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Supplementary Figure S1: Schematic illustrations of the common hierarchical structures that
need to be taken into account in animal allocation and the experiment designs of the two case
studies. (a) Preclinical cancer studies commonly incorporate a layered hierarchical design, where
multiple nested animals may originate from a single batch or a cage, while multiple tumors may
be located in a single animal. (b) ARN-509/MDV3100 -intervention study with orthotopic VCaP
prostate cancer cells in male immunodeficient mice (HSD: Athymic Nude Foxn 1nu). According
to the experimental procedure, orthotopic tumors were generated by injecting the cancer cells into
the prostate of each animal. The growth of the tumors was followed by weekly measurements of
the serum PSA indicating the tumor burden. The animals were castrated in two separate batches
on subsequent weeks, resulting in two substrata with different tumor growth characteristics. The
mice were followed by serum PSA measurements and after the re-appearance of the tumors the
mice were allocated into several CRPC treatment arms . Hierarchical allocation procedure based
on the global matching algorithm ensures that the substrata are evenly distributed among the
intervention groups. (c) ORX/ORX+Tx -intervention study with analogous subcutaneous VCaP
xenografts. A single substrata of animals was allocated into several intervention groups (out of
which Control, ORX and ORX+Tx are presented in this paper), while some animals had to be
dropped out due to ethical reasons.
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Supplementary Figure S2: Experimental data of the VCaP study. (a) Two se-
lected treatment alternatives, ARN-509 (n = 15) and MDV3100 (n = 15), were
compared to the vehicle group (n = 15). (b) As expected, the initial PSA level at
baseline was predictive of the PSA value measured after 4 weeks of treatment. (c)
Similarly, body weights of the animals at baseline were correlated with the body
weights after 4 weeks of treatment. (d) Interestingly, the initial body weight showed
a borderline inverse correlation with the PSA level after 4 weeks of treatment in the
MDV3100 group (p=0.021), while this relationship was not seen in the other groups.
Such a multivariate association between the treatment response (final PSA) and an
initial animal characteristic (body weight at baseline) would be missed with simple
univariate animal matching procedures.
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Supplementary Figure S3: Solving the non-bipartite submatching problem in the
MDV3100/ARN-509 intervention study. (a) The animals (n = 75) were divided to two different
castration sub-strata, which were separately submatched only within a strata and subsequently
allocated evenly to the intervention arms (see Supplementary Fig. S1b). The matrix colors
indicate dissimilarities in the baseline characteristics, and the box color indicates animals being
part of same submatch. (b) Multidimensional Scaling (MDS) 2-dimensional projection of the com-
plex baseline characteristics, with each submatch indicated with connecting edges and different
coloring.
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Supplementary Figure S4: Solving the non-bipartite submatching problem in the ORX/ORX+Tx
intervention study. (a) The animals (n = 109) were matched to submatches of size 6, and subsequently
allocated to different intervention arms within each submatch. Only three of the intervention groups are
analyzed here (Control, ORX, ORX+Tx). The matrix colors indicate dissimilarities in the baseline char-
acteristics, and the box color indicates two animals being part of same submatch. (b) Multidimensional
Scaling (MDS) 2-dimensional projection of the complex baseline characteristics, with each submatch
indicated with connecting edges and different coloring.
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Supplementary Figure S5: Mixed-effects model fits in the ARN-509/MDV3100 intervention study. Top panel: response data;
middle panel: full model fit; bottom panel: fixed effects fit. (a) ARN-509 versus Vehicle. Left panel: unmatched inference; right
panel: matched inference. (b) MDV3100 versus Vehicle. Left panel: unmatched inference; right panel: matched inference. Model
coefficient estimates, standard deviations and p-values are presented in Table 1.
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Supplementary Figure S6: Mixed-effects model fits in the ORX/ORX+Tx intervention study. Top panel: response data;
middle panel: full model fit; bottom panel: fixed effects fit. (a) ORX versus Control. Left panel: unmatched inference; right panel:
matched inference. (b) ORX+Tx versus ORX. Left panel: unmatched inference; right panel: matched inference. Model coefficient
estimates, standard deviations and p-values are presented in Table 1.
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Supplementary Figure S7: The difference between bipartite and non-bipartite
matching, and a graphical representation of the steps in the branch and bound
algorithm for solving the non-bipartite problem. (a) A bipartite matching prob-
lem, where the matching is identified between two pre-defined groups. (b) In the
preclinical cancer context, the non-bipartite matching enables detection of com-
parable individuals from a single pool of animals, based on similarities in their
baseline characteristics. (c) Branching implicitly enumerates all possible com-
binations of matches in the solution. In this particular example, the branching
structure is presented for matching of pairs (G = 2) for 6 individuals. (d) Concept
of the bounding function in a continuous minimization task (lower objective func-
tion values are preferred). A bounding function is utilized to discard branches in
the tree-like structure (panel c), by concluding that a certain range (branch) of so-
lutions cannot improve the current best solution. In this example, ranges x ≤ X1

and X4 ≤ x do not have to be searched, as the bounding function hints that the
current best solution (indicated in red) cannot be improved in this solution range.
However, solutions in X1 ≤ x ≤ X2 and X2 ≤ x ≤ X3 have to be tested, since the
bounding function suggests a possible lower theoretical boundary in these solution
ranges.
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Supplementary Figure S8: Evaluation of the animal allocations in the ARN-509 /
MDV3100 VCaP xenograft study using Mantel’s test that compares the pre-intervention
dissimilarity matrices of the baseline animal characteristics to the post-intervention mRNA
gene expression profiles of the treated tumors. By visual inspection, two interesting dis-
similarity sub-groups were identified (pink boxes). Further, one exceptional baseline animal
remained an outlier also at the tumor mRNA-level (pink arrow). (a) Dissimilarity matrix
of the baseline characteristics for the sequenced animals (n = 12) was calculated using stan-
dardized Euclidean distance. (b) Dissimilarity matrix of the RNA-seq expression profiles
(fragments per kilobase of exon per million mapped reads, FPKM) was calculated using
Euclidean distance. (c) Distribution of the permutated correlation statistic. Statistically
significant Spearman correlation was observed between the baseline characteristics and post-
intervention mRNA expression (red line), by conducting n = 10, 000 permutations of the
dissimilarity matrices (Mantel’s test).
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Supplementary Figure S9: A simulation run of 1,000 matched 2-group datasets were generated for each combination in the
parameter grid, resulting in a total of 432,000 datasets for which matching was conducted and data drawn from mulvariate normal
distributions with given parameters. The matching procedure was used as in the manuscript, and conventional randomization
randomly allocated groups of equal size ignoring baseline information to both experiment groups. Paired or non-paired t-test was
used to determine whether there was a difference with α = 0.05 significance threshold. The following parameters were varied:
Magnitude of true group difference µ1 − µ2 ∈ {0, 1, 2}; Sample size per group N ∈ {5, 10, 15} ; Magnitude of informativeness
in (parameter q) predictive baseline variables s ∈ {0, 0.4, 0.7} ; Count of predictive baseline variables q ∈ {1, 3, 10, 20} ; Count
of non-predictive baseline variables p ∈ {1, 3, 10, 20}. Few interesting key results were annotated in the simulation results: (a)
Interestingly, when matched allocation was used, the specificity in testing was highly increased in the case when no true group
difference was present. This phenomenon persistent in the non-paired testing, highlighting that matching-based allocation also
serves to improve specificity and that non-paired testing can be benefit even if the matching information is not utilized in the
post-intervention testing. (b) A benefit in sensitivity was observed in the small group-wise different (µ1−µ2 = 1) in comparison to
the non-matched testing as long as the number of predictive markers was greater than non-informative baseline markers (q ≥ p).
As expected, this advantage was lost if no informative markers were present (s = 0), but no loss of accuracy was observed in
comparison to the conventional methods. (c) In small explorative studies (N = 5), a slight advantage in sensitivity was observed
especially if the baseline markers were highly predictive (s = 0.7), highlighting that predictive markers may help narrow down
candidates more effectively in such explorative studies with typically smaller sample sizes N .
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Supplementary Figure S10: Simulation results as a function of the predictive s parameter, with default R loess smoothing
applied for the visualization of the curves. Positive detection was defined using the conventional significance threshold of p < 0.05
for the multiple regression term to test differences between the two simulated groups. The overall performance of each modeling
strategy was assessed with the area under curve (AUC) over the whole range of correlation of the covariate with the outcome
(s), which summarizes the findings over the whole correlation spectrum both where there was no predictive baseline information
(low s) or where the single covariate had strong predictive power (high s), but was confounded by the three additional random
confounder-covariates. The three columns indicated the different sample sizes N ∈ {5, 10, 15}. (a-c) Simulations when no group
difference was present. (d-f) Mediocre group difference. (g-i) Strong group difference.
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Supplementary Figure S11: A single end-point testing example from the VCaP ARN-509 / MDV3100 -study.
Hotelling’s T 2 multivariate extension of the t-test was used to illustrate how two end-point markers can be tested
with or without the matching information. In this case the two end-point markers were highly correlated, illustrating
that the PSA was a feasible surrogate marker to serve as a proxy for the actual tumor size in the orthotopic VCaP
animal model. (a) In the non-paired case, MDV3100 was to some extent overlapping with the sacrifice measurements
from the Vehicle group. (b) Pairing the end-point markers and comparing to the null hypotheis that the multivariate
normal distribution µ = {0, 0}. The paired adjustment revealed difference between Vehicle and MDV3100, which was
consistent with the results observed in the longitudinal PSA analysis (Table 1).
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Supplementary Table S1. Distance/dissimilarity measures for capturing similarities between 

two d-dimensional variable vectors x and y. The symbol si denotes the standard deviation of 

the associated i:th variable; S denotes the d × d -dimensional covariance-variance matrix 

computed between the variables, thus incorporating also inter-variable correlations; R denotes 

the range of the variable. Some of the measures can be obtained as special cases of 

Minkowski or Mahalanobis (listed as footnotes). 

 

 

Distance measure Formula 

Minkowski † (∑|𝑥𝑖 − 𝑦𝑖|
𝑟

𝑑

𝑖=1

)

1
𝑟

, 𝑟 ≥ 1 

Mahalanobis 

 

√(𝒙 − 𝒚)𝑺−1(𝒙 − 𝒚)𝑇 

 

Euclidean 
a,b,

† √∑(𝑥𝑖 − 𝑦𝑖)2

𝑑

𝑖=1

 

Standardized Euclidean 
c
 √∑ (

𝑥𝑖

𝑠𝑖
−

𝑦𝑖

𝑠𝑖
)

𝑑

𝑖=1

2

 

Manhattan 
d,

† ∑ |𝑥𝑖 − 𝑦𝑖|

𝑑

𝑖=1

 

Maximum 
e,
† 

 

max
1≤𝑖≤𝑑 

|𝑥𝑖 − 𝑦𝑖| 

 

Gower dissimilarity * 
continuous: | xi - yi | / Ri 

binary/categorical: 0 if xi = yi, 1 otherwise 

 
a
 obtained as a special case of Minkowski when r = 2; 

b
 obtained as a special case of 

Mahalanobis when S is a unit diagonal matrix; 
c
 obtained as a special case of Mahalanobis 

when S is a diagonal matrix; 
d
 obtained as a special case of Minkowski when r = 1; 

e
 obtained 

as a special case of Minkowski when r  → ∞; † is not scale-invariant, thus data normalization 

should be considered; * Suitable for mixed-type data. Gower’s dissimilarity coefficient is 

obtained by summarizing over all the available variables i=1,2,..., d. 
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Optimized design and analysis of preclinical intervention studies in vivo 

Teemu D Laajala, Mikael Jumppanen, Riikka Huhtaniemi, Vidal Fey, Amanpreet Kaur, 

Matias Knuuttila, Eija Aho, Riikka Oksala, Jukka Westermarck, Sari Mäkelä, Matti 

Poutanen, Tero Aittokallio. 

