Table of contents

		page
Table S1	Enterobacteriaceae tailed phage MCP matches in bacterial genomes	2
Table S2	P2 supercluster phages and prophages	4
Table S3	P22-like and P2-like prophages in <i>Salmonella</i> genome sequences	8
Table S4	P22-like phages and prophages used this study	12
Figure S1	Phage IME-EC2 map and gene database matches	17
Figure S2	Dot plot analysis of P2-like prophage MCPs from the Enterobacteriaceae	20
Figure S3	Genome dot plot of authentic P2 supercluster phages	22
Figure S4	Dot plot analysis of MCPs of P2-like phages and prophages from the Proteobacteria	24
Figure S5	Expanded genome dot plot of P2-like phages and prophages with distantly related hosts	26
Figure S6	Expanded genome dot plot analysis of authentic P2-like phage examples from different Gammaproteobacteria families	28
Figure S7	Genome organizational types of the P22-like phages	29
Figure S8	Dot plot analysis of a sample of diverse <i>Enterobacteriaceae</i> P22-like prophage genomes	30
Figure S9	Dot plot analysis of P22-like phage and prophage MCPs	32
Figure S10	Dot plot analysis of P22-like prophage genomes in Salmonella enterica	34
Figure S11	Dot plot analysis of genomes of P22-like prophages in <i>Salmonella</i> <i>enterica</i> serovar Typhimurium isolates	35
Figure S12	Dot plot analysis of genomes of P22-like prophages in <i>Salmonella enterica</i> serovar Heidelberg isolates	36
Figure S13	Dot plot analysis of genomes of P22-like prophages in <i>Salmonella enterica</i> serovar Typhimurium isolates	37
Figure S14	Dot plot analysis of genomes of P22-like prophages in <i>Salmonella enterica</i> serovar Newport isolates	38
Figure S15	O-antigen synthesis (<i>rfb</i> gene) regions of the genomes of the <i>Salmonella</i> strains that carry "anomalous" tailspike genes	39
Figure S16	New mosaic boundary in the P22-like tailspike gene	41
Supplementa	ry Material references	43

Table S1Enterobacteriaceae tailed phage MCP matches in bacterial genomes

			Bacterial genera / authentic phage
	Prototype	Prototype	with >50% MCP matches
Cluster	phage	phage host	outside the <i>Enterobacteriaceae</i> '
Lytic 1	T1	Escherichia	None / none
Lytic 2	T4	Escherichia	None / Acinetobacter phage Acj9-75%
Lytic 3	Vi01	Salmonella	None / <i>Delftia</i> phage øW-14-54%
Lytic 4	T5	Escherichia	None / Vibrio phage pVp-1-60%
Supercluster	T7		
Lytic 5	T7	Escherichia	None / Stenotrophomonas phage IME15 82%
Lytic 6	SP6	Salmonella	None / none
Lytic 7	KP34	Klebsiella	None / Vibrio phage VP93-74%
Lytic 8	LIMEzero	Pantoea	None / Ralstonia phage RSB3-51%
Lytic 9	øKT	Escherichia	None / none
Lytic 10	GAP227	Cronobacter	None / Aeromonas phage øAS7-82%
Lytic 11	N4	Escherichia	Mezorhizobium-75% / Delftia phage RG-2014-62%
Lytic 12	9NA	Salmonella	None / none
Lytic 13	Chi	Salmonella	None / none
Lytic 14	øEco32	Escherichia	None / none
Lytic 15	Felix-O1	Salmonella	None / none
Supercluster	SETP3		
Lytic 16	SETP3	Salmonella	Acinetobacter-64% / none
	K1-dep(1)	Escherichia	Sinorhizobium-61% / Synechococcus phage S-CBS4-56%
Lytic 17	SO-1	Sodalis	None / none
Lytic 18	ECO1230-10	Escherichia	Marinobacter-60% / Pseudomonas phage PPpW-3-68%
Lytic 19	Gj1	Escherichia	Aeromonas-60% / Shewanella phage Spp001-56%
Lytic 20	PY100	Yersinia	None / none
Supercluster	rV5		
Lytic 21	Ø92	Escherichia	None / none
Lytic 22	rV5	Escherichia	None / none
Lytic 23	SPN3US	Salmonella	None / none
Lytic 24	RaK2	Klebsiella	None / none
Lytic 25	øR1-37	Yersinia	None / none
Lytic 26	E1	Salmonella	None / Vibrio phage pYD38-A-79%
Lytic 27	EMCL-117	Escherichia	Burkholderia-52% / Pseudomonas phage DL60-67% ²
Lytic 28	KF-1	Edwardsiella	None / Vibrio phage VPMS1-69%
Lytic 29	MSW-3	Edwardsiella	None / Iodobacter phage øPLPE-68%
Lytic 30	Ea35-70	Erwinia	None / none
Lytic 31	φEaH1	Erwinia	None / none
Lytic 32	9g	Escherichia	None / none
Lytic 33	IME-EC2	Escherichia	None / none
Lytic 34	Ss1	Cronobacter	None / none
Lytic 35	CVT22	Citrobacter	None / i phage CW02-63%
Supercluster	Lambda		
Temperate 1	Lambda	Escherichia	None / none
Temperate 2 & 3	ø80 & N15	Escherichia	None / none
	PY54	Yersinia	Vibirio-76% / none
Temperate 4	HK97	Escherichia	Pseudomonas 78% / none
	mEp235	Escherichia	Pseudomonas-80% / none
Temperate 5	ES18	Salmonella	Pseudomonas-69% / Pseudomonas phage ø297-69%
Temperate 6	Gifsy-2	Salmonella	Photobacterium-57% / Pseudomonas phage F10-55%
Temperate 7	BP-4795	Escherichia	None, none
Temperate 8	SfV	Shigella	Aggregatibacter-64% / none
	Sfl	Shigella	Vibrio-84% / none
Temperate 9	P22	Salmonella	None / none
	Sf6	Shigella	None / none
Temperate 10	APSE-1	Hamiltonella	None / none
Temperate 11	933W	Escherichia	Photobacterium-63%, none

Bactorial genera / phage

Table S1 cont.

	Prototype	Prototype	with >50% MCP matches ¹
Cluster	phage	phage host	outside Enterobacteriaceae
Temperate 12	HK639	Escherichia	Castellaniella-55% / none
Temperate 13	øES15	Cronobacter	None / none
Temperate 14	HS2*	Sodalis	Acinetobacter-77% / none
Temperate 15	ENT47670	Cronobacter	Vibrio-77% / none
Temperate 16	ZF40	Pectobacterium	None / none
Temperate 17	øEt88	Erwinia	None / Xanthomonas phage DIBBI-53%
Temperate 18	ε15	Salmonella	Pseudomonas-65% / none
Temperate 19	P1	Escherichia	None / none
Supercluster	P2		
Temperate 20	P2	Escherichia	Burkholderia-55% / Burkholderia phage-55%
Temperate 21	ESSI-2	Cronobacter	Vibrio-59% / Vibrio phage-53%
Temperate 22	Mu	Escherichia	Marinomonas-62% / Pseudomonas phage DMS3-51%
Temperate 23	SSU5	Salmonella	Acinetobacter-60% / none
Temperate 24	PEp14	Erwinia	Rhizobium-66% / Sinorhizobium phage PBC5 phage-66%
Temperate 25	GF-2	Edwardsiella	None / none
Temperate 26	SEN34	Salmonella	Pseudomonas-59% / none

1. Percent MCP identity as reported by BLASTp

- Red text highlights prophages in other bacterial families with MCPs >75% identical to MCPs of a temperate *Enterobacteriaceae* phage cluster.
- Blue text highlights prophages in other bacterial families with MCPs between 50% and 70% identical to MCPs of a lytic *Enterobacteriaceae* phage cluster.
- 2. Several phages in the EMCL-117-like phage group, for example phage øVader, have recently been reported to grow lytically on both *E. coli* and *Pseudomonas aeruginosa* (Malki *et al.*, 2015).

