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Evolutionary Game Analyses 

(a) Payoff of intSIG strategy 

 Consider that every player from an infinitely large population is paired with another player 

and assigned either the donor or recipient role with the same probability in each round. A donor 

decides whether to help his recipient incurring a cost of c (cooperation) or not (defection). There is a 

small chance of implementation error (e) whereby each donor fails to help his recipient against his 

will. There is no possibility of erroneous cooperation (a donor who intends to defect but 

unintentionally cooperates). A recipient receives a benefit of b if her donor helps her, but receives 

nothing if her donor decides not to help or commits an implementation error. In addition to this 

standard indirect reciprocity game, the donor has another behavioural option, signalling, that is 

available only after intentional defection or implementation error. The donor is allowed to pay a cost 

of s to produce a signal. The intSIG strategy assigns a ‘bad’ standing only to a partner whose 

previous behaviour was ‘defection without signal’. In other words, at the beginning of the game, 

each player is in good standing, and remains in good standing unless his previous choice was 

‘defection without signal’. The payoffs of the two players in each round and the donor’s post-round 

standing are summarised as Table S1. After playing t-th round, there is the (t+1)th round with the 

probability of ω for all t=1, 2,… In each round, each player will be randomly matched with a new 

partner, and is assigned either the donor or recipient role with the probability of 0.5. 

 
Table S1 

The payoff of donor and recipient as a function of donor behaviour 

Donor’s Behaviour Donor Recipient Donor’s Post-round 
Standing 

Cooperation −c b good 

Defection with Signal −s 0 good 

Defection without Signal 0 0 bad 



 We first computed intSIG’s payoff. When the entire group consists of intSIG players, in each 

round, an intSIG player earns (1−e)(−c)+e(−s) as a donor (he cooperates with the probability of 1−e, 

while failing to do so and producing the signal with the probability of e). Regardless of 

implementation error, intSIG is always in good standing because it uses the signal option. Therefore, 

intSIG earns (1−e)(b) as a recipient in each round. Because the donor and recipient roles are assigned 

with the probability of 0.5, intSIG earns on average wSIG in each round: 

𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 = (1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)−𝑒𝑒𝑒𝑒
2

 .         (1) 

As this game continues with the probability of ω, the net payoff of intSIG, WSIG, is written as 

follows: 

𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆 = 1
1−𝜔𝜔

(1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)−𝑒𝑒𝑒𝑒
2

 .        (2) 

 It is easy to compare the net payoff of the intSIG group with that of the ALLD group and the 

ALLC group. When all group members are unconditional defectors (ALLD), donors never help their 

recipients, and recipients never receive any benefit. Accordingly, wALLD = 0. Therefore, at the entire 

group level, the intSIG group is more profitable than ALLD when the following condition holds: 

(1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)−𝑒𝑒𝑒𝑒
2

> 0, 

which is reduced as 𝑒𝑒 < 𝑏𝑏−𝑐𝑐
𝑏𝑏−𝑐𝑐+𝑒𝑒

  . 

This condition indicates that intSIG is more profitable than ALLD unless the error rate is large and/or 

the signal cost is high. For example, if b = 1.5, c = s =1, the error rate only needs to be smaller 

than .33. 

 If a group consists of only unconditional cooperators (ALLC), each player incurs a cost of c 

as a donor unless he commits the implementation error with the probability of e. An ALLC player 

will receive the benefit of b as a recipient unless her partner commits the error with the probability of 

e. Accordingly, ALLC earns b−c with the probability of 1−e, and earns 0 with the probability of e. 

Thus, each ALLC player earns  



𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)
2

 .         (3) 

If we compare the payoffs of ALLC and intSIG, it is evident that intSIG cannot outperform ALLC as 

a group because the following condition (4) is inconsistent with our assumption that e > 0 and s > 0. 

(1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)−𝑒𝑒𝑒𝑒
2

> (1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)
2

  .        (4) 

 In sum, a group of intSIG players can outperform a group of ALLD players unless they are 

highly likely to commit errors. On the other hand, a group of intSIG players can never outperform a 

group of ALLC players. This is because ALLC will never waste their resource by producing a signal. 

However, because of their unconditional cooperativeness, they are easily exploited by an 

uncooperative strategy. In the next section, we examine whether intSIG is stable against the invasion 

of an exploitative strategy, ALLD, and whether intSIG is vulnerable to the invasion of a cooperative 

strategy, ALLC. 

(b) Evolutionary Stability of intSIG against ALLD 

 We then examined the condition under which rare ALLD players cannot invade a group of 

intSIG players. We first computed the expected payoff of a rare ALLD in a group of intSIG players. 

Because we assume the frequency of ALLD is negligible, the net payoff of intSIG players is written 

as Eq. (2). 

