Supplementary Information

Essential role of the nuclear isoform of *RBFOX1*, a candidate gene for autism spectrum disorders, in the brain development

Nanako Hamada^{1,2}, Hidenori Ito¹, Takuma Nishijo³, Ikuko Iwamoto¹, Rika Morishita¹, Hidenori Tabata¹, Toshihiko Momiyama³ and Koh-ichi Nagata^{1,4}

¹Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai; ²Research Fellow of Japan Society for the Promotion of Science; ³Department of Pharmacology, Jikei University School of Medicine, Tokyo; ⁴Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan

Supplementary Videos

- Supplementary video 1: Time-lapse imaging of morphological change of control neurons migrating in upper IZ lower CP.
- Supplementary video 2: Time-lapse imaging of morphological change of Rbfox1-iso1-defcient neurons stranded in upper IZ lower CP.
- Supplementary video 3: Time-lapse imaging of morphological change of control neurons migrating in CP.
- Supplementary video 4: Time-lapse imaging of morphological change of Rbfox1-iso1-defcient neurons migrating in CP.
- Supplementary video 5: Time-lapse imaging of N-C distance dynamics of a control neuron migrating in CP.

Yellow and white arrowheads indicate centrosome and nucleus, respectively.

Supplementary video 6: Time-lapse imaging of N-C distance dynamics of an Rbfox1-iso1-defcient neuron migrating in CP. Yellow and white arrowheads indicate centrosome and nucleus.

respectively.