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Supporting Figures   

 

Figure S1. Optimal averaging of the single-tap stiffness map by evaluating the 

distribution of coefficient of variation (CV) as a function of number of taps per pixel 

(based on Fig. 3b). a. Calculation of CV distribution. (left) The single-tap stiffness (E*load) map 

consists of 1310 taps per scan line and 51 lines. To search for the optimal number of taps per 

pixel, averaged stiffness maps are calculated using different number of taps per pixel. (middle) 

For example, the averaged stiffness maps with N=10, 30, or 100 taps per pixels are shown. 

(right) The corresponding CV maps are then calculated where each pixel in the map is the 
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epresents its local uncertainty of stiffness measurement. Finally, median CV (CV50) and CV 

ranges are extracted from the CV distributions. The same procedure is also applied to the 

permuted or scrambled stiffness map. b. CV50 of the original image (red curve) is lower than that 

of the scrambled image (black curve) for any number of taps per pixel. The difference of the two 

curves (∆CV50) is shown in Fig. 3a. c. The range of 5 to 95 percentile (cyan curve) and 

interquartile distance (25 to 75 percentile, blue curve) reveal that the distribution of CV is the 

narrowest around 20-30 taps per pixel. 
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Figure S2. Nanomechanical images of an alpha-adducin knock-out mouse red blood cell 

(RBC). Top row, Conventional topography (H) and phase (φ0) images (256×256 pixels) as in 

tapping-mode AFM. Middle row, Images of nanomechanical properties directly measured from 

the time-resolved tip-sample interaction force. The same notations from Fig. 2 were used here. 

Bottom row, Images of nanomechanical properties derived from reconstructed force-distance 

curves using calculated indentation. The meshwork observed in wild-type RBCs was absent 

here. Scale bar is 0.5 µm and image size is 841 × 256 pixels. 
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Figure S3. Harmonic images of wild-type and alpha-adducin knock-out mouse RBCs. 

Root-mean-squared amplitude of harmonics from the 1st to the 8th order were calculated from 

the force signal using comb filtering. The same regions in Fig. 2 and Fig. S2 are shown here. 

Each harmonic image shows distinct contrast and seems to be sensitive to different 

nanomechanical properties. 
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Figure S4. Weighted bootstrapping method. a. The force signal of 25 consecutive taps in the 

same pixel. b. Each tap in the same pixel was fitted to a Hertzian contact mechanical model to 

extract the elastic modulus (E*) and the goodness-of fit value (R2). c. Weighting for each tap 

was calculated based on R2 and the spatial position of each tap. The clearly aberrant tap #22 

here was downweighted because of Gaussian weighting. d. Bootstrapping resampling of the 25 

E* values 1600 times using the weightings determined in c. The 25 raw E* values (black solid 

circles) are plotted on the top, followed by the median (red solid square) and mean (red solid 

triangle) of the raw E* values, and the histogram (green bars) of the mean of resampled E*. In 

this example, the median of the resampled E* distribution (blue line) was higher than the median 

directly calculated from the raw E* values. 
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Figure S5. Histogram of stiffness distributions at the three indentation ranges. Thin-film 

correction removed contribution from the stiff substrate and collapsed the distributions down to 

the same stiffness range.  
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Figure S6. Higher-harmonic contents in the vertical and horizontal signals. a. Frequency 

spectrum acquired from tapping the glass substrate. Harmonics up to the 8th and 11th order are 

shown in the vertical and horizontal signals, respectively. b. Frequency spectrum acquired from 

tapping the cell surface. Harmonics up to the 3th and 5th order are observed in the vertical and 

horizontal signals, respectively. The spectra were calculated from 255 taps (~10 pixels) in the 

two regions of interest (glass and cell) in Fig. 5. The drive frequency (f) was 5.9 kHz. 
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Figure S7. Vertical-horizontal signal cross-talk due to optical misalignments. a. Tilted 

pattern of the 0th and 1st order spots on the photodetector causes a response in the vertical 

signal to changes in force sensor signal. b. Angled displacement of the whole diffraction pattern 

causes a false force (horizontal) signal in response to changes in vertical deflection of the 

cantilever. c. An example of the presence of a force signal in the vertical deflection signal 

(arrows) when tapping the glass substrate. d. Phase difference (marked by the dotted lines) 

between the vertical and horizontal signals when the probe was oscillating 1 µm away from the 

substrate, indicating non-negligible hydrodynamic forces and vertical-to-horizontal cross-talk. 
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Figure S8. Cross-talk removal from the vertical signal. The top curves (black) for all panels 

are the original vertical signal, �� , and the bottom curves (red) are the corrected vertical signal, 

��, calculated by removing high frequency components above the 2nd harmonic from ��. The DC 

component of these curves associated with Z-piezo extension was removed for clarity. a. 