Table S2 P2 Supercluster Phages and Prophages

4	Enteroba	cteriaceae P2-like phages	in this study		
Cluster	Phage	Host species	Accession number	Genome orientation	Genome sequence publication
Temperate 20	P2	Escherichia coli	AF063097	P2	numerous publications
	Wø	Escherichia coli	AY135739	P2	1
	L-413C	Yersinia pestis	AY251033	P2	Virology 372:85
	øAA91-ss	Escherichia coli	KF322032	P2	JVirol 87:13665
	pro147	Escherichia coli	KR073660	P2	1
	pro483	Escherichia coli	KR073661	P2	1
	186	Escherichia coli	U32222	P2	numerous publications
	PsP3	Salmonella enterica	NC_005340	P2	
	FSL-SP-004	Salmonella enterica	KC139521	P2	BMCgenomics 14:481
	ENT90	Erwinia amylovora	HQ110084	P2	1
	SopEø	Salmonella enterica	AY319521	P2	JBact 185:5182
	Fels-2	Salmonella enterica	NC_010463	P2	Nature 413:852
	RE-2010 (ELøS)	Salmonella enterica	HM770079	P2	ApplEnvMicro 78:1785
	SEN1	Salmonella enterica	KT630644	P2	1
	SEN4	Salmonella enterica	KT630645	P2	1
	SEN5	Salmonella enterica	KT630646	P2	1
	SEN8	Salmonella enterica	KT630647	P2	1
	P88	Escherichia coli	NC_026014	P2	1
Temperate 21	ESSI-2	Cronobacter sakazakii	HQ110083	HP1	Arc hVirol 156:721

Enterobacteriaceae P2-like phages in this study

Casjens and Grose SUPPLEMENTARY MATERIAL

Table S2	P2 Supercluster Phages and Prophages
----------	--------------------------------------

ш	P2-like Er	nterobacteriaceae propha	ge panel used in this study
	Prophage	Host species and strain	MCP locus_tag
	AgonaP2-A	Salmonella enterica (Agona73.H.09)	SA73_2208
	CedP2-1	Cedecea davisae DSM 4568	HMPREF0201_03602
	CronoP2-B	Cronobacter sakazakii SP291	CSSP291_11880
	DickP2-B	Dickeya zeae EC1	W909_12715
	Eco541P2-A	Escherichia coli 541-15	EC54115_23648
	EcoC3P2-A*	Escherichia coli 2-011-08_S4_C3	AD24_4183
	EcoP2-CVM-A	Escherichia coli CVM N36225PS	PU46_04800
	EcoP2-E22-A	Escherichia coli E22	EcE22_1442
	EcoP2-KTE10-A	Escherichia coli KTE10	WCM_01332
	EcoP2-KTE234-A	Eschericha coli KTE234	A193_03379
	EdwardP2-A	Edwardsiella tarda ATCC 15947	ET1_14_00560
	EdwardP2-B	Edwardsiella piscicida C07-87	ETAC_02100
	EntP2-A	Enterobacter cloacae ATCC 13047	ECL_02851
	ErwinP2-A	Erwinia billingiae Eb661	EbC_01060
	HafP2-A	Hafnia alvei FB1	AT03_17965
	KlebP2-A	Klebsiella pneumoniae UHKPC57	H237_1271
	MorgP2-A	Morganella morganii KT	MU9_2040
	PantP2-A	Pantoea rwandensis ND04	LH22_RS05065
	PectoP2-C	Pectobacterium caratovorum PC1	PC1_2643
	ProdP2-A	Pantoea rodasii ND03	QU24_21505
	ProvP2-B	Providencia rustigianii DSM 4541	PROVRUST_04967
	RahnP2-B	Rahnella aquatilis HX2	Q7S_07135
	RauoIP2-A	Raoultella ornithinolytica TNT	DF41_23110
	SalP2-C	Salmonella enterica Typhimurim YUHS 05-78	SE14_01921
	SerrP2-C	Serratia odorifer DSM 4582	HMPREF0758_1209
	ThompP2-A	Salmonella enterica (Thompson CFSAN000736)	SEETH391_21320
	XenoP2-A	Xenorhabdus doucetiae FRM16	XDD1_2854
	YersP2-A	Yersinia pseudotuberculosis YPIII	YPK_0899
	YersP2-B	Yersinia enterocolitica Y11	Y11_25391
	YokP2-A	Yokenella regensburgei ATCC 43003	HMPREF0880 02763

Table S2 P2 Supercluster Phages and Prophages

ပ	P2-like ph	ages outside the <i>Enterobs</i>	acteriaceae			
	Ē		L	 		Genome sequence
	Phage	Host species	Host Family	Class	MCF IOCUS_IAG	publication
	BEK	Burkholderia pseudomallei	Burkholderiaceae	Beta-Proteobacteria	CP008753	I
	KL3	Burkholderia cepacia	Burkholderiaceae	Beta-Proteobacteria	GU911304	BMCGenomics 11:599
	KS14	Burkholderia cenocepacia	Burkholderiaceae	Beta-Proteobacteria	NC_015273	BMCGenomics 11:599
	KS5	Burkholderia cenocepacia	Burkholderiaceae	Beta-Proteobacteria	NC_015265	BMCGenomics 11:599
	ø52237	Burkholderia pseudomallei	Burkholderiaceae	Beta-Proteobacteria	NC_007145	
	øE12-2	Burkholderia pseudomallei	Burkholderiaceae	Beta-Proteobacteria	NC_009236	
	øE202	Burkholderia thailandensis	Burkholderiaceae	Beta-Proteobacteria	CP000623	1
	øRSA1	Ralstonia solanacearum	Ralstoniaceae	Beta-Proteobacteria	AB276040	JBact 190:143
	øX216	Burkholderia pseudomallei	Burkholderiaceae	Beta-Proteobacteria	JX681814	BMC Microbiol 12:289
	RSY1	Ralstonia solanacearum	Ralstoniaceae	Beta-Proteobacteria	AB981169	
	ST79	Burkholderia pseudomallei	Burkholderiaceae	Beta-Proteobacteria	NC_021343	
	535AP1	Mannheimia haemolytica	Pasteurellae	Gamma-Proteobacteria	KP137432	BMCGenomeics 15:175
	587AP1	Mannheimia haemolytica	Pasteurellae	Gamma-Proteobacteria	KP137434	BMCGenomeics15:175
	1127AP1	Mannheimia haemolytica	Pasteurellae	Gamma-Proteobacteria	KP137436	BMCGenomeics15:175
	1152AP1	Mannheimia haemolytica	Pasteurellae	Gamma-Proteobacteria	NC_021778	BMCGenomeics15:175
	2256AP1	Mannheimia haemolytica	Pasteurellae	Gamma-Proteobacteria	KP137438	BMCGenomeics15:175
	BAA410	Mannheimia haemolytica	Pasteurellae	Gamma-Proteobacteria	DQ426905	Virology 350:79
	F108	Pasteurella multocida	Pasteurellae	Gamma-Proteobacteria	DQ114220	AEM 72:3154
	HP1	Haemophilus influenzae	Pasteurellae	Gamma-Proteobacteria	NC_001697	NucliecAcidRes 24:685
	HP2	Haemophilus influenzae	Pasteurellae	Gamma-Proteobacteria	AY027935	JBact 184:6893
	K139	Vibrio cholerae	Vibrionaceae	Gamma-Proteobacteria	NC_003313	JBact 184:6592
	Kappa	Vibrio cholerae	Vibrionaceae	Gamma-Proteobacteria	NC_010275	-
	ØCTX	Psuedomonas aerugunosa	Pseudomonadaceae	Gamma-Proteobacteria	AB008550	MolMicro 31:399
	03	Psuedomonas aerugunosa	Pseudomonadaceae	Gamma-Proteobacteria	KT887559	
	øMHaA1-PHL101	Mannheimia haemolytica	Pasteurellae	Gamma-Proteobacteria	NC_008201	Virology 350:79
	ø018P	Aeromonas media	Aeromonadaceae	Gamma-Proteobacteria	NC_009542	Virology 373:25
	PV94	Vibrio vulnificus	Vibrionaceae	Gamma-Proteobacteria	HG803181	PLoS One 9:e94707
	Smp131	Stenotrophomonas maltophilia	Xanthomonaceae	Gamma-Proteobacteria	JQ809663	BMC Microbiol 14:17
	VPUSM 8	Vibrio cholerae	Vibrionaceae	Gamma-Proteobacteria	NC_022747	1

P2-like phages outside the Enterobacteriaceae

Table S2	P2 Supercluster Phages and Prophages
----------	--------------------------------------

P2-like prophages outside the Enterobacteriac		a	D)
P2-like prophages outside the Enterobacteria		ē	5	
P2-like prophages outside the Enterobacteria		à	1	
P2-like prophages outside the Enterobacter	•	S	U	
P2-like prophages outside the Enterobacte		2	_	
P2-like prophages outside the Enterobact		Q	Ľ)
P2-like prophages outside the Enterobac	•	÷	Ę	,
P2-like prophages outside the Enteroba		ć	5)
P2-like prophages outside the Enterob		Q	U	5
P2-like prophages outside the Enterol		2	Ĵ	,
P2-like prophages outside the <i>Enter</i> o		ē	5	1
P2-like prophages outside the <i>Ente</i>		č	-	'
P2-like prophages outside the <i>Ent</i> e		ā	ī	1
P2-like prophages outside the En	•	ř	5	,
P2-like prophages outside the E		Ż		•
P2-like prophages outside the E	I	ī	ì	ì
P2-like prophages outside the	Ļ	4		l
P2-like prophages outside the		^	•	
P2-like prophages outside th		Ä	2	
P2-like prophages outside t	-	C		
P2-like prophages outside		٠		•
P2-like prophages outside		٥	D	١
P2-like prophages outsic	-	~	4	
P2-like prophages outs		2	_	
P2-like prophages out		۵	n)
P2-like prophages ou	•	Ē		•
P2-like prophages o		Ξ		j
P2-like prophages		C)
P2-like prophages			_	
P2-like prophage		ų	2	,
P2-like prophag		Q	υ)
P2-like prophae		τ	2	5
P2-like proph:		õ		í
P2-like proph		ì	-	
P2-like prop	•	÷	-	
P2-like pro		č	2)
P2-like pr		C	2)
P2-like p		ç	_	•
P2-like		C	2)
P2-like		~		
P2-lik		ñ	ų	
P2-li	•	`		
Ч2				
	,	_	١.	
ב	ļ		V	I
	Ĺ			
	Ĩ			1