 

 

Orthotopic VCaP xenograft in immunodeficient mice: ARN-509 and MDV3100 

interventions 
We used our recently established orthotopic VCaP xenograft model that enables one to model 

the characteristics of castration resistant prostate cancer (CRPC) growth in vivo, and to study 

the intratumoral androgen biosynthesis in CRPC
22

. Similar to clinical CRPC, androgen 

receptor (AR) expression is restored in the VCaP model, despite undetectable serum 

androgen levels after castration. Furthermore, the AR-mediated signaling continues to play a 

key role in tumor growth, as indicated by the response to anti-androgen treatments as 

measured by serum PSA measurements. In the analyzed experiment, we tested the effects two 

AR antagonists on the castration resistant growth of the VCaP cells. Both of the 

antiandrogens (MDV3100 and ARN-509) block binding of the endogenous ligand to AR. 

Furthermore, the MDV3100 promotes also AR degradation, while the ARN-509 especially 

inhibits the nuclear import and DNA-binding of AR.  

 

The study has been described in detail in
22

. Briefly, adult male immunodeficient mice (HSD: 

Athymic Nude Foxn 1nu, Harlan Laboratories, 6 to 8 weeks of age) were housed in 

individually ventilated cages under controlled conditions of light (12h light /12h dark), 

temperature (21 ±3ºC), and humidity (55% ±15%) in specific pathogen-free conditions at the 

Central Animal Laboratory, University of Turku. The mice were given irradiated soy-free 

natural-ingredient feed (RM3 (E), Special Diets Services) and autoclaved tap water ad 

libitum. One million VCaP cells in 20 μl medium were inoculated orthotopically into the 

dorsolateral prostate through an abdominal incision. Isoflurane (Baxter) was used to induce 

anesthesia. For pain relief, mice were injected s.c. with buprenorphine (Temgesic, Reckitt 

Benckiser Healthcare, 0.05-0.1 mg/kg) and carpofen (Rimadyl, Pfizer, 5 mg/kg) before and 

after the operation, respectively.  

 

Tumor growth was followed by weekly serum prostate specific antigen (PSA) measurements 

until the mice were sacrificed. Tumors were allowed to grow for 4-5 weeks, until serum PSA 

had reached at least 5 µg/l in 60% of the animals, and the mean serum PSA value was 

approximately 15 µg/l. Thereafter, all mice with tumors were castrated within two subsequent 

weeks (week 4 and 5). This resulted in a dramatic reduction in the serum PSA concentration 

in all mice, while after a few weeks the castration resistant tumors emerged in 83% of those 

mice that had increased PSA levels prior to castration. The mice were then allocated to 

multiple treatment arms while retaining a balance between the groups based on the PSA 

levels measured at week 10, the change of the PSA level from week 9 to 10, body weights on 

week 9, cage placement, and the week castration took place. Subsequently, mice were 

randomized to masked treatment arms, each containing 15 matched animals, in order to 

guarantee that prognostically comparable mice were available for treatment effect 

assessment. All the groups were constrained to have an equal number of mice castrated on 

week 9 or 10, to prevent stratification in respect to this factor. Animals were treated with 

vehicle or novel antiandrogens of MDV3100 or ARN-509 (20 mg/kg/day). Vehicle and the 
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antiandrogens were administered by gavage once a day for 28 days. The antiandrogens were 

synthesized at Orion Pharma (Finland). The vehicle contained 50% PEG300 (Merck KGaA) 

+ 35% 100 mg/ml glucose solution (Baxter) + 10% Tween80 (Merck KGaA) + 5% DMA 

(Merck KGaA). The study was conducted in accordance with the Animal Experiment Board 

in Finland (ELLA) for the care and use of animals under the license 

ESAVI/1993/04.10.03/2011. 

 

Subcutaneous VCaP xenograftin immunodeficient mice: ORX and ORX+Tx 

interventions 
Male immunodeficient mice (Athymic Nude-Foxn1

nu
, Harlan Laboratories, initially 5 to 6 

weeks of age) were housed in individually ventilated cages under controlled conditions of 

light (12h light /12h dark), temperature (22 ±2ºC) and humidity (55% ±15%) in specific 

pathogen-free conditions at the animal facilities of Orion Corporation, Orion Pharma, 

Finland. The mice were given irradiated soy-free natural-ingredient feed (RM3 (E), Special 

Diets Services, England) and filtered, UV treated, tap water ad libitum.  

 

Two million VCaP cells in 150 μl of RPMI medium (Gibco
®
, Life Technologies, Canada) 

complemented with Matrigel™ (1:2, BD Biosciences, Belgium) were inoculated 

subcutaneously (s.c.) to the right flanks of the mice. Development of the tumors was 

monitored by measuring their volume twice a week, and by measuring the serum 

concentration of prostate specific antigen (PSA) every ten days. The volume of the tumors 

was calculated according to following formula: W
2
 * L / 2 (W = shorter diameter, L = longer 

diameter of the tumor). For PSA measurements, approximately 100 µl of blood was collected 

by saphenous vein puncture, and the PSA was measured with time-resolved fluorometer 

(Wallac, PerkinElmer Analytical Life Sciences) as described previously
49

. Reagents for the 

PSA fluorometric assay were provided by Kim Petterson (University of Turku, Finland). 

Tumors were allowed to grow for 7 weeks, until the mean volume of the tumors reached 

approximately 300 mm3, and the mean serum PSA value was approximately 20 µg/l. Animals 

were randomized in three groups taking into account the animal weight, tumor size and PSA 

concentration. Two thirds of the animals were castrated and the remaining was left as intact 

controls. Castrations (ORX and ORX+Tx, where Tx is an undisclosed intervention) were 

carried out under the isoflurane (2-3%, Baxter S.A., Belgium) induced anesthesia. For pain 

relief, mice were injected s.c. with buprenorphine (0.1 mg/kg, Temgesic
®

 0.3 mg/ml, Reckitt 

Benckiser Healthcare Ltd.,United Kingdom) and carpofen (5 mg/kg, Vet Rimadyl
®
 50 mg/ml, 

Pfizer SA, Belgium) before and after the operations. Animals were treated with vehicle (2 

ml/kg) administered by gavage once a day, from day 50 onwards, until the end of the study (8 

weeks). The vehicle contained 0.5 % methylcellulose in water and 0.1 % Tween® 80 (Merck, 

Germany) solution. The study was conducted in accordance with the Animal Experiment 

Board in Finland (ELLA) for the care and use of animals under the license 

ESAVI/7472/04.10.03/2012. 

 

Constrained randomization in the optimal matching 
Let N be the number of individuals participating in the experiment to be allocated to G 

equally sized experimental groups. Lower case letters g = {a,b,c, …} are used to annotate the 

groups. Vector f = {f1, f2, f3, f4, ...} of length N describes allocation per each individual fi ∈ g,  

where f1 is the masked group label given for the 1
st
 individual, and so on. We assume that the 

desired groups are balanced in size, thus, each label from g occurs in f total N/G times. Since 

the labels are not fixed to specific actual intervention groups, the annotated labels a,b,c, … 

are interchangeable and only separate class boundaries. As an example, allocation of 4 

animals to two groups is done with a vector f of length 4, and g = {a,b} where a and b 
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indicate the masked group labels. Enumerating all the possible combinations for allocating 4 

individuals to two groups gives the following list: {a, a, b, b}, {a, b, a, b}, {b, a, a, b}, {a, b, 

b, a}, {b, a, b, a}, {b, b, a, a}. The solutions {a, b, b, a} is equal to {b, a, a, b} prior to 

assigning true treatment labels to the masked labels g, which is ideally performed by a person 

other than the randomizer. Suppose that the optimal matching has resulted in matching of 

individuals {1,3}. This indicates that individuals 1 and 3 should be allocated to different 

groups. Similarly, the match {2,4} in the same optimal matching solution suggests that 

individuals 2 and 4 should be allocated to different groups. Therefore, the allowed allocations 

are constrained to solutions where f1 ≠ f3 and f2 ≠ f4 based on the optimal matching. This 

criterion is fulfilled in the following allocations: {a, a, b, b}, {b, a, a, b}, {a, b, b, a}, {b, b, 

a, a}. Out of the above set of 4 feasible solutions, one is finally picked at random with equal 

probabilities for each instance. This will produce the final chosen allocation vector, which is 

then given as the masked labels for experimental investigators.  

 

Additional constraints are trivial to add to the above methodology. For instance, in the ARN-

509/MDV3100 -experiment, a potential cage effect was normalized out by setting additional 

constraints in the matching based constraints. This stated that for each pair of individuals i 

and j that originated from the same cage, the allowed solutions fulfilled the criterion fi ≠ fj. 

 

Branch and bound algorithm (exact optimization) 

The branch and bound steps in the algorithm for global solution are defined as follows: 

Branching step: The branching step must implicitly enumerate all possible paths in the 

branch and bound tree, if global optimum is to be guaranteed. We chose a strategy in which 

every branching step, the submatches are enumerated for each available un-matched 

individual (Supplementary Fig. S7c). This enumeration is structured so that potentially more 

similar submatches are prioritized in the tree search. The search tree begins with an empty 

node, where no individuals have yet been matched (root). Then, at the first step all possible 

matches that include the first index are enumerated. Similarly further down in the branching 

tree, always the first free index is enumerated. This spans a search tree that would, if needed, 

include all possible combinations once. 

 

Bounding step: In order to reduce the size of the search tree (Supplementary Fig. S7c), 

branches of the tree need to be discarded based on an optimistic bounding function. 

Supplementary Fig. S7d presents the concept of a bounding function in a minimization 

optimization task for a continuous variable x, which generalizes to the discrete optimization 

task at hand. Presumably we know some feasible solution (known local minimum) to the 

optimization task, which may be used as a starting point. We know the boundary of best 

possible solutions found in a certain part of the solution space based on a bounding function. 

For example, in the Supplementary Fig. S7d, it is known that the local minimum lies inside 

X3 < x ≤ X4 along with the value of that local minimum f(x). Based on the bounding functions 

and our current best known minimum, solutions found from space x ≤ X1 may be discarded, 

as the optimistic bounding functions suggests that the best found solution in this range will 

not improve our current best known solution. Similarly, solutions found from X4 ≤ x may be 

discarded. Then, solutions from the space X1 < x ≤ X2 need to be tested, since our bounding 

function does not guarantee that solutions in this range can be discarded. If the bounding 

function had been better, i.e. closer to the actual function that is minimized, this range could 

have been discarded, as it does not truly include a solution better than the current minimum. 

Furthermore, range X2 < x ≤ X3 needs to be tested based on the bounding function, and in this 

case the global optimum would be found in this range. 
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Bounding function is similarly utilized in the branch and bound algorithm to discard large 

amounts of solutions that cannot improve the current best known matching. After each 

branching step, a bounding function is computed for each branch through relaxation. For this 

purpose, the optimization problem in equations (1A-E) is temporarily modified by omitting 

either the constraint (1B) or (1C). Omission of either constraint causes matches to more than 

G -1 individuals. For each individual index that has not yet been fixed in the search tree, the 

corresponding rows and columns in D are checked. Per each row, the G - 1 lowest distances 

are then picked. These distances are then summed over all the non-fixed rows, which yields 

the lowest sum of distances available for the non-fixed indices. Notice that due to the 

relaxation, the found boundary may not be a truly feasible solution to the real optimization 

task, but it is as low or lower than minima that fulfill the criteria set in equations (1B-C). 

Therefore it is used as an optimistic bounding function for the branch and bound algorithm. 

