Adsorption of benzoxaboroles on hydroxyapatite phases

Marie-Alix Pizzoccaro, Ondrej Nikel, Saad Sene, Coralie Philippe, P. Hubert Mutin,

Sylvie Bégu, Deepak Vashishth and Danielle Laurencin

SUPPORTING INFORMATION

Content	Page
SEM, TEM and powder-X-ray diffraction characterizations of the HA_{ceram} and HA_{nano} phases (Figure S1).	S2
Synthesis of $Ca(C_7H_6BO(OH)_2)_2.2H_2O$ (CaBBzx.2H ₂ O), and characterization of the material using SEM, XRD, IR and ¹¹ B solid state NMR (FigureS2).	S 3
¹¹ B{ ³¹ P} DFS-REDOR NMR sequence : explanation of the sequence and of how it allows ¹¹ B ³¹ P proximities to be probed (Figure S3).	S4
Grafting of BBzx onto HA_{ceram} : kinetics and isotherm (T = 22°C) (Figure S4).	S5
Variations in Ca and P supernatant concentrations as a function of grafting time and BBzx concentration in solution (Figure S5).	S6
Kinetics of grafting of benzoate (PhC) and phenylphosphate (PhP) onto HA _{ceram} (Figure S6)	S7
XRD powder patterns of bis-pipe-BBzx grafted HA _{ceram} and of an HA phase grafted " <i>in situ</i> " (during precipitation) by bis-pipe-BBzx (Figure S7)	S7
¹¹ B MAS NMR of a material obtained by " <i>in-situ</i> " grafting of BBzx on HA, in comparison to a borate-grafted HA phase obtained under similar conditions (Figure S8).	S8
¹¹ B MAS NMR of a BBzx-grafted HA _{ceram} phase, after 36 months of storage at room temperature (Figure S9).	S 8

Figure S1. SEM, TEM and powder-X-ray diffraction characterizations of the ${\rm HA}_{\rm ceram}$ and ${\rm HA}_{\rm nano}.$

Synthesis of Ca(C₇H₆BO(OH)₂)₂.2H₂O (CaBBzx.2H₂O)

Microbeads of NaOH (100.2 mg, 2.5 mmol) of NaOH were dissolved in 7 mL of ultrapure H₂O, followed by 322.0 mg of BBzx (2.4 mmol). The benzoxaborolate anions were then precipitated by progressive addition of 1.5 mL of an aqueous solution of CaCl₂ (0.8 mol.L⁻¹ solution, 1.2 mmol, 0.5 eq). The mixture was stirred for 1 hour at room temperature, during which the progressive formation of a white precipitate was observed. The suspension was filtered and then washed twice with 3 mL H₂O and twice with 3 mL Et₂O. The white powder was then dried for 48 h at 60°C (m = 99 mg, η = 22%). Elemental analysis calculated (%) for Ca(C₇H₆BO(OH)₂)₂.2H₂O: C 44.5, H 5.3, Ca 10.6, B 5.7; found: C 45.0, H 5.2, Ca 10.5, B 5.6.

CaBBzx.2H₂O could also be synthesized using a 1/1 H₂O/EtOH mixture instead of H₂O only. In this case, in a typical synthesis, 96.2 mg (2.4 mmol) of NaOH microbeads were dissolved in 7 mL of an H₂O/EtOH 1/1 mixture, before adding 321.5 mg of BBzx (2.4 mmol). Once the benzoxaborole dissolved, 1.5 mL of an aqueous solution of CaCl₂ (0.8 mol.L⁻¹ solution, 1.2 mmol) were added drop by drop, leading to the immediate formation of a white precipitate. The suspension was stirred for 30 minutes at room temperature, and then filtered under vacuum on a fritted glass filter glass-frit. The precipitate was washed twice with 5 mL of the EtOH/H₂O mixture and twice with 5 mL of Et₂O. The white powder was then dried at 40 °C for 28 h (m = 298 mg, η = 66%). Elemental analysis calculated (%) for Ca(C₇H₆BO(OH)₂)₂.2H₂O: C 44.5, H 5.3, Ca 10.6, B 5.7; found: C 43.2, H 4.9, Ca 11.4, B 5.6.

Figure S3. Schematic representation of the ¹¹B{³¹P} DFS-REDOR NMR sequence used (a), and how the comparison of spectra acquired with (S) and without (S₀) the ³¹P π pulses allows probing ¹¹B-³¹P proximities (b).

The ¹¹B{³¹P} REDOR NMR pulse sequence allows the study of ¹¹B-³¹P through space proximities. With ¹¹B{³¹P} REDOR, two ¹¹B NMR spectra are acquired and compared: one corresponds to a normal "spin echo" ¹¹B NMR spectrum (S₀), while the other has additional ³¹P recoupling π pulses (S). The series of rotor-synchronized π pulses on ³¹P allows reintroducing dipolar coupling to nearby boron atoms, causing them to "dephase" and their signal to decrease in intensity. By comparison of spectra acquired with and without the ³¹P recoupling pulses, identification of ¹¹B-³¹P proximities is possible.

Figure S4. Grafting of BBzx onto HA_{ceram} : kinetics (a) and isotherm (T = 22°C) (b).

For the grafting kinetics, the study was performed using a concentration of $\sim 17 \text{ mmol.L}^{-1}$ of BBzx in solution. For the isotherm, the grafting time was set to 6 h for each point. Error bars correspond to standard deviations over 2 to 5 independent repetitions of each experiment.

a/ Grafting kinetics on $\ensuremath{HA_{ceram}}$

Figure S5. Variations in Ca and P supernatant concentrations as a function of grafting time (a) and BBzx concentration in solution (b).

The grafting was performed using a concentration of $\sim 17 \text{ mmol.L}^{-1}$ of BBzx in solution, and a reaction time of 6 hours. Error bars correspond to standard deviations over 2 to 5 independent repetitions of each experiment.

S6

Figure S6. Kinetics of grafting of benzoate (PhC) and phenylphosphate (PhP) onto HA_{ceram}. Grafting densities were determined here by integration of ¹H solid state NMR spectra.

Figure S7. XRD powder patterns of bis-pipe-BBzx grafted HA_{ceram} (a) and of an HA phase grafted "*in situ*" (during precipitation) by bis-pipe-BBzx (b).

Figure S8. ¹¹B MAS NMR of a material obtained by "*in-situ*" grafting of BBzx on HA, in comparison to a borate-grafted HA phase prepared under similar conditions.

Figure S9. ¹¹B MAS NMR of a BBzx-grafted HA_{ceram} phase, after 36 months of storage at room temperature. A new resonance starts to appear at low frequencies, which could correspond to borates.