ב	<u>,</u> , , , , , , , , , , , , ,)			
<u>a</u>	rophage	Host species and strain	Host Family	Class	MCP locus_tag
8	revuP2-A	Brevundimonas diminuta ATCC 11568	Caudobactereacae	Alpha-Proteobacteria	BDIM_14580
z	lovoP2-A	Novosphingobium pentaromativorans US6-1	Sphingomonadaceae	Alpha-Proteobacteria	JI59_04365
Ń	ymoP2-A	Zymomonas mobilis ZM4	Sphingomonadaceae	Alpha-Proteobacteria	ZZM4_0034
A	chromoP2-A	Achromobacter sp. LC458	Alcaligenacae	Beta-Proteobacteria	YH64_11480
8	urkP2-A	Burkholderia thailandensis MSMB121	Burkholderiaceae	Beta-Proteobacteria	BTI_1970
8	urkP2-B	Burkholderia cenocepacia MC0-3	Burkholderiaceae	Beta-Proteobacteria	Bcenmc03_0205
0	olliP2-A	Collimonas fungivorans Ter331	Oxalobacteracae	Beta-Proteobacteria	CFU_0996
0	:omaP2-A	Comamonas testosteroni TK102	Comamonadaceae	Beta-Proteobacteria	0987_RS22905
0	upP2-A	Cupriavidus taiwanensis LMG19424	Burkholderiaceae	Beta-Proteobacteria	RALTA_A0929
×	(ingP2-A	Kingella oralis ATCC 51147	Neisseriaceae	Beta-Proteobacteria	GCWU000324_01254
z	leissP2-A	Neisseria meningitidis alpha710	Neisseriaceae	Beta-Proteobacteria	NMBB_1121
<u> </u>	olarP2-A	Polaromonas naphthalenivorans CJ2	Comamonadaceae	Beta-Proteobacteria	Pnap_3291
	esulfP2-A	Desulfovibrio desulfuricans ATCC 27774	Desulfovibrionaceae	Delta-Proteobacteria	Ddes_0241
D	esulfP2-B	Desulfovibrio vulgaris DP4	Desulfovibrionaceae	Delta-Proteobacteria	Dvul_2765
A	cinP2-A	Acinetobacter baumannii AYE	Pseudomonales; Moraxellaceae	Gamma-Proteobacteria	ABAYE0571
A	cinP2-B	Acinetobacter ursingii NIPH 706	Pseudomonales; Moraxellaceae	Gamma-Proteobacteria	F943_01500
A	eroP2-A	Aeromonas hydrophila AL06-06	Aeromonacea	Gamma-Proteobacteria	RY45_19020
A	eroP2-B	Aeromonas salmonicida 2009-144K3	Aeromonacea	Gamma-Proteobacteria	NX85_17375
A	zoP2-A	Azotobacter vinelandii CA	Pseudomonales; Pseudomonadaceae	Gamma-Proteobacteria	AvCA_37590
U	ardP2-A	Cardiobacterium hominis ATCC 15826	Cardiobacteriaceae	Gamma-Proteobacteria	HMPREF0198_2128
U	hromoP2-A	Chromohalobacter salexigens DSM 3043	Halomonadaceae	Gamma-Proteobacteria	Csal_1397
Ξ	ndoP2-A	Endozoicomonas montiporae LMG 24815	Hahellaceae	Gamma-Proteobacteria	GZ77_07230
9	alliP2-A	Gallibacterium anatis UMN179	Pasteurellae	Gamma-Proteobacteria	UMN179_00236
T	lahP2-A	Hahella chejuensis KCTC 2396	Hahellaceae	Gamma-Proteobacteria	HCH_00394
T	laloP2-A	Halomonas sp. PBN3	Halomonadaceae	Gamma-Proteobacteria	Q671_08135
W	1annP2-A	Mannheimia haemolytica PKL10	Pasteurellae	Gamma-Proteobacteria	AK33_08830
¥	1armoP2-A	Marinomonas sp. MWYL1	Oceanospirillaceae	Gamma-Proteobacteria	Mmwyl1_0585
ž	1arinP2-A	Marinobacter nanhaiticus D15-8W	Alteromonadaceae; Alteromonadales	Gamma-Proteobacteria	J057_04576
ž	1ortP2-A	Moritella viscosa MVIS1	Alteromonadaceae; Alteromonadales	Gamma-Proteobacteria	MVIS_2005
0	leiP2-A	Oleispira antarctica RB-8	Oceanospirillaceae	Gamma-Proteobacteria	OLEAN_C08680
ď	astP2-A	Pasteurella multocida P1062	Pasteurellae	Gamma-Proteobacteria	P1062_0211455
<u> </u>	seudoalteroP2-A	Pseudoalteromonas arctica A 37-1-2	Pseudoalteromonadaceae; Alteromonadales	Gamma-Proteobacteria	PARC_05148
Ċ.	seudoalteroP2-B	Pseudoalteromonas atlantica A 37-1-2	Pseudoalteromonadaceae; Alteromonadales	Gamma-Proteobacteria	Patl_0697
Ċ	seudoP2	Pseudomonas aeruginosa BL13	Pseudomonales; Pseudomonadaceae	Gamma-Proteobacteria	Q067_06185
S	heP2-B	Shewanella baltica OS195	Shewanellaceae; Alteromonadales	Gamma-Proteobacteria	Sbal195_2914
S	tentoP2-A	Stenotrophomonas maltophilia D457	Xanthomonaceae	Gamma-Proteobacteria	SMD_3273
>	'iirioP2-B	Vibrio cholerae AM-19226	Vibrionaceae	Gamma-Proteobacteria	A33_2125
>	ibrioP2-A	Vibrio fischeri ES114	Vibrionaceae	Gamma-Proteobacteria	VF2012
×	anthoP2-A	Xanthomonas campestris	Xanthomonaceae	Gamma-Proteobacteria	XCCB1459_1200

			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	~
	D3.Iko	ESSI-2 MCP	>45%	7	124	1	2	0	2	0	1	1	-	0	83	-	0	0	0	102	0	З	2	1	0	1	0	26	10	0	0	0	5	0	2	0	4	C
	P2- like	P88 MCP	>50%	0	32	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	2	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	C
	D3_like	Fels-2 MCP	>50%	5	107	1	1	8	0	0	2	1	0	0	111	-	0	1	0	38	-	4	-	1	0	1	0	30	9	4	0	1	2	1	5	-	51	-
ces		Number of tailspike	genest	0	130	1/1	1	1/1	2	1	1	0	0	1	8/4	1	0	0	0	103	0	1	1	1	0	0	0	381/1/1	12	0	2	0	1	1	2	1	3 / 1	C
ome sequer		P22 Tailspike	type††		la	qII / III	la	q <mark>/</mark> / III						la	la / Ib	a				la		la	a	IX				la / lb / <mark>Vc</mark>	۹۸		Va		Vb	Vc	Va	Vc	Vb / <mark>la</mark>	
nella genc	Percentage of genomos	with P22- like	prophage	0.0%	93.5%	40.0%	20.0%	50.0%	100.0%	100.0%	20.0%	%0`0	%0.0	100.0%	10.5%	100.0%	%0.0	%0.0	%0`0	100.0%	%0.0	10.0%	16.7%	100.0%	%0.0	%0.0	%0.0	87.2%	11.7%	%0.0	100.0%	%0'0	20.0%	100.0%	100.0%	0.0%	7.3%	/00 0
almo		Sf6	MCP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	C
in Sa		cus-3	MCP	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ages		P22	МСР	0	130	2	1	2	2	1	1	0	0	-	11	-	0	0	0	103	0	-	-	0	0	0	0	388	12	0	5	0	1	1	2	0	4	2
ke propha		Number of genome	seduences	10	139	5	2	4	2	1	2	1	1	1	114	1	1	1	2	103	1	10	9	2	1	1	1	445	103	2	2	1	5	1	2	1	55	-
⊃22-like and P2-li			Serovar	Senftenberg	Paratyphi A	Anatum	Give	Muenster	Nchanga	Uganda	Weltevreden	London	Meleagridis	Abony	Agona	Brandenburg	Bredeney	Chester	Derby	Heidelberg	Indiana	Paratyphi B	Saintpaul	Schwarzengrund	Sloterdijk	Stanley	Stanleyville	Typhimurium	Bareilly	Braenderup	Choleraesuis	Hartford	Infantis	Livingstone	Lubbock	Mbandaka	Montevideo	Nonvich
н			O Group†	O:1,3,19	0:2	O:3,10	O:3,10	O:3,10	O:3,10	O:3,10	O:3,10	O:3.10	O:3.10	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	0:4	O:6,7	O:6,7	0:6,7	0:6,7	O:6,7	0:6,7	O:6,7	0:6,7	0:6,7/0:54*	P 9.0
		Salmonella enterica	subsp. enterica																																			