 

Genetic algorithm (heuristic optimization) 

In order to provide a faster local optimization algorithm in addition to the global optimizing 

Branch & Bound optimization algorithm, we provided a genetic algorithm inspired by similar 

usage of this family of methods in improving experimental design
22

. The genetic algorithm 

(GA) is an open-ended framework for mimicking evolutionary behavior in solving an 

optimization task. The user provides a desired population size of candidate solutions, and 

then new generations of solutions are generated using pre-defined evolutionary mechanics. In 

our application, the fitness of a solution is better if the optimal matching solution has a lower 

target function value, and thus it is more likely to produce offspring or live to the next 

generation of solutions. Our algorithm consists of the following evolutionary events (with 

experimentally observed feasible default tuning parameters): 

i. The initial random populations are randomly generated by creating a simple legal matching 

matrix and randomly permuting the rows and columns of such a legal solution, creating a new 

randomized legal solution fulfilling constraints set in equations (1A-E). 

ii. Point mutations are randomly introduced in each generation by randomly performing 

either a swap of two rows or two columns in a single existing matching matrix 𝑿 to randomly 

chosen individual solutions. 

iii. New generations are bred by two parents (two solution matrices 𝑿1 and 𝑿2) by combining 

the common identified matches by the parents. Each element 𝑋𝑖,𝑗
 

= 1 that is shared by both 

the parents is propagated to the offspring as it is, while the remaining elements where either 

both parents had 𝑋𝑖,𝑗 = 0 or only one parent had 𝑋𝑖,𝑗 = 1 are randomly permutated to 

generate the rest of the solution. 

iv. Solutions with a worse fitness, i.e. higher optimal target function value in equation (5), are 

more likely to die per each simulated generation and are replaced by the breeding of new 

solutions. 

 

Data and code availability 
The utilized R-package hamlet

25
 along with its source code is available in the Comprehensive 

R Archive Network (CRAN), by typing “install.packages(hamlet)” to the R-terminal. After 

loading the R-package using “library(hamlet)”, all the measurements for the ARN-509 / 

MDV3100 –study for the pre-intervention baseline or the post-intervention longitudinal data 

are fully available from the R-package with commands “data(vcapwide)” and 

data(vcaplong)”, respectively. Similarly, all the measurements for the ORX / ORX+Tx –

study for the pre-intervention baseline or the post-intervention longitudinal data are fully 

available with the commands “data(orxwide)” and “data(orxlong)”, respectively. The RNA-

sequencing files for the ARN-509 / MDV3100 –study have been deposited in the European 

Nucleotide Archive (ENA) with the identification code PRJEB11552.  
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Graphical User Interface (GUI) 
To enable the wider use of these algorithms, also by researchers without bioinformatics skills 

or resources, we have implemented the core set of the functions also as part of a web-based 

graphical user interface (GUI), named R-vivo. The web-interface was implemented using the 

R-Shiny software platform (R-Studio, Inc.), and it is freely accessible at our in-house 

computer server (http://biomedportal.utu.fi:3838/utu-apps/Rvivo/). In addition to the power 

calculations, R-vivo includes user-friendly options and visualizations both for the pre-

intervention analyses (animal matching, randomization and treatment group allocation), as 

well for the post-intervention analyses (including statistical testing of the treatment effects). 

In its simplest form, the user can input the raw baseline measurements of animals/tumours, 

compute local or global matching with or without randomization, and output relevant 

information such as sub-matches or blinded group labels to be further processed by the 

experimental investigators. A practical challenge in the sampling-based power calculation is 

that since the computations are not performed on closed-form parameter distributions, the 

simulations can be relatively time consuming. However, the user has options for quick pilot 

simulations to gain insight into the magnitude of the required sample size, and then perform a 

more detailed simulation once the exact sample numbers are to be proposed. In the GUI, this 

precision is controlled by the number of bootstrap samples within each sample size (n). 

Response measurements and baseline variables from the VCaP xenograft experiments are 

available both within the hamlet R-package and in R-vivo interface, for testing purposes. 

 

Simulation study for predictive baseline covariates 
In order to examine the effects of matching as a function of the number and type of 

confounding baseline variables, the following single end-point schema was simulated:  

 

Sample generation 

The samples z were drawn from the multivariate normal distribution: 

𝑍 ~ 𝑀𝑉𝑁(𝟎, ∑) 
where the covariance structure was constructed as follows: 

∑ =  

[
 
 
 
 
 
 
 
 
 
 
 
𝟏 𝜹 𝜹
𝜹 𝟏 𝜹
𝜹 𝜹 𝟏

⋯ 𝜹 𝜹
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⋯ 𝜹 𝜹

⋮ ⋮ ⋮
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⋮
⋮
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𝒑
⋮
⋮
⋮
𝒚

 

Here, the symmetric covariance matrix ∑ with dimensions (𝑞 + 𝑝 + 1) × (𝑞 + 𝑝 + 1) was 

separated into 3 components to simulate different types of baseline covariates: 

i) q predictive rows/columns with cross-covariances 𝜹, unit variance and predictive 

covariance of magnitude s in connection to the final prediction vector y 

ii) p non-predictive rows/columns with zero cross-covariances and unit variance  

iii) The final simulated prediction vector y which corresponded to the (q+p+1):th 

dimension in the covariance-variance matrix 
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The cross-covariance structure in 𝜹 was determined using the Higham method
50

 to make ∑ 

the closest possible positive definite covariance matrix, with the objective of being able to 

sample from the multivariate normal distribution.  

Parameter grid 

The following set of parameters was varied in the simulations:  

1. The number of predictive covariates in the data: 𝑞 ∈ {1, 3, 10, 20}   
2. The number of non-predictive covariates in the data: 𝑝 ∈ {1, 3, 10, 20}  
3. The prognostic component within the covariance matrix: 𝑠 ∈ {0, 0.4, 0.7} 
4. The number of samples drawn from the distribution Z per group: 𝑁 ∈ {5, 10, 15} 
5. The introduced between-group difference (two groups): 𝜇1 − 𝜇2  ∈ {0, 1, 2} 

Pseudoalgorithm  

The following algorithm was then run 1,000 times over the parameter grid with given 𝑞, 𝑝, 𝑠, 

𝑁 and 𝜇1 − 𝜇2: 

A. Sample 2𝑁 observations from the multivariate normal distribution Z specified by q, p, 

and s 

B. Set aside the response vector y from the (𝑞 + 𝑝 + 1):th dimension. The remaining 

(𝑞 + 𝑝) dimensional observation matrix was utilized as the baseline matching 

information. 

C. 1) If no matching was utilized, randomly allocate y to 2 sample groups of equal size 𝑁 

using simple permutation 

2) If matching at baseline was utilized, then match based on the (𝑞 + 𝑝) dimensional 

confounder matrix and randomly allocate the submatches to 2 sample groups of size 𝑁 as 

described in the manuscript 

D. Increment the y belonging to different sample groups according to desired 𝜇1 − 𝜇2 

E. Perform statistical testing using either non-paired or paired t-testing with statistical 

significance threshold 𝛼 = 0.05: 

1) If no matching information was to be utilized, perform conventional non-paired t-

testing between y belonging to the different group labels 

2) If matching was to be utilized, perform paired t-testing where the matching couples 

pairs of y that were matched at step C2. 

F. Compute the proportion of significant findings over all runs and report the findings in the 

parameter grid 

This led to three different approaches: 

i) Matched randomization, paired testing: steps C2 and E2 

ii) Matched randomization, non-paired testing: steps C2 and E1 

iii) Conventional randomization, non-paired testing: steps C1 and E1 

The sampled observations were kept constant for each of the different method approaches and 

the resulting significant findings are reported in Supplementary Fig. S9.  
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Simulation study for baseline-adjusted or matched regression models  

In the simulations showing how the matched inference based on baseline matching of animals 

differs from a standard multiple regression model that adjusts for baseline differences after 

interventions, we performed the random allocation according to 1) the matched random 

allocation and 2) by conventional randomization without using the matching information. We 

inspected three types of regression models: (i) A non-adjusted model that only included a 

group-difference term and which considered y without any pairing (even if the matching was 

used in the allocation); (ii) A covariate-adjusted multiple regression model where all the 

covariates were all included as coefficients to compensate for possible baseline differences, 

and where the non-paired y was modeled as the response. This was run both with and without 

baseline matching randomization; and (iii) A matched model where the baseline matched 

pairwise differences of y were modeled through the intercept of a simple linear regression 

model. This resulted in a total of 5 different modeling strategies (Supplementary Fig. S10). 

 

In order to simulate a difficult scenario, where the researcher may have to choose between 

different confounders and may end up including even spurious ones, we simulated the case 

where 3 out of the 4 baseline covariates were randomly sampled from a standardized normal 

distribution with no cross-covariance to the outcome whatsoever, while the 4th covariate was 

sampled to have a given correlation (s) with the outcome y. The outcome y was also sampled 

from a standardized normal distribution and then shifted according to a matched 

randomization based group assignment or by conventional randomization. This was similar to 

the procedure used in above “Simulation study for predictive baseline covariates” for q = 1 

and p = 3 with a continuous range of predictive s. A total of 1,000 datasets were simulated in 

this parameter grid, with known group difference (𝜇1 − 𝜇2 ∈ {0,1,2} for none, mediocre, or 
strong group difference), sample size per group (N ∈ {5,10,15}), and with added unit 

variance for all the covariates (i.e., variance equals to one). 
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1 Introduction

Hamlet is an R package intended for the statistical analysis of pre-clinical stud-
ies. This document is a basic introduction to the functionality of hamlet and a
general overview to the analysis workflow of preclinical studies.

This document is structured as follows: First, a general overview to inputting
and processing the raw data is presented. Second, functionality is presented for
the processing of pre-intervention data. Finally, functionality is presented for the
post-intervention period, along with brief discussion on the differences between
non-matched and matched statistical approaches. Each section comes with a
list of useful functions specific for the subtask.

Latest version of hamlet is available in the Comprehensive R Archive Net-
work (CRAN, http://cran.r-project.org/). CRAN mirrors are by default avail-
able in the installation of R, and the hamlet package is installable using the
R terminal command: install.packages("hamlet"). This should prompt
the user to select a nearby CRAN mirror, after which the installation of ham-

let is automatically performed. After the install.packages-call, the ham-

let package can be loaded with either command library("hamlet") or re-

quire("hamlet").
The following notation is used in the document: R commands, package

names and function names are written in typewriter font. The notation of
format pckgName::funcName indicates that the function funcName is called from
the package pckgName. If only the function name is given, this indicates that it
is located in the base package in R and is thus always available.

1.1 Analysis workflow

Two different types of case-control setups for the analysis of pre-clinical are
presented in Fig. 1.

The type A experiment design in Fig. 1 is preferred, as matching is per-
formed before allocation to the experiment groups, and therefore improves the
balance and power of the experiment. The alternate experiment type B requires
the bipartite matching task, where suitable pairs of individuals are identified
over two or more groups that existed prior to matching. This document focuses
on experiment design of type A, where similarity information is utilized readily
before interventions.

2 Pre-intervention analyses

2.1 Loading data into R

The hamlet package comes pre-installed with the VCaP dataset, which is used
here to illustrate the workflow. Two different formats of the data are provided.
First one is available in data(vcapwide), which includes the data in the so-
called wide format. In this data format the columns are indicators for different
variables available for the experimental unit (here animal). For example, the
two first rows of observations are extracted with:

> require(hamlet)

> data(vcapwide)
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Figure 1: Analysis workflow for pre-clinical experiments

> vcapwide[1:2,]

CastrationDate CageAtAllocation Group TreatmentInitiationWeek Submatch

ID003 100413 13489 Vehicle Week10 Submatch_1

ID007 170413 13810 MDV Week10 Submatch_10

ID PSAWeek2 PSAWeek3 PSAWeek4 PSAWeek5 PSAWeek6 PSAWeek7 PSAWeek8 PSAWeek9

ID003 ID003 7.67 14.76 24.78 2.03 5.97 8.16 13.72 16.57

ID007 ID007 2.01 5.17 8.59 14.62 1.99 2.81 4.23 5.38

PSAWeek10 PSAWeek11 PSAWeek12 PSAWeek13 PSAWeek14 BWWeek0 BWWeek1 BWWeek2

ID003 21.30 45.69 54.50 53.55 27.64 30.5 31.7 32.6

ID007 7.55 9.70 17.45 22.79 21.88 28.8 30.0 30.6

BWWeek3 BWWeek4 BWWeek5 BWWeek6 BWWeek7 BWWeek8 BWWeek9 BWWeek10 BWWeek11

ID003 33.8 33.9 32.2 32.6 32.6 33.2 34.2 35.0 36.1

ID007 31.6 32.9 32.4 32.0 31.1 30.3 30.5 31.6 31.7

BWWeek12 BWWeek13 BWWeek14

ID003 37.9 37.5 39.7

ID007 32.4 33.5 33.3

An another format of the same dataset is provided in data(vcaplong). This
is the data from the same experiment in the so-called long format, where only
few column variables are available (here PSA or body weight), and the different
observations belonging to a single experimental unit (here animal) are distin-
guished using the measurement time (variable Week or DrugWeek). Again, first
few rows of the dataset:

> data(vcaplong)

> vcaplong[1:3,]

3
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Figure 2: Example Excel-format data, where rows correspond to individuals
and columns to different characteristics at baseline. The single sheet data can
be easily exported in a text-based format such as CSV.