 When ALLD is a donor, it earns 0 as it does not help the partner. When ALLD is a recipient, 

it earns either (1−e)b if its standing is good or 0 if its standing is bad. Let GALLD(t) be the probability 

that ALLD is in good standing after t-th round. Under the assumption of the model that each player 

starts with a good standing, GALLD(0) = 1, ALLD’s standing becomes ‘bad’ once it plays the role of 

donor, and never returns to ‘good’. Because the donor role is assigned with the probability of 0.5, an 

ALLD player in good standing will shift to bad standing with the probability of 0.5. Therefore, 

GALLD(t+1) = GALLD(t)×(1/2). 

Accordingly,  



𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = �1
2
�
𝑡𝑡
 .         (5) 

ALLD’s payoff in the t-th round, wALLD(t), is the product of the probability of being in good standing, 

the probability of being assigned to the recipient role, and the benefit conferred by a cooperative 

opponent (the payoff in the donor role is always 0, and can be ignored): 

𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = �1
2
�
𝑡𝑡−1 1

2
(1 − 𝑒𝑒)𝑏𝑏 =  �1

2
�
𝑡𝑡

(1 − 𝑒𝑒)𝑏𝑏 .      (6) 

Because the game continues with the probability of ω, the net payoff of ALLD is: 

𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) =∞
𝑡𝑡=1

1
2−𝜔𝜔

(1 − 𝑒𝑒)𝑏𝑏.       (7) 

Based on Eq. (2) and Eq. (7), ALLD cannot invade a group of intSIG players as far as the following 

condition holds: 

𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

⇔ 1
1−𝜔𝜔

(1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)−𝑒𝑒𝑒𝑒
2

 > 1
2−𝜔𝜔

(1 − 𝑒𝑒)𝑏𝑏   

⇔ 1−𝑒𝑒
𝑒𝑒

{(2 − 𝜔𝜔)(𝑏𝑏 − 𝑐𝑐) − 2(1 − 𝜔𝜔)𝑏𝑏} > 𝑠𝑠(2 − 𝜔𝜔)  .     (8) 

In the above condition (8), when the assumption that the error rate (e) is small, 1−𝑒𝑒
𝑒𝑒

  takes a large 

positive value. Also, the right side of the inequality is always positive (both s and 2−ω take positive 

values). Therefore, it is expected that Inequality (8) holds if (2 −𝜔𝜔)(𝑏𝑏 − 𝑐𝑐) − 2(1 − 𝜔𝜔)𝑏𝑏 > 0. This 

condition is rewritten as follows: 

𝜔𝜔 > 2𝑐𝑐
𝑏𝑏+𝑐𝑐

  .          (9) 

Based on the assumption that b > c, the range of the right side of Inequality (9) is 0 < 2𝑐𝑐
𝑏𝑏+𝑐𝑐

< 1 , 

which corresponds with the range of ω. Accordingly, Inequality (9) reveals that, when the 

implementation error rate e is tiny but positive, intSIG is stable against ALLD as far as the game 

continues with the probability larger than 2𝑐𝑐
𝑏𝑏+𝑐𝑐

. For example, when b = 2 and c = 1, condition (9) only 

requires that the games consist of more than 3 rounds on average (ω > 2/3). It is important to notice 

that this condition does not depend on the size of signal cost, s. 



 In the main text, we assume that the signal cost, s, is equal to the cost of cooperation, c. 

Substituting s in Inequality (8) with c yields the following condition: 

𝑒𝑒 < 1 − (2−𝜔𝜔)𝑐𝑐
𝜔𝜔𝑏𝑏

  .         (10) 

This condition holds when the game continues for a substantially long period of time. For example, 

when ω is nearly 1, this condition becomes 𝑒𝑒 < 1 − 𝑐𝑐
𝑏𝑏

 . Therefore, if the game continues for a 

substantially long time and e is sufficiently small, ALLD cannot invade the group of intSIG players. 

(c) Evolutionary Stability of intSIG against ALLC 

 We explored the condition under which intSIG is stable against the invasion of ALLC. When 

there is no possibility of implementation errors, rare ALLC players and intSIG players will peacefully 

co-exist at the cooperative equilibrium. However, if the possibility of implementation errors is 

introduced, the payoffs of intSIG and ALLC will diverge because intSIG players can maintain their 

good standing by producing a costly signal, while ALLC players have to wait for one donor-round so 

that they can cooperate and restore their good standing. 

 To obtain the net payoff of ALLC in the intSIG group, let GALLC(t) be the probability that 

ALLC is in good standing after t-th round. We have GALLC(0) = 1 as an initial condition. ALLC’s 

standing becomes ‘bad’ only when it commits an implementation error. Therefore, after playing the 

donor role, its standing is ‘good’ with the probability of 1−e. After playing the recipient role, its 

standing does not change. Accordingly, the probability that ALLC is in good standing after (t+1)-th 

round is 

𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 + 1) = 1
2
𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) + 1−𝑒𝑒

2
.        (11) 

Subtracting 1–e from both sides of Eq. (11) yields 

𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 + 1) − (1 − 𝑒𝑒) = 1
2
𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) − 1−𝑒𝑒

2
.      (12) 