Vertical signals from the tapping mode force curve where the overall amplitude decreased with 

Z-piezo extension. Note the high frequency components in the original signal increased with Z-

piezo extension, suggestion horizontal-to-vertical coupling. b. Zoom-in to a light tapping part of 

the force curve. The correction restored the vertical deflection close to a sinusoidal waveform. c. 

Zoom-in to a hard tapping part of the force curve. The obvious distortion of the corrected signal 

was due to the remaining 2nd harmonic component in the vertical signal. d. Vertical signals from 

the contact mode force curve were used to extract the vertical optical sensitivity, ��. 
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Figure S9. Calculation of tip position from a tapping mode force curve. a. Cartoon showing 

the large base motion when using acoustic excitation to drive a cantilever in liquid. In this case, 

the vertical deflection of the cantilever, ��, is not equal to the tip position δ. b. Tapping mode 

force curve showing the horizontal signal (��, blue curve), cross-talk corrected vertical signal 

(��, red curve), and the calculated reduction of the vertical signal when tapping the glass 

substrate (�	, green curve). c. Zoom-in to a hard tapping part of the force curve showing 

��(blue curve), �	 (green curve), and the calculated tip position δ (red curve). d. Reconstructed 

force-distance curves. δ is shown in the unit of volts and was converted to nm using the optical 

sensitivity ��= 65 nm/V. 
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Supporting Information Notes 

Signals from interdigitated probes require specialized processing and analysis to obtain 

correct information of the nanomechanical properties. These supplementary notes contain three 

parts addressing the optical, mechanical, and statistical analysis and calculation of the raw AFM 

signal.  

Correction of vertical-horizontal cross-talk and optical sensitivity calibration 

In the most simplified optical setting of the interdigitated probes, the vertical signal (�� 

for “measured” photodiode output) of the quadrant photodiode solely depends on the deflection 

of the main cantilever (�� for “real” deflection in nanometers) and the horizontal signal (��) on 

the deflection of the interferometric force sensor (��, deflection of the tip-coupled fingers with 

respect to the reference fingers) as follows: 

�� 	= ����
�� = ����

  ,                                    (S1) 

where  ��  and ��  are the optical-lever sensitivity, relating deflection in the units of 

distance to photodiode voltages. 

In reality, the physical deflection of the cantilever and the sensor contribute to changes 

in both vertical and horizontal signals due to misalignment of the optics (Supporting Information 

Fig. 7a-b). For example, when the diffraction pattern is not horizontally aligned to the photodiode 

(“tilted pattern”), the changing power of the 0th and 1st order diffraction spots (due to deflection of 

the tip-coupled fingers) results in changes in both channels. These misalignments result in 

linear combinations of both cantilever and sensor deflection in the detected signals, as given by 

�� = �� + ���
�� = ��� + ���

  ,         (S2) 

where the coupling coefficients  and B generally are much greater than the cross-talk 

coefficients � and �.  
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To decouple �� and �� in Eq. S2 and obtain the real deflections, �� and ��, a calibration 

procedure using a contact mode force curve (CMFC) and a tapping mode force curve (TMFC) 

on the glass substrate in imaging liquid was performed. To minimize possible optical and 

mechanical artifacts, we performed in situ calibration on the substrate nearby each cell being 

imaged.  

First, in the TMFC measurement, the probe was driven at the resonance frequency of 

the main cantilever and approached the surface at a loading rate of 1 µm/s. The tip-sample 

interaction force (���) caused momentary deflection, ��, of the high-bandwidth force sensor and 

reduced the vibrational amplitude of the deflection, ��, of the body cantilever. Due to the low 

mechanical bandwidth of the body cantilever, we assumed that the frequency component of the 

deflection signal ��	above the 2nd order harmonics was attenuated and negligible, such that any 

higher order harmonic in �� were due to coupling from �� (Supporting Information Fig. 7c), e.g., 

for the third harmonics, ��,� 	≅ 	0, so that Eq. S2 was simplified to  

��,� ≅ ���,�
��,� ≅ ���,�

  .      (S3) 

A new factor  � can be defined by 

� =
�

�
≅

��,�

��,�
  ,      (S4) 

such that the contribution from �� can be eliminated from the measured vertical signal �� by 

using 

�� − ��� ≅ � − ����� = ����  .     (S5) 

Finally, to calculate the real deflection of the cantilever, ��, the vertical sensitivity, ��, 

was determined from the CMFC (no drive and at a loading rate of 1 µm/s) where ��  was 

equivalent to the Z-piezo extension during the contact with the glass surface (assuming 

indentation into glass was negligible and all Z-piezo extension was transferred into cantilever 
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deflection). Supporting Information Fig. S8 shows an example of using the method above to 

obtain corrected deflection of the cantilever. 