PSA log2PSA BW Submatch ID Week DrugWeek Group Vehicle ARN MDV

11 21.30 4.412782 35.0 Submatch_1 ID003 10 0 Vehicle 1 0 0

12 45.69 5.513807 36.1 Submatch_1 ID003 11 1 Vehicle 1 0 0

13 54.50 5.768184 37.9 Submatch_1 ID003 12 2 Vehicle 1 0 0

The former wide format is useful for summarizing multiple variables when
constructing distance matrices for the data. The latter long format is typically
used for longitudinal mixed-effects modeling where observations are correlated
through time.

2.2 Excel format data

An example view of a pre-clinical dataset is given in Fig. 2. Such a dataset can
be saved in an R-friendly format by selecting option File > Save As and CSV

(Comma delimited) as the save format in MS Excel.

2.2.1 CSV-files

CSV (Comma Delimited Values) is a suitable text-based format for the data to
be read into R using either the function read.table or read.csv. The above
presented example CSV file can be opened with the following command:

> ex <- read.table(file="example.csv", sep=";", dec=",", stringsAsFactors=F, header=T)

> ex

Animal PSA.week.10..ug.l. PSA.week.9..ug.l. Body.weight.week.10..g.

1 ID003 21.30 16.57 35.0
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2 ID007 7.55 5.38 31.6

3 ID008 23.58 17.40 33.6

4 ID009 13.17 11.14 31.7

5 ID010 9.90 9.33 34.1

6 ID016 15.05 15.29 39.6

7 ID018 13.53 12.14 34.0

8 ID025 13.13 10.91 33.3

9 ID027 9.59 8.79 32.0

10 ID031 7.04 6.95 36.6

11 ID032 8.49 8.02 34.9

12 ID037 13.74 13.38 32.4

13 ID040 23.62 19.15 35.9

14 ID045 14.27 9.80 34.8

15 ID047 6.57 6.28 31.9

16 ID054 34.72 27.14 32.1

17 ID056 28.15 22.05 32.2

18 ID058 9.74 7.68 34.0

The above presented CSV file was read into R using read.table with the
following parameters: file="example.csv" is the first parameter and indicates
the input file from our current working directory. The working directory may be
changed using the command setwd or by including its path in the file parameter,
i.e. file="D://my//current//windows//working//directory//example.csv".
sep=";" indicates that the values on each line are separated with the symbol
’;’, as is the format defined for the CSV delimited files with ”,”-decimals. This
could also be a value such as \tab or " " (space). dec="," indicates that the
”,” symbol is used for decimals. The default value for indicating decimals is ”.”
otherwise. stringsAsFactors=F indicates that strings should not be handled
as factors. Factors are an R class, where a character string may only take in-
stances of a predetermined set of strings. As each of our animal IDs - which
are read as strings - are unique, it is generally more flexible to conserve them
as character strings. Lastly, header=T indicates that the text CSV file has a
header row as the first row, which includes names for each column. If this value
is set to header=F or header=FALSE, the first row of the text file is read as the
first observation and the columns are left unnamed.

Depending on the country of origin, the CSV files may use ”.” decimals and
”,” separator, or alternatively (as assumed here) ”,” decimals” and ”;” separators.

List of useful functions:

• read.table, read.csv

• data: data(vcaplong), data(vcapwide)

2.3 Distance and dissimilarity functions

A distance or dissimilarity function is used to describe the amount of dissimilar-
ity between two experimental units. Common choices for computing the amount
of similarity between two vectors x and y include:

• Euclidean distance: d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 =√∑n
i=1(xi − yi)2.
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• Standardized Euclidean distance:
√∑P

i=1
(xi−yi)2

s2i

• Mahalanobis distance:
√

(x− y)TS−1(x− y)

Here, x and y are expected to be observation vectors of length P , where each
dimension describes the measured value for a particular covariate. S describes
the covariance-variance matrix between covariates, and therefore incorporates
inter-correlations between variables. The standard deviation s may be used to
standardize differences in variation over the dimensions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.00 18.05 2.80 10.32 13.53 7.87 9.00 10.08 14.38 17.28 15.40 8.61 3.58 9.76 18.23 17.33 9.21 14.62
2 18.05 0.00 20.14 8.05 5.23 14.78 9.34 8.04 3.99 5.27 4.33 10.15 21.60 8.66 1.36 34.81 26.51 3.98
3 2.80 20.14 0.00 12.29 15.89 10.64 11.35 12.30 16.50 19.79 17.82 10.70 2.89 12.08 20.39 14.87 6.67 16.92
4 10.32 8.05 12.29 0.00 4.44 9.12 2.53 1.62 4.29 8.90 6.47 2.42 13.82 3.55 8.20 26.84 18.54 5.39
5 13.53 5.23 15.89 4.44 0.00 9.61 4.59 3.68 2.19 4.48 2.08 5.83 16.97 4.45 5.02 30.61 22.33 1.66
6 7.87 14.78 10.64 9.12 9.61 0.00 6.60 7.91 11.39 11.95 10.86 7.56 10.10 7.33 14.57 24.16 16.49 10.84
7 9.00 9.34 11.35 2.53 4.59 6.60 0.00 1.47 5.54 8.71 6.57 2.04 12.43 2.58 9.34 26.03 17.75 5.85
8 10.08 8.04 12.30 1.62 3.68 7.91 1.47 0.00 4.33 7.98 5.70 2.70 13.59 2.19 8.15 27.04 18.73 4.73
9 14.38 3.99 16.50 4.29 2.19 11.39 5.54 4.33 0.00 5.57 3.20 6.20 17.87 5.55 3.93 31.12 22.81 2.29

10 17.28 5.27 19.79 8.90 4.48 11.95 8.71 7.98 5.57 0.00 2.48 10.19 20.60 7.98 4.77 34.56 26.32 3.82
11 15.40 4.33 17.82 6.47 2.08 10.86 6.57 5.70 3.20 2.48 0.00 7.91 18.81 6.05 3.96 32.58 24.30 1.58
12 8.61 10.15 10.70 2.42 5.83 7.56 2.04 2.70 6.20 10.19 7.91 0.00 11.96 4.34 10.10 25.09 16.82 7.14
13 3.58 21.60 2.89 13.82 16.97 10.10 12.43 13.59 17.87 20.60 18.81 11.96 0.00 13.27 21.73 14.19 6.53 18.11
14 9.76 8.66 12.08 3.55 4.45 7.33 2.58 2.19 5.55 7.98 6.05 4.34 13.27 0.00 8.95 26.95 18.69 5.07
15 18.23 1.36 20.39 8.20 5.02 14.57 9.34 8.15 3.93 4.77 3.96 10.10 21.73 8.95 0.00 35.04 26.73 4.05
16 17.33 34.81 14.87 26.84 30.61 24.16 26.03 27.04 31.12 34.56 32.58 25.09 14.19 26.95 35.04 0.00 8.31 31.72
17 9.21 26.51 6.67 18.54 22.33 16.49 17.75 18.73 22.81 26.32 24.30 16.82 6.53 18.69 26.73 8.31 0.00 23.42
18 14.62 3.98 16.92 5.39 1.66 10.84 5.85 4.73 2.29 3.82 1.58 7.14 18.11 5.07 4.05 31.72 23.42 0.00

Table 1: Euclidean distance matrix D for 18 animals

Table 1 shows the Euclidean distance matrix for the 18 animals presented in
Figure 2.

List of useful functions:

• dist includes many common distance and dissimilarity functions (Eu-
clidean by default, others: method="manhattan", method="maximum", method="minkowski"

• cluster::daisy, daisy includes Gower’s dissimilarity for mixed data (pa-
rameter metric="gower")

2.4 Non-bipartite optimal matching of animals at baseline
(BB)

The non-bipartite optimal matching problem may be solved using the provided
branch and bound algorithm:

> sol.bb <- match.bb(d, g=3)

[1] "Performing initial sorting for a good initial guess"

[1] "Computing boundaries for minimum distances in possible combinations..."

[1] "Starting branch and bound"

[1] "Branches: 272"

[1] "Bounds: 7140"

[1] "Ends visited: 25"
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[1] "Solution cost 169.62"

[1] "Solution: 5,3,5,6,4,5,6,4,3,2,2,6,1,4,3,1,1,2"

> submatches <- paste("Submatch_", LETTERS[1:6][sol.bb$solution], sep="")

> names(submatches) <- names(sol.bb$solution)

> submatches

1 2 3 4 5 6

"Submatch_E" "Submatch_C" "Submatch_E" "Submatch_F" "Submatch_D" "Submatch_E"

7 8 9 10 11 12

"Submatch_F" "Submatch_D" "Submatch_C" "Submatch_B" "Submatch_B" "Submatch_F"

13 14 15 16 17 18

"Submatch_A" "Submatch_D" "Submatch_C" "Submatch_A" "Submatch_A" "Submatch_B"

The match.bb function returns the solution to the optimal matching task. It
takes as input a distance matrix d, as is indicated in the function call match.bb(d,
g=3) (notice that d was defined before). Furthermore, the size of the submatches
is defined using the parameter g=3. This value indicates that the optimal match-
ing algorithm minimizes edges within triplets. Each observation has to belong
to a triplet called a submatch.

List of useful functions:

• Multigroup non-bipartite matching: hamlet::match.bb

• Paired non-bipartite matching: hamlet::match.bb, nbpMatching::nonbimatch

• Paired bipartite matching: optmatch::fullmatch

2.5 Non-bipartite optimal matching of animals at baseline
(GA)

While the above described Branch and Bound algorithm is guaranteed to identify
the global optimum, in some cases it is not feasible due to size of the search tree.
In such cases, a feasible optimum is easily detected using a Genetic Algorithm
implemention provided in hamlet::match.ga.

The Genetic Algorithm (GA) commonly includes many parameters, as it
aims to mimic evolutionary processes in solving a problem, here a non-bipartite
multigroup matching problem. The basic parameters that should be considered
include generations, which indicates for how many generations the simulation
is run for and thus increases run time approximately linearly, and the parameter
popsize, which indicates how many solutions should be ”living” inside the whole
population at a given generation. A thumb rule is that many solutions are easily
solvable by the 1,000th generation, if the population size is at least 100, but the
user may want to use the visualizations and diagnostic plots to see how well the
GA has managed to solve the optimization problem. The convergence happens
over the generations similarly as presented in Figure 3.

> sol.bb[["cost"]] # Guaranteed global optimum

[1] 169.62

> sol.ga[[3]] # Identified solution by GA
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> set.seed(1) # GA is a stochastic algorithm, fixing the seed for reproducibility

> sol.ga <- match.ga(d, g=3, generations=100, popsize=100)

[1] "Best found solution vector:"

[1] 5 6 5 3 1 5 1 3 6 2 2 3 4 1 6 4 4 2

[1] "Best found solution cost:"

[1] 171.72

0 20 40 60 80 100

20
0

30
0

40
0

50
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Min/Max 2/4 Quant. Median

Figure 3: Convergence of the GA in the given optimization problem. The
minimum shows the best identified optimization solution, while the quantiles
give insight to the solution heterogeneity living in the solution space.
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[1] 171.72

The GA algorithm, with a linear run time, has resulted in a very close
optimum to the guaranteed global optimum identified using BB, which may in
return have some cases lead to drastic increases in run times. Both algorithms
may thus be applicable where appropriate.

