Notation	Baseline value, unit	Description	Source
N_0	330 000	Initial population size	(1; 2)
$1/\mu$	45 years	Mean duration of sexual activity	(3; 4; 5)
μ	$1/45 \ {\rm yr}^{-1}$	Rate of recruitment to sexually	(6)
		active population	
	$\rho_1 = 1/0.271 \ {\rm yr}^{-1}$	Rate of transition from stage k	
$ \rho_k, k = 1, 2, 3 $	$\rho_2 = 1/8.31 \ {\rm yr}^{-1}$	to stage $k + 1$ for untreated	(7, 9, 0, 10)
	$ ho_3 = 1/1.184 \ { m yr}^{-1}$	individuals	(7; 8; 9; 10)
$ ho_4$	$\rho_4 = 1/1.316 \text{ yr}^{-1}$	Disease related mortality for un-	
		treated individuals	
	$\gamma_1 = 1/8.21 \ {\rm yr}^{-1}$	Rate of transition from stage k	
$\gamma_k, k = 1, 2, 3$	$\gamma_2 = 1/54.0 \ {\rm yr}^{-1}$	to stage $k + 1$ for treated	(7 0 11)
	$\gamma_3 = 1/2.463 \text{ yr}^{-1}$	individuals	(7; 9; 11)
γ_4	$\gamma_4 = 1/2.737 \ {\rm yr}^{-1}$	Disease related mortality for	
		treated individuals	
	$h_1 = 2.76$		
$h_k, k = 1, 2, 3, 4$	$h_2 = 0.106$	Infectivity of untreated	(7; 10)
	$h_3 = 0.642$	individuals in stage k of infection	
	$h_4 = 0.0$		
ϵ	0.01	Infectivity of treated individuals	(7; 12)
	$q_1 = 0.451$		
	$q_2 = 0.353$		
$q_l, l = 1, \dots, 6$	$q_3 = 0.125$	Initial population fractions in	(4; 5; 2)
	$q_4 = 0.06$	the 6 risk groups	
	$q_5 = 0.01$		
	$q_6 = 0.001$		
С	$2.54 \ {\rm yr}^{-1}$	Mean partner change rate	Estimated
			from WPF
			sexual behav-
			ior data

Notation	Baseline value, unit	Description	Source
$c_l, l = 1, \dots, 6$	see S2 Table	Partner change rates in the 6 risk	Calculated
		groups (yr^{-1})	from the
σ^2	see S2 Table	Variance of the partner change	Weibull
		rate (yr^{-2})	distribution
λ	5%	Transmission probability per	Corresponds
		partnership	to a plausible
			range of R_0
			for MSM
			in Western
			countries (7)
$ au^*$	[0%, 100%]	Annual treatment percentage for	_
		homogeneous uptake	
$\tau_l^*, l = 1, \dots, 6$	[0%, 100%]	Annual treatment percentage in	_
		group l for heterogenenous uptake	
ϕ^*	5%	Annual dropout percentage	
au	$-\ln[1 - \tau^*/100\%]$	Annual treatment uptake rate for	
	yr^{-1}	homogeneous uptake	
$\tau_l, l = 1, \ldots, 6$	$-\ln[1 - \tau_l^*/100\%]$	Annual treatment uptake rate by	
	yr^{-1}	group l for heterogenenous uptake	
ϕ	$-\ln[1-0.05] \text{ yr}^{-1}$	Annual dropout rate	
ω	[0,1]	Mixing parameter: fully assorta-	
		tive mixing ($\omega = 0$), fully propor-	
		tionate mixing $(\omega = 1)$	

Table 1: Description of the parameters of the model and their baseline values.

References

- [1] Rutgers Nisso Group, Sexual health in the Netherlands. Delft: Eburon, 2006.
- [2] M. Xiridou, R. van Houdt, S. Hahné, R. Coutinho, J. van Steenbergen, and M. Kretzschmar, "Hepatitis B vaccination of men who have sex with men in the Netherlands: should we vaccinate more men, younger men or high-risk men?," *Sexually Transmitted Infections*, vol. 89, pp. 666–671, 2013.
- [3] A. Johnson, J. Wadsworth, K. Wellings, and J. Field, Sexual attitudes and lifestyles. Oxford: Blackwell Scientific Publications, 1994.
- [4] J. R. Williams, D. J. Nokes, G. F. Medley, and R. M. Anderson, "The transmission dynamics of hepatitis B in the UK: a mathematical model for evaluating costs

and effectiveness of immunization programmes," *Epidemiology & Infection*, vol. 116, pp. 71–89, 1996.

- [5] R. M. Anderson, G. F. Medley, and D. J. Nokes, "Preliminary analyses of the predicted impacts of various vaccination strategies on the transmission of the hepatitis B virus," in *Proceedings of the conference on the control of hepatitis B: the role of* prevention in adolescence, (London), pp. 95–130, 1991.
- [6] R. M. Anderson and R. M. May, *Infectious diseases of humans*. Oxford: Oxford University Press, 1991.
- [7] M. E. Kretzschmar, M. F. Schim van der Loeff, P. J. Birrell, D. De Angelis, and R. A. Coutinho, "Prospects of elimination of HIV with test-and-treat strategy," *Proceedings of the National Academy of Sciences USA*, vol. 110, p. 1553815543, 2013.
- [8] Collaborative Group on AIDS Incubation and HIV Survival including the CASCADE EU Concerted Action. Concerted Action on SeroConversion to AIDS and Death in Europe. "Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis," *Lancet*, vol. 355, pp. 1131–1137, 2000.
- [9] P. J. Birrell, A. M. Presanis, D. De Angelis, and The CASCADE Collaboration, "Multi-state models of HIV progression in homosexual men: an application to the CASCADE collaboration," tech. rep., MRC Biostatistics Unit, 2012.
- [10] T. D. Hollingsworth, R. M. Anderson, and C. Fraser, "HIV-1 transmission, by stage of infection," *Journal of Infectious Diseases*, vol. 198, pp. 687–693, 2008.
- [11] The CASCADE Collaboration. Concerted Action on SeroConversion to AIDS and Death in Europe. "Survival after introduction of HAART in people with known duration of HIV-1 infection," *Lancet*, vol. 355, pp. 1158–1159, 2000.
- [12] R. M. Granich, C. F. Gilks, C. Dye, K. M. De Cock, and B. G. Williams, "Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model," *Lancet*, vol. 373, pp. 48–57, 2009.