To decouple ��  from the mixed signals, one could measure the driven oscillation far 

away (>30 µm) from the surface where hydrodynamic force is weak. The so-called squeeze-film 

effect could introduce a non-negligible hydrodynamic force manifested as a sinusoidal 

undulation in �� and result in a phase difference between	�� and �� (Supporting Information 

Fig. 7d). When the probe was far away from the surface, ��, !� ≅ 0, and �� and �� were in 

phase, i.e., 

��, !� ≅ ��, !�
��, !� ≅ ���, !�

 .        (S6) 

Similar to Eq. S4 and S5, we may define 

" =
#

$
≅

��,%&'

��,%&'
      (S7) 

and calculate 

�� − "�� ≅ �� − "���� = ���� .    (S8) 

To calibrate for the horizontal sensitivity, ��, we extracted the real horizontal deflection, 

��, using the CMFC. Assuming the sensor and the cantilever behaved as a serially-coupled 

spring system, 
�'

�'
=

()*+)

(,&+-.
, where /�01� and /2!1�3 were the spring constants of the sensor and 

cantilever, respectively. The spring constants were estimated using finite element analysis 

based on the exact dimensions of the probe, as measured by SEM. Ideally, we need to collect 

signals far away from the substrate to perform this calibration. Yet most calibrations in the work 

were performed at a distance of ~1 µm away from the substrate, not far enough to fulfill the 

assumption required for Eq. S6. Hence, the horizontal signal was not treated with the method of 

cross-coupling removal proposed here and the horizontal sensitivity, ��, was derived from the 

uncorrected ��of the contact force curve (i.e., assuming " = 0 in Eq. S8).  
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Calculation of tip position and indentation using TMFC 

Due to viscous damping in an aqueous environment, the drive amplitude at the base of 

the cantilever was comparable to the deflection amplitude and hence the corrected vertical 

deflection of the cantilever, �� , could not be used directly as the tip position (Supporting 

Information Fig. S9a). As this drive motion was generally not measured, we developed a 

method to estimate the drive motion (i.e., drive amplitude and phase) applied to the base of the 

cantilever by the drive piezo using the TMFC.  We first parameterized the tip position 4�5� for 

the non-tapping part of the TMFC, which was the sum of the corrected vertical deflection (��), 

drive (6), and the Z-piezo extension (7): 

4�5� = ���5� + 6�5� + 7�5�      (S9) 

or  

                                           4�5� = �8 sin�<5� + 68�=>�<5 + ?� + 7�5�.         

(S10) 

where �8 and 68 were the oscillation amplitude of ���5� and 6�5�,	< the drive frequency and ? 

the phase difference between  ���5� and 6�5�. 7�5� was linear at the loading rate of 1 µm/s. 

Obviously, without the linear part, 7�5�, the tip position 4�5� varied in time as a simple sinusoidal 

oscillation with an amplitude ��8, 68, ?� and phase @��8, 68, ?� as functions of the deflection 

and drive amplitudes and phase. For the tapping part of the force curve, due to the presence of 

��� , the deflection amplitude was suppressed as Z-piezo extended. So, we introduced the 

reduction in deflection amplitude (�	�5�) as a second component of  �� (t). The tip position during 

contact was hence given by 

4A�5� = [�8 sin�<5� + �	�5�] + 6�=>�<5 + ?� + 7�5�.   (S11) 

Substituting Eq. S9 and S10 into S11, gives the tip position in the tapping part of the 

force curve as 
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4A�5� − 7�5� = �	�5� + �=>�<5 + @�  ,     (S12) 

where >�<5 + @� = �8 sin�<5� + 6�=>�<5 + ?� . This final equation showed that the tip 

position during contact, 4A�5�, subtracting 7�5�, was the sum of �	�5� and	a simple sinusoidal 

function, �=>�<5 + @� . Once the amplitude and phase of this sinusoidal function was 

determined, the actual drive amplitude and phase could be calculated using Eq. S10. 