2.6 Randomization based on matched individuals

The submatches identified in the above section should not be mistaken for the
randomly allocated intervention groups. The final intervention groups are ob-
tained by dividing members of each submatch in the found solution to a separate
treatment arm. Since the within-submatch distances are minimized, this guar-
antees that comparable individuals are randomly divided to separate arms:

> ex[,"Submatch"] <- submatches

> set.seed(1) # for reproducibility

> ex[,"AllocatedGroups"] <- match.allocate(ex[,"Submatch"])

> ex <- ex[order(ex[,"Submatch"]),] # Sort for submatches

Animal PSA.week.10..ug.l. PSA.week.9..ug.l. Body.weight.week.10..g. Submatch AllocatedGroups
13 ID040 23.62 19.15 35.90 Submatch A Group B
16 ID054 34.72 27.14 32.10 Submatch A Group C
17 ID056 28.15 22.05 32.20 Submatch A Group A
10 ID031 7.04 6.95 36.60 Submatch B Group C
11 ID032 8.49 8.02 34.90 Submatch B Group A
18 ID058 9.74 7.68 34.00 Submatch B Group B
2 ID007 7.55 5.38 31.60 Submatch C Group C
9 ID027 9.59 8.79 32.00 Submatch C Group A

15 ID047 6.57 6.28 31.90 Submatch C Group B
5 ID010 9.90 9.33 34.10 Submatch D Group A
8 ID025 13.13 10.91 33.30 Submatch D Group C

14 ID045 14.27 9.80 34.80 Submatch D Group B
1 ID003 21.30 16.57 35.00 Submatch E Group A
3 ID008 23.58 17.40 33.60 Submatch E Group C
6 ID016 15.05 15.29 39.60 Submatch E Group B
4 ID009 13.17 11.14 31.70 Submatch F Group C
7 ID018 13.53 12.14 34.00 Submatch F Group B

12 ID037 13.74 13.38 32.40 Submatch F Group A

Table 2: The result table in variable ex after performing the optimal matching
and allocation.

As is seen Table 2, each submatch (column Submatch) consists of similar
experimental units in terms of the baseline characteristics (i.e. PSA and body
weight). Furthermore, the baseline data has now been allocated in such a man-
ner, that each submatch evenly distributes to the proposed intervention groups
(column AllocatedGroup), resulting in balanced baseline intervention groups.
These artificial labels A, B, and C may then be given to an external experimenter
in a blinded manner, and allocated to the true labels in any fashion without
any pre-fixed control group, as all pairwise contrasts have been considered in
the submatching procedure.

List of useful functions:

• Multigroup non-bipartite matching: hamlet::match.bb, hamlet::match.ga
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> boxplot(PSA.week.10..ug.l. ~ AllocatedGroups, data = ex, range=0,

+ xlab="Group", ylab="PSA week 10 ul/g")
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Figure 4: Boxplots for the week 10 PSA in the example allocation

• Paired non-bipartite matching: hamlet::match.bb, hamlet::match.ga,
nbpMatching::nonbimatch

• Paired bipartite matching: optmatch::fullmatch

2.7 Visualizations for pre-clinical data

Various visualization functions are available to illustrate baseline balance. For
example, the boxplots in respect to allocation groups can be plotted using a
command such as boxplot, which is illustrated in Figure 4.

Mixed variable scatterplots with annotations for the submatches or alloca-
tion groups are plotted using the function hamlet::mixplot, which can be seen
in Figures 5 or 6 respectively.

List of useful functions:

• Scatterplots etc: hamlet::mixplot, plot, boxplot

• Heatmaps: hamlet::hmap, heatmap, gplots::heatmap.2
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> mixplot(ex[,2:5], pch=16)
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Figure 5: Test mixplot with submatch labels
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> mixplot(ex[,c(2:4,6)], pch=16)
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Figure 6: Test mixplot with allocation group labels
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3 Power analysis

The power simulations provided by the hamlet-package are conducted through
bootstrap (sampling with replacement) simulations using a pre-fitted mixed-
effects model. For this purpose, it is essential that the user pre-defines a suitable
mixed-effects model in the lmer-function of the lme4-package, as this will be
used in the sampling process. The function mem.powersimu is the main hamlet

function that performs this sampling, and it automatically identifies the suitable
experimental unit from the lme4-object, and then re-fits the model structure a
pre-defined amount of times at given N values.

3.1 An artificial example

In a situation where the user wishes to generate artificial data, it is important
for the experimenter to evaluate such factors as:

• How many measurement points time will be available

• What is the expected effect size

• Will right-censoring (death or sacrifice) occur and what are the risk criteria

• Are there baseline differences or is there a correlation between the initial
baselinse response level and intervention efficacy

The user is encouraged to creatively produce such expert curated data either
by hand, or through a tailored simulation function. As a practical example, an
example function will be constructed below (mainly utilizing normal distribu-
tions). In order for the artificial data to be modeled using lme4-package, it
should follow the long format.

As an example, data with an initial baseline level of response values with
µ = 5 and σ = 2 will be generated from the normal distribution. 4 follow-up time
points will be available after the initial baseline, and the expected control growth
will be 2 per time point and in turn the intervention effect to have an effect of
-1 to growth per time point. Furthermore, we simulate a right-censoring that
has 20% chance to occur for individuals reaching above response values > 10.
In this artificial example, 5 individuals will be available for both the control and
the intervention group. Each measurement will have measurement error with
no bias (µ = 0) and σ = 2.

> # Baseline characteristics and time follow-up

> basemu <- 5

> basesigma <- 2

> ttime <- 4

> # Growth characteristics and group size

> growth <- 2

> interv <- -1

> ngroup <- 5

> # Measurement error and right-censoring

> measerror <- 2

> censthreshold <- 10

> censchance <- 0.2
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> # Artificial data simulation with a set seed

> set.seed(1)

> # 2 experiment groups

> artdat <- do.call("rbind", lapply(c("Control", "Intervention"), FUN=function(group){

+ # Simulated individuals

+ do.call("rbind", lapply(1:ngroup, FUN=function(i){

+ # Baseline time = 0 and 5 follow up points

+ y <- rnorm(n = 1, mean=basemu, sd = basesigma)

+ # Growth as a function of time, with a possible intervention effect

+ measurements <- unlist(lapply(0:ttime, FUN=function(t){

+ y + growth*t + ifelse(group=="Intervention", interv*t, 0)

+ }))

+ # Random chance of censoring for response above >10,

+ # 20\% chance per time point to right-censor

+ for(index in 1:length(measurements)){

+ if(!is.na(measurements[index]) & measurements[index]>censthreshold)

+ if(rbinom(n=1, size=1, prob=censchance))

+ measurements[index:(length(measurements))] <- NA

+ }

+ # Add random measurement error

+ measurements <- measurements +

+ rnorm(n=length(measurements), mean=0, sd=measerror)

+ # Collect all data to a long format data.frame

+ data.frame(

+ Response = measurements,

+ ID = paste(group, i, sep="_"),

+ Group = ifelse(group=="Intervention", 1, 0),

+ Time = 0:ttime)

+ }))

+ }))

The above generated simulation script captures some key elements in a pre-
clinical longitudinal intervention study, but should be naturally refined more
precisely if more complex interactions are to be incorporated. To give insight
into the overall structure of the long-format data, here are the so-called head

and tail of the artificially generated data.frame:

> head(artdat)

Response ID Group Time

1 6.406691 Control_1 0 0

2 8.291951 Control_1 0 1

3 8.576375 Control_1 0 2

4 6.667192 Control_1 0 3

5 9.889958 Control_1 0 4

6 9.219866 Control_2 0 0

> tail(artdat)

Response ID Group Time

45 7.593970 Intervention_4 1 4
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46 6.856897 Intervention_5 1 0

47 7.117348 Intervention_5 1 1

48 6.258141 Intervention_5 1 2

49 8.907789 Intervention_5 1 3

50 8.509502 Intervention_5 1 4

After a suitable long-format data.frame has been generated (variable artdat
here), one has to specify and fit a preliminary mixed-effects model that will be
used as a base for power simulations. The generated artificial data is presented
in Figure 7.

3.1.1 Structure of a mixed-effects model

A standard mixed-effects model would, for example, include the following coeffi-
cients, given the input data artdat (the formula coefficients need to corresponds
to column names in the input data.frame):

> f1a <- as.formula(Response ~ 1 + Time + Time:Group + (1 + Time|ID))

> f1b <- as.formula(Response ~ 1 + Time + Time:Group + (1|ID) + (0 + Time|ID))

This formula is structured as follows:

• The left hand side Response is our response vector y.

• The non-parenthesis coefficients following the tilde are the so called fixed
effects, which are here population-wise parameters

• The first right hand side coefficient 1 stands for standard model intercept,
i.e. y level when x = 0

• Coefficient Time captures natural growth of the tumors as a function of
time

• Coefficient Time:Group introduces grouping information as an interaction
with the growth coefficient, and thus tests whether the intervention gives
a growth inhibition advantage.

• The terms in parenthesis are random effects with analogous counterparts
to their fixed effects. The difference is that the grouping variable, indicated
here with |ID, is gives flexibility for the each experimental unit to have
deviating intercepts and growth slopes. Separate value from a normal dis-
tribution with mean 0 and an estimated standard deviation are identified
when fitting the mixed-effects model. The random effects allow individu-
alized response curves, while controlling that multiple observations belong
to a single individual (ID).

• An alternate non-correlated random-effects structure is given in f1b, indi-
cated by separating the two random effects terms without a cross-correlation.

Fixed effects are typically utilized in inference of possible intervention effects,
and here the term Time:Group will estimate possible intervention effects. A
linear mixed-effects model of the above structure can be fitted using:
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> # Plot the artificial data

> plot.new()

> plot.window(xlim=range(artdat[,"Time"]),

+ ylim=c(0,max(artdat[,"Response"], na.rm=T)))

> axis(1); axis(2); box()

> title(xlab="t", ylab="y", main="Artificially generated data")

> # Plot each individual as its own curve

> invisible(by(artdat, INDICES=artdat[,"ID"], FUN=function(z){

+ points(z[,"Time"], z[,"Response"], type="l", col=1+z[1,"Group"])

+ points(z[,"Time"], z[,"Response"], pch=16, col=1+z[1,"Group"])

+ }))

> legend("bottomright", col=1:2, pch=16, lwd=1, legend=c("Control", "Intervention"))
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Figure 7: Visualization of the artificially generated data, with two experimental
groups.
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> library(lme4)

> # We defined formulae already before

> fit1 <- lmer(f1b, data = artdat)

> library(lmerTest)

> summary(fit1)

Linear mixed model fit by REML ['lmerMod']
Formula: Response ~ 1 + Time + Time:Group + (1 | ID) + (0 + Time | ID)

Data: artdat

REML criterion at convergence: 204.8

Scaled residuals:

Min 1Q Median 3Q Max

-1.6891 -0.6997 0.1232 0.5499 2.3074

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 1.207 1.099

ID.1 Time 0.000 0.000

Residual 2.830 1.682

Number of obs: 50, groups: ID, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.6894 0.5390 10.556

Time 1.2732 0.2135 5.964

Time:Group -0.5251 0.2629 -1.998

Correlation of Fixed Effects:

(Intr) Time

Time -0.492

Time:Group 0.000 -0.616

3.1.2 Bootstrap simulations

The package lmerTest is used to provide Satterthwaite approximation for the
p-values for fixed effects in the linear mixed-effects model. Albeit the p-values
are provided here for the model coefficients, we are interested in how power in
such a study would develop as a function of animal numbers N . For this purpose
we can perform power simulations, which bootstraps the pre-fitted mixed-effects
model on our artificial data:

Notice that the artificial data simulations were run with a very limited boot-
strap sample size, in order to save time in generation of this vignette. A better
estimate for the power as well as more exact N would be given e.g. by setting
boot=1000 and N=3:20. Furthermore, we indicated with level that our ex-
perimental unit is defined by the individual indicator ID, and that we want to
subsample evenly over the intervention groups through strata. The resulting
power curve is shown in Figure 8, suggesting that in order to achieve sufficient
statistical power, our experiment should include at least Narm = 9 individuals
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> set.seed(1)

> pow <- mem.powersimu(fit1,

+ N=c(3, 5, 7, 9, 11, 13, 15), boot=20,

+ level="ID", strata="Group")

> abline(h=0.8, col="grey")

> pow

(Intercept) Time Time:Group

GroupN_3_TotalN_6 1 1 0.35

GroupN_5_TotalN_10 1 1 0.25

GroupN_7_TotalN_14 1 1 0.70

GroupN_9_TotalN_18 1 1 0.80

GroupN_11_TotalN_22 1 1 0.80

GroupN_13_TotalN_26 1 1 1.00

GroupN_15_TotalN_30 1 1 0.95
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Figure 8: Preliminary power curve for all the fixed effects, with a limited number
of bootstrapped datasets (20).
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in both intervention arms, and total experiment size consisting of Ntotal = 18
individuals.