Table S3 ke and P2-like prophages in Salmonella gen

-

	_	P22-like and P2-lik	ve prophé	ages	in Sa	almor	nella gen	ome sequen	ces			
			Number of Salmonella				Percentage of genomes with P22-		Number of	Fels-2	P88	ESSI-2
Salmonella enterica subsp. enterica	0 Group†	Serovar	genome sequences	MCP	MCP-3	MCP	like prophage	P22 Tailspike type††	tailspike genes†	MCP >50%	MCP >50%	MCP >45%
	0:6,7	Ohio	-	1	0	0	100.0%	Vc	1	0	0	0
	O:6,7	Oranienburg	с С	0	0	0	%0.0		0	Э	0	0
	O:6,7	Paratyphi C	-	0	-	0	100.0%	٩٨	1	0	0	1
	0:6,7	Rissen	-	-	0	0	100.0%	Vc	1	2	0	0
	0:6,7	Tennessee	93	2	0	0	66.7%	Va / Vc	1/1	-	0	2
	0:6,7	Thompson	2	0	0	0	%0.0		0	0	0	0
	0:6,7	Virchow	ĉ	0	0	0	%0.0		0	-	0	1
	0:8	Albany	-	-	0	0	100.0%	Vlia	1	0	0	0
	0:8	Bovismorbificans	2	0	0	0	%0.0		0	0	0	1
	0:8	Hadar	5	2	-	0	60.0%	VIIC	С	0	0	0
	0:8	Kentucky	15	0	0	0	%0.0		0	0	0	0
	0:8	Litchfield	-	0	0	0	%0.0		0	0	0	0
	0:8	Manhattan	2	0	0	0	%0.0		0	-	0	0
	0:8	Muenchen	4	0	0	0	%0.0		0	с	0	2
	O:8	Newport	47	2	e	2	21.3%	VIIa / VIIb / VIId	7/3/6	23	2	10
	0:8	Tallahassee	1	0	-	0	100.0%	VIIC	1	0	0	0
	0:0	Berta	ĉ	0	0	0	%0.0		0	3	0	0
	0:0	Dublin	10	10	0	0	100.0%	la	10	10	0	0
	0:0	Eastbourne	1	0	0	0	%0.0		0	1	0	0
	0:0	Enteritidis	318	1	0	0	0.3%	≡	1	208	0	22
	0:0	Gallinarum/Pullorum	12	1	0	0	8.3%	la	1	2	0	0
	0:0	Javiana	2	1	0	0	20.0%	la	1	2	0	0
	0:0	Miami	1	0	0	0	%0.0	la	1	0	0	0
	0:0	Napoli	1	0	0	0	%0.0		0	0	-	0
	0:0	Panama	1	0	0	0	%0.0		0	1	0	0
	0:0	Typhi	1755	0	0	0	%0.0		0	3526	68	24
	0:0	9,12:1,v:	1	+	0	0	100.0%	qı	1	0	0	2
	O:9,46	Baildon	1	0	0	0	%0.0		0	0	0	0
	O:9,46	Ouakam	1	٢	0	0	100.0%		0	0	0	0
	0:11	Abaetetuba	1	0	0	0	%0.0		0	0	0	0
	0:11	Rubislaw	2	1	0	0	50.0%	XIX	1	0	2	0
	0:13	Cubana	4	0	0	0	%0.0		0	2	0	0
	0:13	Havana	-	0	0	0	%0.0		0	-	0	-
	0:13	Mishmarhaemek	L	0	0	0	%0.0		0	1	-	0

2

	<u> </u>	⊃22-like and P2-lik	ke propha	ges	in Sa	Ilmor	nella genc	me sequen	Ices			
							Percentage of genomes					
Salmonella enterica subsp. enterica	0 Groupt	Serovar	Number of genome sequences	P22 MCP	CUS-3 MCP	Sf6 MCP	with P22- like prophage	P22 Tailspike tvpe††	Number of tailspike genes [†]	Fels-2 MCP >50%	P88 MCP >50%	ESSI-2 MCP >45%
	0:13	Mississippi	-	~	0	0	100.0%	IIIA	1	0	0	0
	O:13	Poona	-	-	0	0	100.0%	ΝI	1	0	0	1
	O:13	Worthington	1	0	0	0	%0.0		0	0	0	0
	O:16	Gaminara	2	-	0	0	50.0%	VI	1	2	1	0
	O:18	Cerro	21	21	0	0	100.0%	IV	21	0	0	0
	0:21	Minnesota	2	-	0	0	50.0%	X	1	0	0	0
	O:28	Pomona	1	0	0	0	%0.0		0	0	0	0
	O:30	Aqua	-	-	0	0	100.0%	la	-	0	0	0
	O:30	Soerenga	-	0	0	~	100.0%	XII	-	-	0	0
	O:30	Urbana	2	0	0	0	%0.0		0	2	0	1
	O:35	Adelaide	1	0	0	0	0.0%		0	1	0	0
	O:35	Alachua	1	0	0	0	0.0%		0	-	0	0
	O:38	Inverness	2	0	0	0	%0.0		0	L	0	0
	O:39	Namur	1	0	0	0	%0.0		0	0	0	0
	O:39	Wandsworth	1	-	0	0	100.0%	XIII	1	0	1	0
	O:40	Johannesburg	1	-	0	0	100.0%	IX	1	1	0	1
Salmonella enterica	C9.0				C	C	100 0%	~~~	Ţ	C	c	C
suusp. Alizoliae	0.02		-	-			%/N/N/	~	-	>		
Salmonella enterica subsp. Diarizonae			2	0	0	0	0.0%		0	1	0	0
Salmonella enterica				•	((((
subsp. Houtenae			4	-			25.0%	X/I/X	1/1	0		2
Salmonella enterica subsp. indica			2	0	0	0	0.0%		0	2	0	0
Salmonella enterica												
subsp. Salamae			2	-	0	0	50.0%	XVII	1	0	0	0
Salmonella bongeri			3	0	0	0	0.0%		0	2	1	1
Total			3298	729	7	5			743**	4197	115	446
		Total P22	-like MCPs	741				Total P2-like r	orophages	4758		
		Total P22-like p	rophages #	744					-			

Table S3

Casjens and Grose SUPPLEMENTARY MATERIAL

m

Table S3 footnotes

- The table was completed on July 31, 2015. GenBank entries with only "WP_xxxxx" accession numbers are not included since the strain names and nucleic acid context cannot be determined.
- † O antigen groups are from Grimont, P., Weill, F. 2007. Antigenic Formulae of the Salmonella Serovars, (9th ed.) Paris: WHO Collaborating Center for Reference and Research on Salmonella, Institut Pasteur. (Available at: http://www.pasteur.fr/sante/clre/cadrecnr/salmoms/ WKLM_En.pdf)
- ++ Where several types of P22-like tailspikes are present in different prophages they are separated by slashes (/). Red text highlights the anomalous tailspikes discussed in the text.
- * O:6,7 antigen is expressed in Montevideo serotype cells when plasmid controlling O:54 antigen is not present.
- ** The total numbers of MCPs and tailspikes are not the same. This is because MCP or tailspike genes are occasionally missing from the translated annotation due to their falling between contigs, having been deleted from the prophage or not being correctly annotated. In addition several Newport prophages have two tailspike genes.
- # 741 MCP genes and 3 tailspike genes whose associated MCP genes are missing or not annotated.