Supporting Information Fig. S9 shows an example of calculating tip position from a 

measured TMFC. To calculate �	, the non-tapping part of the force curve was fitted to a sine 

function to obtain �8 sin�<5�. The sine function was then subtracted from the tapping part to 

yield �	. We found, partly due to the low bandwidth, that the cantilever responded to the tip-

sample force slowly and the change spanned across the whole oscillation cycle (�	, Supporting 

Information Fig. S9b-c). Finally, to calculate the tip position, 4A�5�, a sine function �=>�<5 + @� 

with a combination of different values of  and @ was added to �	 and the force-distance curves 

for several randomly selected taps were reconstructed. The combination of  and @ yielding the 

most overlapped approach and retract parts of the reconstructed force curves were used to 

calculate the tip position and indentation for the whole image (Supporting Information Fig. S9d). 

Calculation of nanomechanical properties from reconstructed force curves 

The reconstructed force-distance curve contains many important nanomechanical 

properties and can give insights into the elastic, viscoelastic, and adhesive nature of cells at the 

nanoscale. We extracted elastic moduli (D∗) from both the loading and unloading part of the 

force curve. For loading elastic moduli (DFG!H
∗ ), segments of loading part from different ranges of 

indentation (4) were used, depending on the application (e.g., for RBCs, the first 25 nm was 

used and, for stiffness tomography on HeLa cells, three ranges (0-80, 80-160, and >160 nm) 

were used).  For unloading elastic moduli (DI1FG!H
∗ ), only one segment, the higher 50% of the 

unloading force curve between the maximal force (peak repulsive force, ��!J) and minimal force 
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(adhesion force, �!HK), was used. Assuming a cone-shaped tip geometry, the Hertzian contact 

mechanical model including adhesion force gave 

���,FG!H�4� =
L

M�!1N
DFG!H
∗ 4L,                                                              (S13) 

and 

���,I1FG!H�4� − �!HK =
L

M�!1N
DI1FG!H
∗ 4L,                                                (S14) 

where the elastic moduli D∗ here were the reduced Young’s moduli and O the half-cone angle of 

the tip, which was ~15°.  

To calculate energy dissipation during tip-sample interactions, we integrated the 

hysteresis area enclosed by the loading and unloading force curves and divided the total energy 

into two parts: the area of ��� > 0 for dissipation based on indentation of the sample (Q31H) and 

the area of  ��� < 0 for dissipation from the adhesion between the tip and the sample (Q!HK) (Fig. 

2d). 

Weighted bootstrapping method for high resolution stiffness tomography 

In conventional force-volume stiffness mapping, the local stiffness is measured only 

once at the same location if the closest spacing between two points in the map is greater than 

the size of the contact area. Hence, no statistical assessment can be performed to address the 

confidence in the local stiffness measurement. Here, using high-bandwidth AFM, local stiffness 

was measured multiple times through the tightly spaced taps (~0.3 nm), allowing us to evaluate 

the local stiffness measurements statistically. The standard statistic calculated for most images 

in this paper was the median stiffness from 25 consecutive taps in the same pixel, which 

correspond to an ~7 nm wide area being probed by an ~ 10 nm sized tip. Median calculations 

removed outliers of stiffness values and offered a statistically meaningful representation of the 

local stiffness. A second method using weighed bootstrapping was applied to the stiffness 

tomograms of HeLa cells (Fig. 3). This method required longer computation time in exchange 
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for robustness. This method was also motivated by the observation that many outliers had 

higher goodness-of-fit from the fitting of the Hertzian model, suggesting they should be weighted 

more into the final stiffness value in the image. In the weighted bootstrapping method, the 

weighting determined the probability of one particular stiffness value being sampled as follows: 

S3 = TL3 × V3                                                                                  (S15) 

where i = 1,S,25, TL3 was the goodness-of-fit R-square value from the fitting for tap i , and V3 

was the spatial Gaussian weight which was one for the center tap (i=13) and 0.01 for the first 

and last tap (i.e., i =1 and 25)(Supporting Information Fig. S4c). The 25 stiffness values were 

then resampled 1600 times with the weightings given above. The mean, but not median, of the 

resamples was calculated and the empirical distribution of stiffness means from the 1600 

resample means was pooled into a histogram (Supporting Information Fig. S4d). Instead of 

using resampled medians, we used resampled means in combination with the resampling 

weightings to better address the contribution of stiffness values from high goodness-of-fit force 

curves, whether the stiffness values were outliers or not. The empirical distribution usually did 

not follow a normal distribution. Therefore, we chose the median of resampled means to 

represent the whole distribution in the final image. 

 