3.2 An ARN-509 example

The longitudinal intervention observations of the ARN-509 / MDV3100 -study
and ORX / ORX+Tx -study are provided inside the hamlet-package with the
commands data(vcaplong) and data(orxlong), respectively. Here we will
provide a model fit to the ARN-509 -study, as well as show how its power curve
behaves in respect to different fixed effects. Load the ARN-509 / MDV3100
-study and constraint to ARN-509 by:

> data(vcaplong)

> arndat <- vcaplong[

+ # Select observations only from the vehicle or ARN-509 groups

+ vcaplong[,"Group"] %in% c("Vehicle", "ARN"),

+ # Select columns (=features) that are required for the conventional MEM

+ c("PSA", "DrugWeek", "ARN", "ID")]

> head(arndat)

PSA DrugWeek ARN ID

11 21.30 0 0 ID003

12 45.69 1 0 ID003

13 54.50 2 0 ID003

14 53.55 3 0 ID003

15 27.64 4 0 ID003

71 13.17 0 0 ID009

Similarly as for the artificial data example, this study could be be represen-
tative for estimating power for interventions with similar effect sizes, censoring,
follow-up periods etc. The conventional non-matched modeling process and
corresponding preliminary power curve would be computed using:

> arnfit <- lmer(PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1|ID) + (0 + DrugWeek|ID),

+ data = arndat)

> summary(arnfit)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees

of freedom [lmerMod]

Formula: PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 | ID) + (0 + DrugWeek | ID)

Data: arndat

REML criterion at convergence: 1082.6

Scaled residuals:

Min 1Q Median 3Q Max

-3.4768 -0.3911 -0.0044 0.3425 3.1437

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 67.80 8.234
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ID.1 DrugWeek 26.65 5.163

Residual 33.05 5.749

Number of obs: 150, groups: ID, 30

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 14.311 1.709 29.587 8.374 2.68e-09 ***

DrugWeek 10.062 1.407 28.206 7.150 8.47e-08 ***

DrugWeek:ARN -7.627 1.982 27.792 -3.849 0.000636 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Correlation of Fixed Effects:

(Intr) DrugWk

DrugWeek -0.092

DrugWek:ARN 0.000 -0.704

As is seen in Figure 9, the power curves become smoother with higher boot-
strap rates. Here a highly narrowed N vector was tested (values 5 to 9), due to
a priori knowledge that the power 0.8 would be achieved at N = 7.
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> set.seed(123)

> arnpow <- mem.powersimu(arnfit,

+ level = "ID", strata = "ARN",

+ N = c(5,6,7,8,9), boot = 100)

> abline(h=0.8, col="grey")

> arnpow

(Intercept) DrugWeek DrugWeek:ARN

GroupN_5_TotalN_10 1 0.98 0.68

GroupN_6_TotalN_12 1 1.00 0.75

GroupN_7_TotalN_14 1 1.00 0.90

GroupN_8_TotalN_16 1 1.00 0.83

GroupN_9_TotalN_18 1 1.00 0.93
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Figure 9: ARN-509 fixed effects power curves, estimated using the conventional
model with 100 bootstrapped data sets.
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4 Post-intervention analyses

The presented pre-intervention submatching procedure provides a unique op-
portunity to utilize this predictive power to improve accuracy in the post-
intervention inference. We here provide the datasets from both the ARN-509 /
MDV3100 -study and the ORX / ORX+Tx -study, by typing data(vcaplong)

and data(orxlong), respectively. Alternatively, the pre-intervention data is
also available in data(vcapwide) and data(orxwide), respectively.

4.1 Long format and the presented datasets

As out-lined before, in order to perform regression modeling, R requires the
observations to be in the so-called long format, where each row in a data.frame
corresponds to a single measurement. These measurements are then usually
uniquely defined using individual identification codes as well as time points.
The presented datasets:

> data(vcaplong)

> data(orxlong)

> head(vcaplong)

PSA log2PSA BW Submatch ID Week DrugWeek Group Vehicle ARN MDV

11 21.30 4.412782 35.0 Submatch_1 ID003 10 0 Vehicle 1 0 0

12 45.69 5.513807 36.1 Submatch_1 ID003 11 1 Vehicle 1 0 0

13 54.50 5.768184 37.9 Submatch_1 ID003 12 2 Vehicle 1 0 0

14 53.55 5.742815 37.5 Submatch_1 ID003 13 3 Vehicle 1 0 0

15 27.64 4.788686 39.7 Submatch_1 ID003 14 4 Vehicle 1 0 0

41 7.55 2.916477 31.6 Submatch_10 ID007 10 0 MDV 0 0 1

> head(orxlong)

ID PSA log2PSA Day TrDay Date Group Submatch ORXTx ORX Intact

1 ID1 0.368 -1.4422223 0 -10 2015-01-12 ORX+Tx Submatch_11 1 0 0

2 ID1 1.524 0.6078629 10 0 2015-01-22 ORX+Tx Submatch_11 1 0 0

3 ID1 0.034 -4.8783214 25 15 2015-02-06 ORX+Tx Submatch_11 1 0 0

4 ID1 0.100 -3.3219281 35 25 2015-02-16 ORX+Tx Submatch_11 1 0 0

5 ID1 0.203 -2.3004484 45 35 2015-02-26 ORX+Tx Submatch_11 1 0 0

6 ID1 0.357 -1.4860040 56 46 2015-03-09 ORX+Tx Submatch_11 1 0 0

Typically, an experimenter may model a single interesting contrast with a
single model, thus we will split the vcaplong and orxlong into two separate
data sets.

> # Interesting fields in the orthotopic VCaP study

> fields <- c('PSA', 'DrugWeek', 'ID', 'Submatch', 'Group', 'ARN', 'MDV')
> # ARN-509 vs Vehicle

> arndat <- vcaplong[vcaplong[,'Group'] %in% c('ARN', 'Vehicle'),fields]
> # MDV3100 vs Vehicle

> mdvdat <- vcaplong[vcaplong[,'Group'] %in% c('MDV', 'Vehicle'),fields]
> # Interesting fields in the subcutaneous VCaP study

> fields <- c('PSA', 'TrDay', 'ID', 'Submatch', 'Group', 'ORXTx', 'ORX')
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> # ORX vs Intact

> orxdat <- orxlong[orxlong[,'Group'] %in% c('ORX', 'Intact'), fields]

> # ORX+Tx vs ORX

> xtxdat <- orxlong[orxlong[,'Group'] %in% c('ORX+Tx', 'ORX'), fields]

4.2 Collating to pairwise submatched observations

In order to fit pairwise matched mixed-effects models, the experimenter should
utilize the baseline submatch information to subtract corresponding control
growth from its intervened counterpart. For this, a field indicating Submatch
should be available in the data frame, and subtraction in a pairwise manner per
each time point Time. For example:

> arndat <- arndat[order(arndat[,'Submatch']),]
> arnpair <- do.call('rbind', by(arndat, INDICES=arndat[,'Submatch'], FUN=function(z){

+ # Within each Submatch, subtract Vehicle from the Case

+ z[,'PairPSA'] <- z[,'PSA'] - z[z[,'Group']=='Vehicle','PSA']
+ z

+ }))

> arnpair[1:10,]

PSA DrugWeek ID Submatch Group ARN MDV PairPSA

Submatch_1.11 21.30 0 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.12 45.69 1 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.13 54.50 2 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.14 53.55 3 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.15 27.64 4 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.266 23.62 0 ID040 Submatch_1 ARN 1 0 2.32

Submatch_1.267 22.09 1 ID040 Submatch_1 ARN 1 0 -23.60

Submatch_1.268 30.95 2 ID040 Submatch_1 ARN 1 0 -23.55

Submatch_1.269 31.98 3 ID040 Submatch_1 ARN 1 0 -21.57

Submatch_1.270 41.54 4 ID040 Submatch_1 ARN 1 0 13.90

> # The vehicle observations are redundant (subtracted from themselves)

> arnpair <- arnpair[arnpair[,'Group']=='ARN',]

In the above example, first pairwise computed PSA results in 23.62−21.30 =
2.32 at time point DrugWeek = 0 (baseline). The following time points, i.e.
DrugWeek = 1 result in turn a much more drastic growth in control tumor, i.e.
22.09 − 45.69 = −23.60. In this particular example, the treated tumor seems
to grow much slower for 3 weeks subsequently to the baseline, until it bounces
back in the final time point.

4.3 Fitting conventional and pairwise matched mixed-effects
models

Linear mixed-effects models compose of two main components:

• Fixed effects; Population effects, usually considered to cover either whole
range of experimental units or a subpopulation such as an intervention
group
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• Random effects; Individual effects, that allows flexible model fits. Typ-
ical random effects include a random intercept (variation at baseline) and
a random slope (individual variation in the growth coefficient).

The formula interface in R for fitting linear mixed-effects models in lme4-
package consists of three parts:

LFS ∼ Xb + Zu + ε (1)

where the LFS refers to left-hand side, i.e. the response vector y which is
usually a tumor growth feature such as serum PSA or tumor volume. The right
hand side from ∼ holds the fixed effects part (here Xb), random effects part
(here Zu) and the normally distributed error term ε.

Fixed effects are separated using the + sign. A typical longitudinal preclin-
ical model could be built on three fixed effects terms:

1 + Time+ Time : Group (2)

where 1 refers to a common intercept, which could be alternatively omitted
using either a 0 or a −1 sign instead of 1. Time typically is a running time
point indicator, that starts from 0 at baseline and ranges to certain time units
such as weeks or days, and tumor growth is computed a slope coefficient as a
function of time. Furthermore, the term Time : Group adds a binary indicator
Group that may be used to compare a subpopulation in comparison to control
tumor growth.