Casjens and Grose SUPPLEMENTARY MATERIAL

Table S4P22-like phages and prophages used this study

Α	P22-like authentic phages			
Phage	Host	Accession number	genome orientation	MCP type
22	Salmonella enterica (Typhimurium)	KR296686	P22	P22
25	Salmonella enterica (Typhimurium)	KR296687	P22	P22
34	Salmonella enterica (Typhimurium)	KR296688	P22	P22
APSE-2	Hamiltonella defensa*	EU794049	APSE-1	Sf6
ASPE-1	Hamiltonella defensa*	AF157835	APSE-1	Sf6
CUS-3	Escherichia coli	CP000711	Sf6	CUS-3
Emek	Salmonella enterica (Haardt)	JQ806763	P22	P22
epsilon34	Salmonella enterica (Anatum)	EU570103	P22	P22
g341	Salmonella enterica (Anatum)	NC_013059	P22	P22
HK620	Escherichia coli	AF335538	Sf6	Sf6
IME10	Escherichia coli	JN600960	P22	P22
L	Salmonella enterica (Typhimurium)	AY795968†	P22	P22
ø20	Salmonella enterica (Typhimurium)	GQ422450	P22	P22
ø75	Salmonella enterica (Typhimurium)	GQ422451	P22	P22
P22	Salmonella enterica (Typhimurium)	BK000583	P22	P22
SE1	Salmonella enterica (Typhimurium)	NC_011802	P22	P22
SEN22	Salmonella enterica (Diarizonae)	KT630648	P22	P22
SETP1	Salmonella enterica (Eneritidis)	EF151184#	-	-
Sf101	Shigella flexneri	KJ832078	Sf6	CUS-3
Sf6	Shigella flexneri	AF547987	Sf6	Sf6
SPC-P1	Salmonella enterica (TyphiC)	CP000857	Sf6	CUS-3
SPN9CC	Salmonella enterica (Typhimurium)	JF900176	P22	P22
ST104	Salmonella enterica (Typhimurium)	AB102868	P22	P22
ST160	Salmonella enterica (Typhimurium)	NC_014900	P22	P22
ST64T	Salmonella enterica (Typhimurium)	AY052766	P22	P22
	* virion-like particles not yet shown to be infectious † our unpublished sequence # partial sequence			

Table S4P22-like phages and prophages used this study

В	Enterobacteriaceae P22-like proph	ages		
	Prophage Host	MCP locus_tag	genome orientation	MCP type
	Arsenophonus nasoniae*	ARN_26010	-	Sf6
	Citrobacter sp. BIDMC108	SK40_00812	Sf6	P22
	Cronobacter sakazakii 696	BN128_2797	P22	P22
	Cronobacter malonaticus†	WP_032971372*	-	_
	Enterobacter sp.GN02548*	ABR33_05860	-	CUS-3
	Enterobacter aerogenes UCI47	P850_03405	APSE-1	P22
	Erwinia tracheiphila BufGfH	SY86_19110	APSE-1 early right??	P22
	Escherichia coli B7A	EcB7A_4179	Sf6	Sf6
	Escherichia coli CVM N38428PS	PU66_07355	Sf6	CUS-3
	Escherichia coli W	EschWDRAFT_1163	Sf6	P22
	Klebsiella pneumoniae SB3432	KPR_2793	Sf6	CUS-3
	Kluyvera intermedia CAV1151	AB182_19130	P22	P22
	Leclercia adecarboxylata†	WP_039031990*	-	_
	Morganella morganii KT	MU9_2902	P22	P22
	Pantoea sp. PSNIH2	PSNIH2_13380	P22	P22
	Pectobacterium carotovorum BCS2	RC83_13195	P22	P22
	Pectobacterium carotovorum LMG21371	KS44_06225	P22	CUS-3
	Pluralibacter gergoviae DL84A27	ABW09_23385	-	P22
	Proteus mirabilis ATCC7002	DR94_520	Prot1	P22
	Providencia rettgeri DSM 1131	PROVRETT_06010	P22	Sf6
	Providencia rettgeri †	WP_048606460*	-	-
	Salmonella enterica CVM19536	SEEN536_00900	-	Sf6
	Serratia marcescens VGH107	F518_22685	P22	Sf6
	Serratia plymuthica AS9	SerAS9_2688	APSE-1 (ø80 int org)	P22
	Shigella flexneri 2002017	SFxv_0342	P22	P22
	Shimwella blattae DSM 4481	EBL_c21750	P22	Sf6
	Tatumella morbirosei LMG23360	HA49_08570	P22	P22
	Xenorhabdus bovienii CS03	XBW1_3034	Prot1	P22
	Yersinia aleksiciae 159	ACZ76_14855	P22	Sf6
	Yersinia kristenseni* ATCC33639	DJ57_2548	P22	P22
	* Rather short contig so not included in genome plot Figure 6	* Accession number	"" inidicates contig too	
		(Locus_tag not available)	short to determine	
		,	oreintation	
	+ Strain names and whole prophage sequence not available			

Table S4 P22-like phages and prophages used this study

C	Calmanalla D22 lika mranhama			
	Saimonella P22-like prophages			
	Prophage Host	MCP locus_tag		
	Salmonella enterica serovar Paratyphi AY09620	YNSPA 2311		
	Salmonella enterica serovar Heidelberg SL476	SeHA C0403		
	Salmonella enterica serovar Agona 3432613	SEEA2613_05333		
	Salmonella enterica serovar Typhimurium U288	STU288_12845		
	Salmonella enterica serovar Derby CVMN51289	AEX05_09315		
	Salmonella enterica serovar Albany ATCC51960	SEEA1960_00245		
	Salmonella enterica serovar Hadar 05P066	SeH_A0879		
	Salmonella enterica serovar Newport CVM19536	SEEN536_00900		
	Salmonella enterica serovar Choleraesuis SCB-67	SCH_0357		
	Salmonella enterica serovar Bareilly CFSAN00219	CFSAN00219_		
	Salmonella enterica serovar Montevideo 8387	SEEM8387_07975		
	Salmonella enterica serovar Anatum USMARC-1735	AW50_6230		
	Salmonella enterica serovar Cerro CFSAN001588	CFSAN001588_015920		
	Salmonella enterica serovar Dublin SL1438	SEEDSL_005061		
	Salmonella enterica subspecies Arizonae RSK2980	SARI_02647		
D	Paratyphi A P22-like			
D	Paratyphi A P22-like Prophage Host	MCP locus_tag	Isolation location	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported)	MCP locus_tag PA045_3010	Isolation location	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620	MCP locus_tag PA045_3010 YNSPA_2311	Isolation location - Yunnan, China	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e	Isolation location - Yunnan, China Pakistan	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045	Isolation location - Yunnan, China Pakistan Beijing, China	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A00052	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A00052 Salmonella enterica serovar Paratyphi A JX05-19	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296	Isolation location – Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A JX05-19 Salmonella enterica serovar Paratyphi A CMCC50503	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285	Isolation location – Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China Jaingsu, China	
D	Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A00052 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071	Isolation location – Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China Jaingsu, China –	
D	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A0052 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A (no strain reported) Salmonella enterica serovar Paratyphi A (no strain reported) Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China Jaingsu, China - Jaingsu, China	
	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A0052 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A (no strain reported) Salmonella enterica serovar Paratyphi A (no strain reported)	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China - Jaingsu, China	
	Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A00052 Salmonella enterica serovar Paratyphi A JX05-19 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China Jaingsu, China - Jaingsu, China	
	Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A00052 Salmonella enterica serovar Paratyphi A JX05-19 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China Jaingsu, China - Jaingsu, China	
	Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A00052 Salmonella enterica serovar Paratyphi A JX05-19 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China Jaingsu, China - Jaingsu, China	
	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A JX05-19 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangxi, China Jaingsu, China - Jaingsu, China - Jaingsu, China	
	Paratyphi A P22-like Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A JX05-19 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A (no strain reported) Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangsi, China Jaingsu, China - Jaingsu, China -	
	Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A00052 Salmonella enterica serovar Paratyphi A GZ9A00052 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangsu, China Jaingsu, China - Jaingsu, China -	
	Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A0052 Salmonella enterica serovar Paratyphi A GZ9A0052 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A (no strain reported) Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangsu, China Jaingsu, China - Jaingsu, China - Jaingsu, China	
	Prophage Host Salmonella enterica serovar Paratyphi A (no strain name reported) Salmonella enterica serovar Paratyphi A AYN09620 Salmonella enterica serovar Paratyphi A AKU_12601 Salmonella enterica serovar Paratyphi A CMCC50093 Salmonella enterica serovar Paratyphi A GZ9A0052 Salmonella enterica serovar Paratyphi A JX05-19 Salmonella enterica serovar Paratyphi A CMCC50503 Salmonella enterica serovar Paratyphi A (no strain reported) Salmonella enterica serovar Paratyphi A CMCC50973	MCP locus_tag PA045_3010 YNSPA_2311 SSPA2232e ACN89_12045 GZSPA_2297 JXSPA_2296 LW89_14285 PA136_4071 IT63_14940	Isolation location - Yunnan, China Pakistan Beijing, China Guizhou, China Jiangsu, China - Jaingsu, China - Jaingsu, China -	

