0 0.001 — —
2 O — 0.0 0.001 — —
3 H — 0.0 0.010 — —
4 O — 0.0 0.010 — —
5 H — 0.0 0.030 — —
6 O — 0.0 0.030 — —
7 H — 0.0 0.060 — —
8 O — 0.0 0.060 — —
9 H — 0.9 0.150 — —
10 O — 4.0 0.150 — —
11 H — 0.9 0.300 — —
12 O — 4.0 0.300 — —
13 H — 0.9 0.600 — —
14 O — 4.0 0.600 — —
15 H — 0.9 1.500 — —
16 O — 4.0 1.500 — —
17 H O 0.0 0.001 -1.0 4.0
18 O O 0.0 0.001 -1.0 4.0
19 H O 0.0 0.001 1.0 4.0
20 O O 0.0 0.001 1.0 4.0
21 H H 0.0 0.010 -1.0 4.0
22 H H 0.0 0.010 1.0 4.0
23 H H 0.0 0.030 -1.0 1.0
24 H O 0.0 0.030 -1.0 1.0
25 O O 0.0 0.030 -1.0 1.0
26 H H 0.0 0.030 1.0 1.0
27 H O 0.0 0.030 1.0 1.0
28 O O 0.0 0.030 1.0 1.0
29 H H 0.0 0.070 -1.0 1.0
30 H H 0.0 0.070 1.0 1.0 a

a Parameters rs (in Bohr), η (in Bohr−2), λ, and ζ of atom-centered symmetry functions of type G2 (radial, nos. 1 – 16) and type G4

(angular, nos. 17 – 30) used to describe the local chemical environments of oxygen atoms. The cutoff radius rc is 12 Bohr (≈ 6.35 Å)
for all symmetry functions.

Table S3. Hydrogen bond kinetics.

Model τrlx (ps) k (ps−1) k’ (ps−1) τHB (ps) τrlx/τHB n HB

NNP(BLYP) — — — — — 3.81
NNP(BLYP-vdW) 7.12 0.24 0.57 4.22 1.69 3.64
NNP(RPBE) 2.00 1.15 8.37 0.87 2.30 2.61
NNP(RPBE-vdW) 4.33 0.45 1.65 2.24 1.93 3.47

TIP4P 3.32 0.45 1.02 2.22 1.49 3.54 a

a Comparison of hydrogen bond relaxation time (τrlx), forward and backward rate constants (k and k’), and lifetime (τHB) based on the
Luzar-Chandler model22. In addition, the average number of hydrogen bonds (n HB) is shown. The NNP values were obtained from
simulations at T = 300 K. The TIP4P results were taken from Ref.54.

Table S4. Density maximum and thermal expansivity.

Model TMD (K) ρTMD (g/cm3) α25 ◦C (10−6/K)

NNP(BLYP) — — 991
NNP(BLYP-vdW) 256 1.054 435
NNP(RPBE) — — 2369
NNP(RPBE-vdW) 274 0.901 370
Exp. 277.13 0.99997 257.12a

a Comparison of temperature of maximum density (TMD), density at T = TMD (ρTMD), and coefficient of thermal expansion at
T = 25 ◦C (α25 ◦C) obtained from NpT simulations of 128 H2O using different NNPs. Experimental values were taken from Ref.55.
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Table S5. Density of the liquid and the solid phase and entropy of fusion.

Model ρl ρs ∆ρ ∆S

BLYP 0.752 0.840 -0.088 2.48
BLYP-vdW 1.053 0.915 0.138 2.39
RPBE 0.678 0.786 -0.108 3.34
RPBE-vdW 0.904 0.864 0.040 2.69
Exp. 0.99984 0.91670 0.08314 2.28a

a Density values of the liquid (ρl) and the solid ice Ih phase (ρs) together with the density difference (∆ρ = ρl − ρs) (in g/cm3) and
entropy of fusion ∆S (in 10−4eV/K) obtained from interface pinning simulations using different NNPs. Experimental values were
taken from56.

Table S6. Corrected melting temperatures.

TDFT
m (K) TNNP

m (K) ∆Tm(K)

NNP(BLYP) 323 ± 3 321 ± 3 2.4
NNP(BLYP-vdW) 283 ± 2 272 ± 2 11.4
NNP(RPBE) 267 ± 2 265 ± 2 2.0
NNP(RPBE-vdW) 274 ± 3 269 ± 3 5.2 a

a Corrected melting temperatures TDFT
m (K), melting temperatures obtained from interface pinning simulations TNNP

m (K), and correction
term ∆Tm(K) obtained from thermodynamic perturbation theory calculations.

Table S7. Van der Waals coefficients and density-functional dependent parameters.

BLYP RPBE

COH
6 5.436 (0.004) 5.437 (0.003)

COH
8 84.897 (0.062) 84.922 (0.042)

COO
6 10.410 (0.003) 10.413 (0.002)

COO
8 210.087 (0.067) 210.134 (0.046)

CHH
6 3.092 (0.003) 3.093 (0.002)

CHH
8 37.382 (0.038) 37.395 (0.026)

sr,6 1.094 0.872
s8 0.722 0.514a

a Environment-dependent van der Waals coefficients for oxygen-hydrogen, oxygen-oxygen, and hydrogen-hydrogen pairs, CAB
6/8

(in a.u.),

averaged over trajectories from NpT simulations at 300 K based on BLYP and RPBE, respectively (standard deviation is given in
parentheses) and values for the two density-functional dependent parameters of the D3 method (sr,6 and s8).

Table S8. Dielectric properties.

Model εr µ (D)

NNP(BLYP) 159.8 3.11
NNP(BLYP-vdW) 106.2 2.95
NNP(RPBE) 108.9 2.85
NNP(RPBE-vdW) 95.2 2.80 a

a Dielectric constant εr and average magnitude of the molecular dipole moment µ from NNP simulations at 300 K.
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