Furthermore, random effects follow a notation:{
+(1 + Time|GroupingFactor)
+(1|GroupingFactor) + (0 + Time|GroupingFactor)

(3)

where the notation indicates that each unique factor value within variable
GroupingFactor is treated as an instance of the experimental unit. The upper
notation indicates that both an individual-specific intercept as well as an in-
dividualized time-dependent slope are estimated along with a cross-covariance
between the two normally distributed random effects. The lower notation in
turn estimates these two effects, an individual-specific intercept and an indi-
vidualized time-dependent slope, separately from each other. By default we
utilized the lower notation approach, though the upper notation may offer an
interesting alternative. The error term does not need to explicitly included in
the model formula. In the ARN-509 -study, the presented mixed-effects models
were fitted using:

> fit_arn_unmatched <- lmer(PSA ~ 1 + DrugWeek + DrugWeek:ARN

+ + (1|ID) + (0 + DrugWeek|ID), data = arndat)

> fit_arn_matched <- lmer(PairPSA ~ 0 + DrugWeek

+ + (1|ID) + (0 + DrugWeek|ID), data = arnpair)

> summary(fit_arn_unmatched)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees

of freedom [lmerMod]

Formula: PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 | ID) + (0 + DrugWeek | ID)

Data: arndat
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REML criterion at convergence: 1082.6

Scaled residuals:

Min 1Q Median 3Q Max

-3.4768 -0.3911 -0.0044 0.3425 3.1437

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 67.80 8.234

ID.1 DrugWeek 26.65 5.163

Residual 33.05 5.749

Number of obs: 150, groups: ID, 30

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 14.311 1.709 29.587 8.374 2.68e-09 ***

DrugWeek 10.062 1.407 28.206 7.150 8.47e-08 ***

DrugWeek:ARN -7.627 1.982 27.792 -3.849 0.000636 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Correlation of Fixed Effects:

(Intr) DrugWk

DrugWeek -0.092

DrugWek:ARN 0.000 -0.704

> summary(fit_arn_matched)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees

of freedom [lmerMod]

Formula: PairPSA ~ 0 + DrugWeek + (1 | ID) + (0 + DrugWeek | ID)

Data: arnpair

REML criterion at convergence: 592.8

Scaled residuals:

Min 1Q Median 3Q Max

-2.36132 -0.53405 -0.04075 0.34125 2.72586

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 49.74 7.053

ID.1 DrugWeek 79.11 8.894

Residual 70.55 8.399

Number of obs: 75, groups: ID, 15

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

DrugWeek -7.962 2.366 13.770 -3.365 0.00472 **
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---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Alternate pairwise-matched longitudinal model formulations could include
for example:

> # Paired model with correlated random effects

> fit_arn_matched2 <- lmer(PairPSA ~ 0 + DrugWeek

+ + (1 + DrugWeek|ID), data = arnpair)

> # Paired model with an intercept fixed effect

> fit_arn_matched3 <- lmer(PairPSA ~ 1 + DrugWeek

+ + (1|ID) + (0 + DrugWeek|ID), data = arnpair)

> # Paired model with an intercept fixed effect

> # and correlated random effects

> fit_arn_matched4 <- lmer(PairPSA ~ 1 + DrugWeek

+ + (1 + DrugWeek|ID), data = arnpair)

> # Only fixed effects shown here to save space

> summary(fit_arn_matched2)$coefficients

Estimate Std. Error df t value Pr(>|t|)

DrugWeek -5.840363 2.122596 14 -2.751519 0.01559838

> summary(fit_arn_matched3)$coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) -4.305333 2.295298 14.28259 -1.875719 0.081283732

DrugWeek -7.302533 2.423880 14.28259 -3.012745 0.009142255

> summary(fit_arn_matched4)$coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) -4.305333 2.122769 13.99982 -2.028169 0.062013340

DrugWeek -7.302533 2.241686 13.99999 -3.257608 0.005725389

For fitted models, further functions are provided inside hamlet, both for
visualization as well as diagnostics purposes. Examples:

• hamlet::mem.plotresid for plotting residuals along with trend lines

• hamlet::mem.getcomp for extracting a data.frame containing observation-
specific fixed effects fit, full model fit, response vector etc. These can be
then used to visualize the corresponding model fits, for example by panel-
ing for experimental groups or each individual participating in the study.
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R-vivo User Instructions
Introduction

R-vivo is a browser-based interface for the hamlet R-package (Fig. 1). Its functionalities are intended mainly
for refining and improving the experimental design and statistical analysis of pre-clinical intervention studies,
although the tools can be generalized to cover other relevant fields. R-vivo analysis functions are divided into
two main subcategories:

• Pre-intervention analysis
• Post-intervention analysis (incl. power analysis)

Both subsections require specific data format(s). Pre-intervention analysis uses the so-called wide format
data and post-intervention analysis uses the so-called long format data (see more detailed examples below).

File upload

R-vivo supports several different input file formats:

• Excel files: .xls .xlsx
• Comma separated: .csv
• Text files: .txt

R-vivo automatically detects the most suitable file format of the above templates. If your data is in the
long format, press the “Data is in long format”-button after uploading the file. Long format data is suitable
for downstream mixed-effects modelling, both for post-intervention statistical testing as well as for power
analyses prior to conducting an actual experiment.

Figure 1: Overview of R-vivo.
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Figure 2: Example of wide format data, where rows correspond to individuals and columns to different
animal characteristics at baseline.

In the wide format data (Fig. 2), the columns are indicators of the variables available for the experimental
unit (here animal or tumor). The wide format is utilized for constructing dissimilarity matrices from the
multivariate baseline data.

Figure 3: Example of long format data for post-intervention analysis.

In the long format data (Fig. 3) selected set of longitudinally interesting response variables are available
(i.e. here PSA or body weight), and the different observations belonging to a single experimental unit (here
animal) are uniquely distinguished using measurement time (field Week or DrugWeek) and/or identification
codes (field ID). In this experiment, treatment is initiated at week 10 so DrugWeek = 0 is the baseline for
initiation of interventions. This long format is typically used for longitudinal mixed-effects modeling where
multiple observations are correlated within an experimental unit.
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In this particular example (Fig. 4), matching of animals is conducted before allocation to the treatment
arms based on three characteristics: PSA level at baseline, PSA level at the week prior to allocation, and
body weight at baseline.

Figure 4: Example data further used in this document.
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Non-bipartite multigroup matching of the example data

The multigroup matching presents the fundamental experimental design improvement presented in the
current work. By identifying similar subgroups (submatches) of experimental units, the pipeline allows
random distribution of these similar units evenly to the intervention arms. This leads to each group having
a corresponding experimental unit in each of the other intervention arms, as well as results in balanced
distributions over the treatment arms for the baseline characteristics. As the submatches consider all pairwise
comparisons, the interventions arms can be blinded (for instance no need to fix a control group), and therefore
comply with the rigorous standards applied e.g. in controlled clinical trials.

The pre-intervention analyses begin with uploading of wide format data (Fig. 5).

Step 1:

• Upload example.xlsx (Fig. 5)

Figure 5: File upload example.

Step 2:

If unnecessary columns are present in the data, process the data accordingly (Fig. 6).

• Press the “Continue to data selection!”-button
• Select the desired columns
• Choose a representative name for the data
• Press “Save and continue!” to advance to the next step
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Figure 6: Column selection.
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Step 3: Distance and dissimilarity functions

A distance or dissimilarity function is used to describe the amount of dissimilarity between two experimental
units (animal or tumours), based on their baseline characteristics. Common choices include: Euclidean
distance, standardized Euclidean distance, Manhattan distance, and Gower’s dissimilarity for mixed type
data. (Fig. 7)

• Select the desired subset of data
• Select the metric for computing the dissimilarity matrix
• If you want to standardize the Euclidean or Manhattan distances, check “Standardize measurements”

box (z-score transformation)
• Press “Save and continue!”-button to advance to the next step

Figure 7: Distance/dissimilarity matrix construction.
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Step 4: Matching

The non-bipartite optimal matching problem can be solved using the implemented Genetic Algorithm
(GA). The algorithm takes as input a distance matrix and desired size of the submatches (i.e. number of
animals/tumours per a subgroup, and thus per intervention group). If the size of the submatch is for example
G = 3, it indicates that the GA minimizes dissimilarity edges within triplets. These subgroups of desired size
are called submatches. (Fig. 8)

• Select the desired distance matrix
• Select the submatch size G, the count of desired intervention arms
• Press the “Match”-button
• Default options are suitable for small to mediocre size experiments, but a better solution may be

found by checking “Advanced options” and tuning the GA parameters. Notice that parameters such as
generations will result in a linear increase in the GA run time.

• Press “Save and continue!”-button to advance to the next step

Figure 8: Non-bipartite multigroup matching example.
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Step 5: Randomization based on submatched individuals

The intervention groups are obtained by dividing the members of each optimal submatch randomly into
the various separate treatment arm. Since all the pairwise within-submatch distances are minimized, this
guarantees that comparable individuals are randomly divided into separate arms and that the experiment
may be blinded in respect to the future true intervention labels (Fig. 9). These dummy-labels A, B, C, ...
may be given as-is to an external experimenter to ensure that the randomizer has not been influenced by
possible intervention choices.

Steps

• Select matched data for randomization
• Press “Randomise”
• Press “Continute to visualization” to analyze your results
• Press “Print” in upper right corner of data table to print your results
• Press “Copy” to copy data to clipboard
• Use the “text import wizard” for pasting the results to Excel. Otherwise Excel may transfer some

columns to wrong type automatically.
• Press “Save” to save table as a .csv or .xls file

Figure 9: Randomized allocation based on the identified submatches. Each submatch is evenly distributed
to the (blinded) treatment arms.
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Visualizations for pre-clinical data:

Various visualization methods are available to illustrate the baseline balancing and submatches. For example,
the boxplots in respect to allocation groups can be plotted using the boxplot tab.

Boxplot

• Go to the “Pre-intervention/Visualization/Boxplot” tab
• Select the relevant analyzed data
• Select the response variable of interest
• Select a grouping variable (e.g. Submatch or Group)
• Press “Plot” (Fig. 10)
• Press “Advanced options” if you want to add annotations
• Press “Download” to download a pdf file of the boxplot

Figure 10: Boxplots of the presented data.
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Hierarchical Clustering:

• Go to “Hierarchical Clustering”-tab
• Select the desired dissimilarity matrix to plot (Fig. 11)
• Press “Download” to get a PDF file of the clustering

Figure 11: Hierarchical clustering of the presented data.
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Heatmap:

A common way to illustrate distance matrices is through heatmaps, along with hierarchical clustering to
connect similar individuals. R-vivo utilises the d3heatmap package (https://github.com/rstudio/d3heatmap)
for generating interactive heatmaps.

Steps:

• Go to “Heatmap”-tab
• Select the desired dissimilarity matrix (Fig. 12)
• Press “Advanced options” if specific annotations are needed.
• Press “Download” to get an interactive picture of the heatmap.

Figure 12: Heatmap presentation of the computed distance matrix
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Scatterplot matrices

Scatterplot matrices can be used to determine roughly if you have a linear correlation between multiple
variables, or to identify other interesting pairwise trends between the variables in the data.

Steps:

• Go to “Scatterplotmatrix”-tab
• Select variables for the plots (Fig. 13)
• Press “Download” to get a PDF file of the scatterplot matrix

Figure 13: Multivariate scatterplot of the baseline data.
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Post-intervention

Post-intervention refers to the modeling of the provided long format data, here using mixed-effects modeling.
It may be utilized to fit a mixed-effects model and to test population-wise hypotheses (fixed effects) and to
model the individual variation (random effects).

Power simulation here is done through bootstrapping (sampling with replacement) the data source of a pre-
fitted mixed-effects model, and then re-fitting and estimating the fixed effects coefficients to the bootstrapped
datasets. However, please note that the power analysis is not intended to be used for retrospective speculation
of an already conducted experiment. Its purpose is to model and simulate either an artificial or a pilot
experiment, in order to improve accuracy and to guarantee sufficient statistical power in a representative
future study.

Upload data

• Upload long format data
• Press the “Data is in long format”-button (Fig. 14)
• Press the “Continue to Post-intervention analysis!”-button to advance to the next step

Figure 14: Long format data input for mixed-effects modeling.
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Mixed-effects modeling

Mixed-effects models are a flexible model family that incorporate fixed effects (population effects) as well as
random effects (individualized effects) into a regression model. By default, R-vivo utilizes linear mixed-effects
models. Refer to the hamlet R-package step-by-step documentation or an extensive mixed-effects modeling
resource (for example Bates et al.), in order to understand the details in the chosen model structure and its
effect on the inference and conclusions.

To choose a suitable model:

• Select the desired long format data frame to model
• Select appropriate fixed effects structure
• Select appropriate random effects structure
• Select ID column (identification codes for the experimental unit)
• Select response column (primary response that will be tested, i.e. PSA or tumor volume)
• Select time column (longitudinal time column)
• Select intervention group (a binary indicator column for an intervention group)
• Select control group (a binary indicator column for the reference group)
• Press “Fit”
• In the “Summary”-tab, you can see a summary of the analysis (Fig. 15)
• Residual and longitudinal fit plots may be drawn in the corresponding tabs

Figure 15: A fitted mixed-effects model and its summary.
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Power analysis

The power analyses are sensitive to the model structure, and in order to obtain a smooth and accurate
estimation of statistical power, the user should use a sufficient amount of bootstrapped datasets. Additionally,
a tight grid of N values may ensure that exact numbers are reported. Here N refers to tested group-wise
amounts of animals. It is a vector with a minimum value, maximum value, and a grid-spacing; for example,
an N vector with minimum 5 and maximum 14 with a spacing of 3 would test N = {5, 8, 11, 14}.