Table S4 P22-like phages and prophages used this study

F	Heidelberg P22-like prophages		
		MCD loove ter	legistica legistica
	Propriage nost		
	Salmonella enterica serovar Heidelberg APP07 SP2021	T ISO 02005	British Columbia CA
	Salmonella enterica serovar Heidelberg P192	SUE 01004	Eranaa
	Salmonella enterica serovar Heidelberg CVM N45207		
	Salmonella enterica serovar Heidelberg N26457	SEEL6457 20925	
	Salmonella enterica serovar Heidelberg SL 476	Sella C0403	Minnesota USA
	Salmonella enterica serovar Heidelberg SL470		
F	Newport P22-like prophages		
	Prophage Host	MCP locus_tag	Isolation location
	Salmonella enterica serovar Newport CVM 19470	SEEN470_21064	Vietnam
	Salmonella enterica serovar Newport CVM 19536	SEEN536_00900	Vietnam
	Salmonella enterica serovar Newport CVM 22425	SEEN425_002235	Arizona, USA
	Salmonella enterica serovar Newport CVM 22462	SEEN462_0001185	Arizona, USA
	Salmonella enterica serovar Newport CVM 4176	SEEN176_15035	California, USA
	Salmonella enterica serovar Newport Henan_3	G208_21144	Henan, China
	Salmonella enterica serovar Newport JS09102	G209_24390	Jiangsu, China
	Salmonella enterica serovar Newport SH111077	G206_16997	Shanghai, China
	Salmonella enterica serovar Newport Shandong_3	G207_20579	Shandong, China
	Salmonella enterica serovar Newport USMARC-S3124.1	SN31241_18260	USA
G	Typhimurium prophages		
	Prophage Host	MCP locus tag	Isolation location
	Salmonella enterica serovar Typhimujrium 34502	SEET4502 15275	_
	Salmonella enterica serovar Typhimuirium ABB1162-2	TJ39 05580	British Columbia, CA
	Salmonella enterica serovar Typhimuirium CFSAN001921	CFSAN001921 15475	New York, USA
	Salmonella enterica serovar Typhimuirium CVM N51254	AEW79 08460	Connecticut, USA
	Salmonella enterica serovar Typhimujrium D23580	STMMW_03811	Malawi
	Salmonella enterica serovar Typhimujrium DT104	DT104_03541	_
	Salmonella enterica serovar Typhimujrium DT104 FWH6	ERS198263 02378	United Kingdom
	Salmonella enterica serovar Typhimujnum EORC 015	ZV79 2330	South Korea
	Salmonella enterica serovar Typhimujnum L-3553	STI 3553 c03780	_
	Salmonella enterica serovar Typhimujnum E 0000	SFE 01911	
	Salmonella enterica serovar Typhimujnum 11288	STU288 12845	
	Salmonella enterica serovar Typhimujnum 0200	AFU38 10780	New York, USA

Table S4	
P22-like phages and prophages used this	study

H	Prophage P22-like tailspikes Salmonella enterica serovar and strain	Tailspike locus, tag	Tailspike type	
	0.12:1yr str.04203			
	Δhony 0014	SEE40014 11145		
	Agona 648586-1	SEE45861 16245		
	Albany ATCC 51960(A)	SEEA1960_00180	VIIa	
	Anatum USDA-ARS-USMARC-1735	AW50_6260	lib	
	AnatumCDC06-0532	AW57_13240		
	Agua NVSI 2001	<u>1654</u> 10070	la	
	Arizonae serovar 62:z4 z23:- str. RSK2980	SARI 02638		
	Bareilly CESAN000183	SEEB0183_09067	Vh	
	Brandenburg CESAN024765	QS22_03720		
	Cerro 87	NI35_4331	IV	
	Choleraesuis SC-B67	SCH 0367	Va	
	Dublin SL1438	SEEDSL 005126		
	Enteritidis 3402	SEEE3402 02210		
	Gaminara ATCC BAA-711	SEEGA711 14315	VI	
	Give var. 15 CFSAN004343	CFSAN004343_03735	la	
	Hadar ABB1048-1	TJ45 04405	VIIc	
	Heidelberg SL476	SeHA C0413	la	
	Houtenae ATCC BAA-1581	SEHO0A 00503	XV	
	Houtenae serovar 16:z4.z32: str. RKS3027	D088 680001	VI	
	Infantis CFSAN024780	QS05 16285	Vb	
	Javiana PRS 2010 0720	SEEJ0720 04071	la	
	Johannesburg S5-703	LTSEJOH 2243	VIII	
	Livingstone CKY-S4	VN13 12135	Vc	
	Lubbock 10TTU468	TR76 09235	Va	
	Miami 1923	SEEM1923 08240	la	
	Minnesota ATCC 49284	SEEM9284 03916	IX	
	Mississippi A4-633	LTSEMIS 1115	X	
	Montevideo 4441 H	SEEM41H 02992	Vb	
	Montevideo CFSAN004346	CFSAN004346 01470	la	
	Muenster 0315	SEEM0315_05630		
	Muenster CFSAN004344	CFSAN004344_03295	Vb	
	Nchanga CFSAN001091	CFSAN001091_05799		-
	Newport CVM 4176	SEEN176_15095	VIIa	
	Newport CVM 4176	SEEN176_15100	VIId	
	Newport CVM2242	SEEN425_002285	VIIb	
	Ohio CFSAN001079	CFSAN001079_21649	Vc	
	Paratyphi A ATCC 9150	SPA2388	la	
	Paratyphi B ATCC 8759	SEEPB759_13629	la	
	Poona ATCC BAA-1673	SEEP1673_06839	X	
	Pullorum S06004	1137_12070	la	
	Rissen 150	SEER_02967	Vc	
	Rubislaw A4-653	LTSERUB_1231	XIII	

	-		
H cont.	Tailspikes in tree		
	Salmonella enterica serovar and strain	Tailspike locus_tag	Tailspike type
	Saint Paul SARA26	SES26_19449	la
	Salamae serovar 58:l,z13,z28:z6 str. 00-0163	SES60163_06541	XVI
	Schwarzengrund SL480	SeSB_A0555	XI
	Soerenga 695	SEES0695_12821	XII
	Tallahassee 0012	SEET0012_06891	VIIc
	Tennessee TXSC_TXSC08-19	SEET0819_19095	Va
	Typhimurium CFSAN001921	CFSAN001921_15420	lc
	Typhimurium D23580	STMMW_03901	lb
	Typhimurium FORC_015	ZV79_2330	Vc
	Typhimurium U228	STU288_12795	la
	Uganda R8-3404	LTSEUGA_0549	
	Wandsworth A4-580	LTSEWAN_1004	XII
	Weltevreden 2007-60-3289-1	SENTW_2521	

Table S4 P22-like phages and prophages used this study

Figure S1

SUPPLEMENTARY MATERIAL FIGURES

Figure S1. Phage IME-EC2 map and gene database matches.

The phage IME-EC2 genome is shown with the six possible reading frames (indicated at left) with stop codons marked as vertical lines that span the frame rectangle, and AUG codons are indicated by short vertical lines. Open reading frames called as genes are indicated by green and yellow rectangles (transcribed rightward and leftward, respectively). Our gene calls between genes 1 and 5 and between 44 and 59 do not precisely match those of Hua *et al.* (2014); we favor our calls since they leave very little intergenic space as is typical of phage genomes. The opened circular map has been re-oriented from the annotation GenBank accession number KF591601, so that the putative virion assembly genes form the left half of the genome. Above several functional clusters are indicated in blue, selected IME-EC2 locus_tag (gene) numbers of Hua *et al.* (2014) are shown in black, and transcriptional direction (with no operon connotation) is indicated by red and green arrows. Below the ORF map red lines point to the most similar phage proteins found in our analysis. In each graphic annotation the predicted function is given above and similarity to a protein encoded by the indicated phage is given below; no red line indicates there are no good matches in the current sequence database.

In this annotation it is clear that the IME-EC2 virion assembly genes are homologous to and syntenic with those of the P22-like cluster of phages that includes phages Sf6 and CUS-3 (Casjens et al., 2004; King et al., 2007), and "gp#" in the figure refers to the phage P22 gene product names. We note the following additional facts about the IME-EC2 virion assembly genes: (1) genes 43 and 42 overlap by 7 codons, which is typical of terS-terL overlaps in the P22-like phage cluster, suggesting that 43 may encode a TerS protein (TerS proteins are extremely variable, so its lack of homology to known TerS's is not surprising). (2) Genes 37-40 have no homologues in the P22-like phages (or in other organisms), and we suggest that they are likely a late operon moron (Hendrix et al., 2000; Juhala et al., 2000; Cumby, Davidson, and Maxwell, 2012) that is not involved in virion assembly. (3) Two non-essential genes in this region of the P22-like phages are Orf186 and gene 14. There are syntenic but not recognizably homologous genes, 34 and 30 respectively, in IME-EC2 that could have analogous functions to those poorly understood P22-like phage genes; more experimental work will be required to determine if this is true. Curiously, IME-EC2 genes 21 and 8 are homologous to particular domains of phage Sf6 (a P22-like phage) tail needle shaft, a trimeric coiled-coil (Olia, Casjens, and Cingolani, 2007), and the C-terminal domain of the HK97 tail shaft protein (HK97 has a long non-contractile tail that is similar to the phage lambda tail). The latter is thought not to be

necessary the formation of the actual tail structure in such lambda-like tails; both of these IME-EC2 genes lie in what are likely regions that are expressed early and so may have functions other than virion assembly. (4) The two adjacent IME-EC2 genes 27 and 28 have homology to the 3'- and 5'-sections of P22 gene 20, respectively. This could be the result of an IME-EC2 sequencing frameshift error, or it may indicate a separation of P22 gp20 into two parts so that its function(s) is carried out by two IME-EC2 proteins.

