Electronic Supplementary Material

Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study

TABLE OF CONTENTS

ESM Table 1 Association between the low-birthweight GRS and metabolic traits	i
ESM Table 2 Mendelian randomisation estimate of the relation between low birthweight and risk of typ	e
2 diabetes using summary statistics	
ESM Fig. 1 Distribution of the low-birthweight GRS among US women and men	
References 6	

ESM Table 1 Association between the low-birthweight GRS and metabolic traits

Baseline variable	NHS		HPFS	HPFS	
	$\beta \pm SE$	p	$\beta \pm SE$	p	
BMI (kg/m²)	0.004 ± 0.029	0.89	0.025 ± 0.027	0.36	
Waist circumference (cm)	-0.264 ± 0.207	0.20	-0.222 ± 0.299	0.46	
Hypercholesterolaemia	0.002 ± 0.002	0.37	-0.001 ± 0.003	0.71	
Hypertension	0.001 ± 0.002	0.65	-0.005 ± 0.003	0.13	

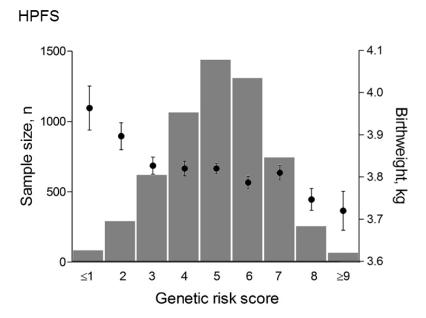
Data are $\beta \pm SE$, adjusted for age and genotyping sources

ESM Table 2 Mendelian randomisation estimate of the relation between low birthweight and risk of type 2 diabetes using summary statistics

SNP	Effect allele	$\beta_1 \pm SE$ for	OR (95% CI) for	Mendelian randomisation
SINI	/Other ^a	birthweight b	type 2 diabetes ^c	analysis, β ₃ ± SE ^d
rs900400	C/T	0.072 ± 0.006	1.02 (0.99-1.05)	0.28 ± 0.21
rs724577	C/A	0.042 ± 0.006	1.03 (1.00-1.06)	0.70 ± 0.35
rs4432842	C/T	0.034 ± 0.006	1.00 (0.97-1.02)	0.00 ± 0.37
rs1801253	G/C	0.041 ± 0.007	1.05 (1.02-1.09)	1.19 ± 0.41
rs1042725	T/C	0.047 ± 0.005	1.04 (1.01-1.06)	0.83 ± 0.26
Meta-analysis e	-	0.050 ± 0.003	1.03 (1.01-1.04)	0.53 ± 0.13

^aAllele coding based on the forward strand. Effect allele is associated with low birthweight; and other allele is the reference allele

^dThe $β_3$ was calculated from $β_1$ and $β_2$ (log_e-OR for type 2 diabetes) for each SNP: $β_3=β_2/β_1$, and the SE of $β_3$ is given by: $S_3=\sqrt{\frac{1}{β_1^2S_2^{-2}}}$, where S_2 is the SE of $β_2$. The overall $β_3$ estimate was obtained by using inverse variance weights fixed effects meta-analysis (p for heterogeneity =0.105), and can be interpreted as an OR of 1.70 (95% CI: 1.32-2.19) for type 2 diabetes per 1-SD lower genetically-determined birthweight (p <0.001)


^eMeta-analysis was based on data for 5 analyzed SNPs using inverse variance weights fixed effects to obtain an overall estimate (all p for heterogeneity >0.05)

^bThe β_1 coefficients were derived from the GWAS meta-analysis of birthweight reported by Horikoshi M et al [1]

^cORs were derived from the GWAS meta-analysis of type 2 diabetes reported by the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium et al [2]

ESM Fig. 1 Distribution of the low-birthweight GRS among US women and men

NHS 3000--4.0 3.8 Sample size, n 2000 3.6 1000 3.4 3.2 4 5 2 3 6 7 8 ≥9 ≤1 Genetic risk score

The histograms indicate sample size, and the plots and bars indicate mean (SE) of birthweight. The GRS was significantly associated with birthweight among women (β = -0.014 kg, p =0.001) and men (β = -0.018 kg, p =0.001)

References

- 1. Horikoshi M, Yaghootkar H, Mook-Kanamori DO et al (2013) New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45: 76-82
- 2. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46: 234-44