• After fitting a mixed-effect model as described above, go to the “Power analysis”-tab
• Select a suitable sequence of N values to test
• Select number of bootstraps per Note: calculation time increases linearly
• If model contains grouping information check corresponding checkbox and select tested group.
• If a loess smoothed curve is desired for approximation purposes, choose the “Smoothed curve”-checkbox
• Each differently colored line represents the power of a fixed effects coefficient as a function of the sample

size N (Fig. 16).
• Download a report of the power simulations by pressing “Download”

Figure 16: A bootstrapped power curve for each of the specified fixed effects, which utilizes the previously
fitted mixed-effects model.
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The ARRIVE Guidelines Checklist adopted from Kilkenny et al.1

Animal Research: Reporting In Vivo Experiments∗

Section # RECOMMENDATION ARN-509/MDV3100-study ORX/ORX+Tx-study

Title 1 Provide as accurate and concise a de-
scription of the content of the article
as possible.

See Knuuttila et al3 for the original
publication.

Previously unpublished study.

Abstract 2 Provide an accurate summary of the
background, research objectives, in-
cluding details of the species or strain
of animal used, key methods, principal
findings and conclusions of the study.

See Knuuttila et al3 for the origi-
nal publication. Applicable fields for
the methodological publication are de-
scribed in this novel publication.

Previously unpublished study. Ap-
plicable fields for the methodological
publication are described in this novel
publication.

INTRODUCTION

Background 3 a. Include sufficient scientific back-
ground (including relevant references
to previous work) to understand the
motivation and context for the study,
and explain the experimental ap-
proach and rationale.
b. Explain how and why the ani-
mal species and model being used can
address the scientific objectives and,
where appropriate, the studys rele-
vance to human biology.

See Knuuttila et al3 for specific details. The related background to orchidec-
tomy (ORX) is well known in litera-
ture, while the undisclosed interven-
tion (Tx) remains to be further de-
scribed.

Objectives 4 Clearly describe the primary and any
secondary objectives of the study, or
specific hypotheses being tested.

To longitudinally model response to
antiandrogen therapy for ARN-509
and MDV3100 in orthotopic VCaP
cells

To longitudinally model response to
orchidectomy (ORX) as well as a novel
therapeutic intervention (Tx) in sub-
cutaneous VCaP cells.

METHODS

Ethical statement 5 Indicate the nature of the ethical
review permissions, relevant licences
(e.g. Animal [Scientific Procedures]
Act 1986), and national or institu-
tional guidelines for the care and use
of animals, that cover the research.

All animal handling was conducted
in accordance with Finnish Ani-
mal Ethics Committee and institu-
tional animal care policies, which
fully meet the requirements defined
in current NIH guidelines on ani-
mal experimentation (license number
1993/04.10.03/2011).

The study was conducted in accor-
dance with the Animal Experiment
Board in Finland (ELLA) for the care
and use of animals under the license
ESAVI/7472/04.10.03/2012.

Study design 6 For each experiment, give brief details
of the study design including:
a. The number of experimental and
control groups.
b. Any steps taken to minimise the ef-
fects of subjective bias when allocating
animals to treatment (e.g. randomi-
sation procedure) and when assessing
results (e.g. if done, describe who was
blinded and when).
c. The experimental unit (e.g. a sin-
gle animal, group or cage of animals).
A time-line diagram or flow chart can
be useful to illustrate how complex
study designs were carried out.

120 mice were originally used for the
study. Eventually 45 mice were used
to form 3 study groups, one control
group and two treatment groups, each
including 15 mice. (Supplementary
Fig. S1b). Experimental unit was
a single animal. Blinding, allocation,
and randomization were conducted as
presented in this manuscript.

Originally 109 mice were allocated to
6 experimental groups, each contain-
ing 14 to 16 mice (Supplementary
Fig. S1c). Experimental unit was
a single animal. Blinding, allocation,
and randomization were conducted as
presented in this manuscript.

Experimental procedures 7 For each experiment and each experi-
mental group, including controls, pro-
vide precise details of all procedures
carried out. E.g.:
a. How (e.g. drug formulation and
dose, site and route of administra-
tion, anaesthesia and analgesia used
[including monitoring], surgical proce-
dure, method of euthanasia). Pro-
vide details of any specialist equip-
ment used, including supplier(s).
b. When (e.g. time of day).
c. Where (e.g. home cage, laboratory,
water maze).
d. Why (e.g. rationale for choice of
specific anaesthetic, route of adminis-
tration, drug dose used).

Inoculations, blood sampling, castra-
tion: see Knuuttila et al3. Animals
were treated with 20 mg/kg/day of
treatment compounds. Compounds
were administrated per os by gavage
in the, every morning for 28 days at
the animal laboratory. No anaesthet-
ics were need for administration.

Detailed description is given in the
Supplementary Material, section ’Sub-
cutaneous VCaP xenograft studies in
immunodeficient mice: Interventions
by ORX and ORX+Tx’ paragraphs 1
and 2.

∗Original checklist published in PLoS Biol, June 2010.
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Experimental animals 8 a. Provide details of the animals used,
including species, strain, sex, develop-
mental stage (e.g. mean or median age
plus age range) and weight (e.g. mean
or median weight plus weight range).
b. Provide further relevant infor-
mation such as the source of ani-
mals, international strain nomencla-
ture, genetic modification status (e.g.
knock-out or transgenic), genotype,
health/immune status, drug or test
nave, previous procedures, etc.

Adult male immunodeficient mice
(HSD:Athymice Nude Foxn1nu) were
6-7 weeks old, mean weight 29.8 g; sD
2.4, in the beginning of the experiment.
Mice were purchased from Harlan Lab-
oratories (Indianapolis,IN)

Detailed description is given in the
Supplementary Material, section ’Sub-
cutaneous VCaP xenograft studies in
immunodeficient mice: Interventions
by ORX and ORX+Tx’ paragraph 1.

Housing and husbandry 9 Provide details of:
a. Housing (type of facility e.g. spe-
cific pathogen free [SPF]; type of cage
or housing; bedding material; number
of cage companions; tank shape and
material etc. for fish).
b. Husbandry conditions (e.g. breed-
ing programme, light/dark cycle, tem-
perature, quality of water etc for fish,
type of food, access to food and water,
environmental enrichment).
c. Welfare-related assessments and in-
terventions that were carried out prior
to, during, or after the experiment.

See Knuuttila et al3: Mice were housed
in individually ventilated cages un-
der controlled conditions of light, tem-
perature, and humidity. The mice
were given irradiated soy-free natural-
ingredient feed [RM3 (E); Special Diets
Services, Witham, UK] and autoclaved
tap water ad libitum, and were housed
in specific pathogen-free conditions at
the Central Animal Laboratory (Uni-
versity of Turku) in compliance with
international guidelines.

Detailed description is given in the
Supplementary Material, section ’Sub-
cutaneous VCaP xenograft studies in
immunodeficient mice: Interventions
by ORX and ORX+Tx’ paragraph 1.

Sample size 10 a. Specify the total number of ani-
mals used in each experiment, and the
number of animals in each experimen-
tal group.
b. Explain how the number of animals
was arrived at. Provide details of any
sample size calculation used.
c. Indicate the number of independent
replications of each experiment, if rel-
evant.

120 mice were originally used for the
study. Because of several different
operations (inoculations of cells, cas-
tration, relapse to castration-resistant
stage) prior to treatments, the amount
of animals had to be significantly larger
than what was needed for treatments
(n=45).

The median group size was 15 animals,
estimated on prior experience3 and ex-
pected effect sizes from correspond-
ing biological literature. Few groups
were given larger size, due to suspected
ethical constraints or adverse events
(Supplementary Fig. S1c).

Allocating animals 11 a. Give full details of how ani-
mals were allocated to experimental
groups, including randomisation or
matching if done.
b. Describe the order in which
the animals in the different experi-
mental groups were treated and as-
sessed.

See the main manuscript presenting
the novel methodology4.

See the main manuscript presenting
the novel methodology4.

Experimental outcomes 12 Clearly define the primary and sec-
ondary experimental outcomes as-
sessed (e.g. cell death, molecular
markers, behavioural changes).

Primary outcome: serum PSA concen-
tration

Primary outcome was serum PSA,
with secondary measurements on body
weight and palpated tumor volume.

Statistical methods 13 a. Provide details of the statistical
methods used for each analysis.
b. Specify the unit of analysis for
each dataset (e.g. single animal,
group of animals, single neuron).
c. Describe any methods used to
assess whether the data met the
assumptions of the statistical ap-
proach.

See the main manuscript presenting
the novel methodology4.

See the main manuscript presenting
the novel methodology4.

RESULTS

Baseline data 14 For each experimental group, report
relevant characteristics and health
status of animals (e.g. weight, mi-
crobiological status, and drug or
test nave) prior to treatment or
testing. (This information can of-
ten be tabulated).

Serum PSA level, the change of the
PSA level, body weights, cage place-
ment, the week at which castration
took place.

Baseline PSA levels, relative changes
to previous measurement, body
weights, as well as the longest pal-
pated tumor dimension were measured
and balanced at baseline.

Numbers analysed 15 a. Report the number of animals in
each group included in each analy-
sis. Report absolute numbers (e.g.
10/20, not 50%2).
b. If any animals or data were
not included in the analysis, explain
why.

All mice that were included in treat-
ment groups were included in the anal-
ysis (except one mouse that died un-
expectedly for unknown reason during
the treatment period).

All the allocated mice were included
in the analyses, while right-censoring
occurred for some intact tumor mice
(Supplementary Fig. S6a).
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Outcomes and estimation 16 Report the results for each analy-
sis carried out, with a measure of
precision (e.g. standard error or
confidence interval).

See Knuuttila et al3, as well as re-
ported model outcomes in Supple-
mentary Fig. S5 and Table 1.

See the reported model outcomes in
Supplementary Fig. S6 and Table
1.

Adverse events 17 a. Give details of all important ad-
verse events in each experimental
group. b. Describe any modifica-
tions to the experimental protocols
made to reduce adverse events.

No adverse effects were found with
these compound treatments.

Some animals were sacrificed
due to ethical tumor constraints
(Supplementary Fig. 6a), but
no significant adverse effects were
observed.

DISCUSSION

Interpretation/implications 18 a. Interpret the results, tak-
ing into account the study objec-
tives and hypotheses, current the-
ory and other relevant studies in
the literature.
b. Comment on the study lim-
itations including any potential
sources of bias, any limitations of
the animal model, and the impre-
cision associated with the results2.
c. Describe any implications
of your experimental methods or
findings for the replacement, re-
finement or reduction (the 3Rs) of
the use of animals in research.

The readily established antiandrogen
drugs ARN-509 and MDV3100 were
correctly identified to inhibit tumor
growth. The mouse model, which
is described in detail in Knuuttila
et al.3, represents a clinically rele-
vant view to CRPC. The 3R princi-
ples were taken into account, as the
novel mathematical methodology was
together developed and adopted.

The ORX surgery treatment resulted
in a drastic decrease in tumor growth,
as expected, while the undisclosed
treatment (Tx) remains to be fur-
ther discussed, along with the spe-
cific details of the mouse model be-
yond those presented in our Supple-
mentary Methods. The 3R princi-
ples were taken into account, as the
novel mathematical methodology was
together developed and adopted.

Generalisability/translation 19 Comment on whether, and how,
the findings of this study are likely
to translate to other species or sys-
tems, including any relevance to
human biology.

The androgen receptor signalling
(AR) remains similar to the clinical
disease, and thus the mouse model
represents relevant characteristics of
CRPC.

While ORX does not represent a clin-
ically feasible intervention, it resulted
in a similar effect as in human. The
effects of Tx remain to be discussed
in future work.

Funding 20 List all funding sources (including
grant number) and the role of the
funder(s) in the study.

See funding statement in Knuuttila et
al3.

See funding statement in the
manuscript4.
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