Figure S2. Dot plot analysis of P2-like prophage MCPs from the Enterobacteriaceae.

On the left phage and prophage names are shown (red text, *E. coli* host; blue, *Salmonella* host; black, other hosts) and asterisks (*) denote prophage sequences. Blue lines separate the two phage clusters, and thick red lines separate subclusters that are defined in the Figure 2 genome dot plot. Phages and prophages in the plot are listed with host species, genome accession numbers, and MCP locus tags in Table S2A and S2B, respectively. The dot plot was produced by Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 9.

Casjens and Grose SUPPLEMENTARY MATERIAL

Figure S3. Genome dot plot of authentic P2 supercluster phages.

Phage names are given on the left and top; only representative authentic *Enterobacteriaceae* phage genomes are included. Thin red lines separate individual phage and prophage genomes and thick red line separate the bacterial host taxa shown at the right. Phages in the plot are listed with host species and genome accession numbers in Table S2A and S2C. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 11.

Casjens and Grose SUPPLEMENTARY MATERIAL

Figure S4. Dot plot analysis of MCPs of P2-like phages and prophages from the Proteobacteria.

Thin red lines separate individual phage and prophage genomes whose names are shown at the top and left; short and longer horizontal red lines separate bacterial host families (black text) and orders (red text), respectively, on the right. Thick blue lines separate Proteobacteria host classes (blue text on the right). Asterisks (*) indicate prophages, and only representative authentic phage genomes are included. Phages and prophages in the plot are listed with host species, genome accession numbers, and MCP locus tags in Table S2. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 9.

S5																
igure			-ammo -					Beta					Alpha		Gamma	
ists F		Pseudomonadaceae	Halomonadaceae	Xanthomonaceae	Aeromonaceae	Ralstoniaceae	Burkholderiaceae	Alcaligenacae	Oxalobacteracae	econoporanemo	Collarioladaceae	Caudobactereacae	Sphingomonadaceae		Enterobacteriaceae	
h	۲۹۲															/
ted	P2	ostar a Statu		2	124		الىيىنى ئە يەرىكى يۇر					onick 933			/	
ela	S-sl97	214 214 (で、小小小 茶 (別語の		200		76. 1963e)				1014 1014	日本は	/		
л Л	*A-S9ovoN	進過意 約13%第	(1999年) (2019年) (1999年)	13 15 A 1 15 X 12 1		可認定				N SA	anter Xaliga		/			
ntl	*A-S9uv918			2.44			10.191 T 10.997 D					/				
ages with dista	*A-S91816		7		· 用料 2014					537 159	/		No. 10			
	*A-S95moO		·编辑:	ではあり		清國() 法研究	(111) 太陽の			/		のための				
	*A-29illoD	n sa s pise o				2727 2727	i (1995) II. Generali		/		an an An an	· 私告 · 本借				
	*A-S9omonhoA			「「「「「」」				/	1	arian i galata a						185
	912X0		の時間				/	いた。 ないで、 ないで、 たいで たいで たいで たいで たいで たいで たいで たいで			ert en en 12 de Jones e	の時間の	市場の			
hqc	¢A2Яø					/				(1995) 11月1日 1月1日		日本の				
brd	*A-S9019A	1		1	/	z.										
like	*A-SqotnətS		時間の		100						時間					
P2-	*A-S9omonD		/				は、 は、 論書 実験計書	an der der Kolonie Martin			1000 1000 1000 1000	のなどの語言の	· 法语 法语	j.		
_	ØCTX	/				astan Parata Parata	18月1日 1月17日第 1月17日第 1月17日第 1月17日第					1810 (1837 (2038	のない		が正式	
		øCTX	ChromoP2-A*	StentoP2-A*	AeroP2-B*	øRSA1	øX216	AchromoP2-A*	ColliP2-A*	ComaP2-A*	PolarP2-A*	BrevuP2-A*	NovoP2-A*	Fels-2	P2	HP1

Figure S5. Expanded genome dot plot of P2-like phages and prophages with distantly related hosts.

Red lines separate phage and prophage genomes. Phage and prophage names are given on the left and top; asterisks (*) indicate prophages, and only representative authentic phage genomes are included. Host families (black text) and Proteobacteria classes (red text) are shown at the right. Phages and prophages in the plot are listed with host species, genome accession numbers and MCP locus tags in Table S2. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 10.

Dot plots of authentic phages from different Gammaproteobacteria families

Figure S6

	øCTX (Pseudomonad	laceae)	øO18P (Aeromonadaceae	e)
2000 - 4000 -				
8000 - 10K - 12K -				
stoniaces				
20K 22K 24K 24K				
28K 30K 32K				
з6К - 38К -				
onadacea)				
31 (<i>Xanthom</i> 18K 18K 20K				
24K 26K 28K 30K		ner en regener Provinsionen Provinta Provinta Provinsionen Provinsionen Provinsionen Provinsione		
32K _	Head and tail genes	Early region	Head and tail genes	Early region

Figure S6. Expanded genome dot plot analysis of authentic P2-like phage examples from different Gammaproteobacteria families.

Phages indicated at the top and left of the plot are listed with host species and genome accession numbers in Table S2C. The dot plots were produced by DNA Strider (Douglas, 1994) with scan window 15 of 23 identities.

Figure S7. Genome organizational types of the P22-like phages.

Diagrammatic maps of the genomes of four different P22-like phages are shown. Arrows indicate transcriptional direction and the functions of genes in the various regions are shown above each map. The Prot1 prophage is in *Proteus mirabilis* strain ATCC7002 whose MCP locus_tag is DR94_520.

Casjens and Grose SUPPLEMENTARY MATERIAL

Figure S8. Dot plot analysis of a sample of diverse *Enterobacteriaceae* P22-like prophage genomes.

P22-like prophages in ten different *Enterobacteriaceae* species are shown with three authentic P22-ike phages (bold red text) for comparison. The prophages are indicated by the host strain that they inhabit, and their MCP locus_tags are listed in Table S4. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 10.

Figure S9

701HOV Word length = KТ 1 ATCC7002 **DSM1311 PSNIH2** 1844MSQ 969 1 C203 LMG21371 **BCS2** 1 BIDMC108 1 126 **ATCC33639** ł BuffGH 1 LMG23360 1 CAV1151 72A48JQ .. 14IOU 6S∀ **FSSGA** CVM-N38428PS CVM19536 A78 SB3432 M SPC-P1 c-sno **HK620** 9JS 2002017 IME10 . . . EMEK P22 IME10 CUS-3 P22 Sf6 HK620 Escherichia coli CVM-N38428PS Yersinia kristensenii ATCC33639 Citrobacter sp.BIDMC108 EMEK Escherichia coli W Escherichia coli B7A Salmonella enterica CVM19536 Serratia plymuthica AS9 Pectobacterium carotovorum BCS2 Xenorhabdus bovieniii CS03 Cronobacter sakazakii 696 Pantoea sp.PSNIH2 Shigella flexneri 2002017 Klebsiella pneumoniae SB3432 Kluyvera intermedia CAV1151 Tatumella morbirosei LMG23360 Yersinia aleksiciae 159 Proteus mirabilis ATCC7002 Morganella morganii KT SPC-P1 **APSE-1** Enterobacter aerogenes UCI47 Pluralibacter gergoviae DL84A27 Serratia marcescens VGH107 Erwinia tracheiphila BuffGH Pectobacterium carotovorum LMG21371 Shimwella battae DSM4481 Providencia rettgeri DSM1311

Figure S9. Dot plot analysis of P22-like phage and prophage MCPs.

Red lines separate phage and prophage MCPs. Authentic phage names are in bold red text, and prophage names are indicated by the host species and strain that carries them (listed in Table S4 with their MCP locus_tags). The dot plot was produced by Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 7.

Figure S10. Dot plot analysis of P22-like prophage genomes in Salmonella enterica.

P22-like prophages from fifteen different *Salmonella enterica* serovars are shown with three authentic P22-like phages (red text) shown for comparison. The yellow highlight boxes enclose groups of prophages in serovars with the same or closely related O-antigen structures (see text of report). The prophages are indicated by the host strain that they inhabit, and their MCP locus tags are listed in Table S4. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 11.

Serovar Paratyphi A Prophages

Figure S11. Dot plot analysis of genomes of P22-like prophages in *Salmonella enterica* serovar Paratyphi A isolates.

P22-like prophages from nine randomly chosen Paratyphi A isolates are shown with two authentic P22-like phages (P22 and Sf6) for comparison. The yellow highlight box encloses the nearly identical Paratyphi A prophages. The prophages are indicated by their host strain names (except two whose MCP locus_tags are given since no strain name for the isolate is given in its GenBank entry), and phages and prophages in the plot are listed with host species and MCP locus tags in Table S4D. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 10.

Figure S12

Serovar Heidelberg prophages

Figure S12. Dot plot analysis of genomes of P22-like prophages in *Salmonella enterica* serovar Heidelberg isolates.

P22-like prophages from seven Heidelberg isolates are shown with two authentic P22-like phages (P22 and Sf6) for comparison. The yellow highlight boxes indicate three different prophage types. The Heidelberg prophages are indicated by their host strain names. Prophages in the plot are listed with host species and MCP locus tags in Table S4E. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 10.

Figure S13

Serovar Typhimurium Prophages

Figure S13. Dot plot analysis of genomes of P22-like prophages in *Salmonella enterica* serovar Typhimurium isolates.

P22-like prophages from twelve Typhimurium isolates are shown with two authentic P22-like phages (P22 and Sf6) for comparison. The Typhimurium sequences are indicated by their host strain names. The yellow highlight boxes indicate significantly different prophage types. Note that the serovar of strain FORC_015 prophage was probably determined incorrectly; it is most likely an O:6,7 strain (see text of report). Phages and prophages in the plot are listed with host species and MCP locus tags in Table S4G. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 10.

Casjens and Grose SUPPLEMENTARY MATERIAL

Figure S14

Figure S14. Dot plot analysis of genomes of P22-like prophages in *Salmonella enterica* serovar Newport isolates.

P22-like prophages from ten Newport isolates are shown with two authentic P22-like phages (P22 and Sf6) for comparison. The Newport sequences are indicated by their host strain names. The yellow highlight boxes indicate significantly different prophage types. Two of the ten Newport prophages, in strains Shandong_3 and JS9102, are on short contigs that were not included in the subsequent analysis (see text). Prophages in the plot are listed with host species and MCP locus tags in Table S4F. The dot plot was produced using Gepard (Krumsiek, Arnold, and Rattei, 2007) at a word size setting of 10.

Casjens and Grose SUPPLEMENTARY MATERIAL

Figure S15. O-antigen synthesis (*rfb* gene) regions of the genomes of the *Salmonella* strains that carry "anomalous" tailspike genes.

Colored arrows represent genes in selected *rfb* regions from the genomes of the indicated *S. enterica* reference strains whose names are given above in large black text; gene names are shown above each map. Colored boxes and similarly colored text indicate the strains and sequence contig accession numbers of the six genomes with "anomalous" tailspike gene discussed in the text of this report. The gene order and content of each of these strains uniquely matches one of the reference regions. The reference *S. enterica rfb* gene regions shown are from the following sources: O:9 serovar Dublin, bp 2019907–1996618 of accession No. LK931502; O:4 serovar Typhimurium strain LT2, X56793 (Wyk and Reeves, 1989; Jiang et al., 1991; Liu et al., 1993; Reeves, 1993); O:3,10 serovar Anatum strain M32, X60665 (Liu et al., 1993) and ATCC BAA-1592, CP007531 (Timme et al., 2013); O:6,7 serovar Montevideo, M84642 (Reeves, 1993); and O:30 serovar Urbana strain M284, AY730593 (Jensen and Reeves, 2001; Samuel et al., 2004).

Novel mosaic boundary inside the tailspike gene

serovar Choleraesuis str. SC-B67 locus_tag="SCH_0367"
serovar Ohio str. CFSAN001079 locus_tag="CFSAN001079_21649" II II Blue Red

Figure S16. New mosaic boundary in the P22-like tailspike gene.

The newly discovered mosaic P22-like phage boundary in the tailspike gene is shown by comparing the amino acid sequences of type Va (*S. enterica* serovar Choleraesuis strain SC-B67) and type Vc (*S. enterica* serovar Ohio strain CFSAN001079) tailspikes as aligned by DNA Strider (Douglas, 1994). The N-terminal head-binding domain is indicated by the yellow box, the green box marks the N-terminal common region of the type V tailspike polysaccharide-binding domain, and the green vertical arrow marks the position of the newly discovered mosaic boundary.

References

- Casjens, S., Winn-Stapley, D., Gilcrease, E., Moreno, R., Kühlewein, C., Chua, J. E., Manning, P. A., Inwood, W., and Clark, A. J. (2004). The chromosome of *Shigella flexneri* bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. *J. Mol. Biol.* **339**, 379-394.
- Cumby, N., Davidson, A. R., and Maxwell, K. L. (2012). The moron comes of age. *Bacteriophage* **2**, 225-228.
- Douglas, S. E. (1994). DNA Strider. A Macintosh program for handling protein and nucleic acid sequences. *Methods Mol. Biol.* **25**, 181-194.
- Hendrix, R. W., Lawrence, J. G., Hatfull, G. F., and Casjens, S. (2000). The origins and ongoing evolution of viruses. *Trends Microbiol.* **8**, 504-508.
- Hua, Y., An, X., Pei, G., Li, S., Wang, W., Xu, X., Fan, H., Huang, Y., Zhang, Z., Mi, Z., Chen, J., Li, J., Zhang, F., and Tong, Y. (2014). Characterization of the morphology and genome of an *Escherichia coli* podovirus. *Arch. Virol.* 159, 3249-3256.
- Jensen, S. O., and Reeves, P. R. (2001). Molecular evolution of the GDP-mannose pathway genes (*manB* and *manC*) in *Salmonella enterica*. *Microbiology* **147** (Pt 3), 599-610.
- Jiang, X. M., Neal, B., Santiago, F., Lee, S. J., Romana, L. K., and Reeves, P. R. (1991). Structure and sequence of the *rfb* (O antigen) gene cluster of *Salmonella* serovar typhimurium (strain LT2). *Molec. Microbiol.* 5, 695-713.
- Juhala, R. J., Ford, M. E., Duda, R. L., Youlton, A., Hatfull, G. F., and Hendrix, R.
 W. (2000). Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. *J. Mol. Biol.* 299, 27-51.
- King, M. R., Vimr, R. P., Steenbergen, S. M., Spanjaard, L., Plunkett, G., 3rd, Blattner, F. R., and Vimr, E. R. (2007). *Escherichia coli* K1-specific bacteriophage CUS-3 distribution and function in phase-variable capsular polysialic acid O acetylation. *J. Bacteriol.* **189**, 6447-6456.
- Krumsiek, J., Arnold, R., and Rattei, T. (2007). Gepard: a rapid and sensitive tool for creating dotplots on genome scale. *Bioinformatics* **23**, 1026-1028.
- Liu, D., Haase, A. M., Lindqvist, L., Lindberg, A. A., and Reeves, P. R. (1993). Glycosyl transferases of O-antigen biosynthesis in *Salmonella enterica*:

identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175, 3408-3413.

- Malki, K., Kula, A., Bruder, K., Sible, E., Hatzopoulos, T., Steidel, S., Watkins, S., and Putonti, C. (2015). Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phlya. *Virol. J.* 12, 164.
- Olia, A. S., Casjens, S., and Cingolani, G. (2007). Structure of phage P22 cell envelope-penetrating needle. *Nat. Struct. Mol. Biol.* **14**, 1221-1226.
- Reeves, P. (1993). Evolution of *Salmonella* O antigen variation by interspecific gene transfer on a large scale. *Trends Genet.* **9**, 17-22.
- Samuel, G., Hogbin, J. P., Wang, L., and Reeves, P. R. (2004). Relationships of the *Escherichia coli* O157, O111, and O55 O-antigen gene clusters with those of *Salmonella enterica* and *Citrobacter freundii*, which express identical O antigens. J. Bacteriol. **186**, 6536-6543.
- Timme, R. E., Pettengill, J. B., Allard, M. W., Strain, E., Barrangou, R., Wehnes, C., Van Kessel, J. S., Karns, J. S., Musser, S. M., and Brown, E. W. (2013).
 Phylogenetic diversity of the enteric pathogen *Salmonella enterica* subsp. enterica inferred from genome-wide reference-free SNP characters. *Genome Biol. Evol.* 5, 2109-2123.
- Wyk, P., and Reeves, P. (1989). Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. *J. Bacteriol.* **171**, 5687-5693.