Let HALLC(t) = GALLC(t)–(1−e), and Eq. (12) can be rewritten as 

𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 + 1) = 1
2
𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡).        (13) 



Notice that HALLC(0) = 1−(1−e) = e. Therefore, 

𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) − (1 − 𝑒𝑒) = 𝑒𝑒 �1
2
�
𝑡𝑡
.       (14) 

From Eq. (14), we obtained the probability that ALLC is in good standing after t-th round as follows: 

𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝑒𝑒 �1
2
�
𝑡𝑡

+ (1 − 𝑒𝑒).        (15) 

 Using Eq. (15), we can compute the expected payoff of ALLC at the t-th round. If ALLC 

plays the donor role, its payoff is –c(1−e) regardless of its standing. If ALLC plays the recipient role, 

its expected payoff is b(1−e) when its standing is good, while the expected payoff is 0 if its standing 

is bad. Accordingly, ALLC’s expected payoff at the t-th round is written as 

𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = −1
2

(1 − 𝑒𝑒)𝑐𝑐 + 1
2
𝑏𝑏(1 − 𝑒𝑒)𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 − 1)  

 = �1
2
�
𝑡𝑡
𝑒𝑒(1 − 𝑒𝑒)𝑏𝑏 + 1

2
{(1 − 𝑒𝑒)2𝑏𝑏 − (1 − 𝑒𝑒)𝑐𝑐}.     (16) 

From Eq. (16), ALLC’s net payoff is derived as follows: 

𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
2−𝜔𝜔

𝑒𝑒(1 − 𝑒𝑒)𝑏𝑏 + 1
1−𝜔𝜔

(1−𝑒𝑒)2𝑏𝑏−(1−𝑒𝑒)𝑐𝑐
2

.      (17) 

Based on Eq. (2) and Eq. (17), the condition under which intSIG is stable against ALLC (WSIG > 

WALLC) is derived as follows: 

1
1−𝜔𝜔

(1−𝑒𝑒)(𝑏𝑏−𝑐𝑐)−𝑒𝑒𝑒𝑒
2

> 1
2−𝜔𝜔

𝑒𝑒(1 − 𝑒𝑒)𝑏𝑏 + 1
1−𝜔𝜔

(1−𝑒𝑒)2𝑏𝑏−(1−𝑒𝑒)𝑐𝑐
2

,  

which is rewritten as 

(2 − 𝜔𝜔)𝑒𝑒(1 − 𝑒𝑒)𝑏𝑏 − (2 − 𝜔𝜔)𝑒𝑒𝑠𝑠 > 2(1 − 𝜔𝜔)𝑒𝑒(1 − 𝑒𝑒)𝑏𝑏.     (18) 

By dividing the both sides of Inequality (18) by e>0, the ESS condition of intSIG against ALLC was 

further rewritten as below: 

𝑒𝑒 < 1 − (2−𝜔𝜔)𝑒𝑒
𝜔𝜔𝑏𝑏

  .         (19) 

Because we divided both sides of inequality by a small number, e, to obtain the condition (19), the 

difference between the net payoffs of intSIG and ALLC is small. However, if condition (19) holds, 

intSIG is stable against ALLC. This tends to hold when the cost of the signal, s, is relatively small 



compared to the benefit of being helped, b. In other words, unlike the ESS condition against ALLD, 

which did not depend on the cost of the signal, intSIG is less likely to be stable against ALLC if the 

signal cost is large. 

 We further examined condition (19) assuming that the signal cost, s, is equal to the cost of 

cooperation, c. Interestingly, the resultant condition was exactly equal to the condition under which 

intSIG was stable against the invasion of ALLD, which is condition (10) 

𝑒𝑒 < 1 − (2−𝜔𝜔)𝑐𝑐
𝜔𝜔𝑏𝑏

  .         (20) 

(d) Summary 

 We investigated under what conditions intSIG is evolutionarily stable against ALLD and 

ALLC. First, intSIG was stable against ALLD as far as the interactions continue for a sufficiently long 

period of time, and the stability condition did not depend on the cost of the signal. Second, although 

intSIG’s and ALLC’s expected payoffs were close to each other, intSIG was stable against ALLC 

when the cost of the signal was not too large. When we assumed that the cost of the signal, s, was 

equal to the cost of cooperation, c, which is a sufficient amount of signalling cost to prevent 

dishonest signallers from undermining the separating equilibrium, it was shown that intSIG was 

stable against both ALLD and ALLC under exactly the same condition. Therefore, we can conclude 

that intSIG is robust against ALLC, which typically allows ALLD’s invasion. 

 

  



II. Additional analyses of game behaviours 

(a) Cooperation rate in the practice session 

 In the practice session, participants played the standard giving game. In both conditions, 

participants played the identical game, which gave neither second-order information nor the 

signalling option to participants. For each participant, we computed the mean cooperation rate 

towards the ‘good’ recipient (the recipient who chose ‘give’ in the previous round) and ‘bad’ 

recipient separately. A 2 (recipient type: good vs. bad) × 2 (game type: signalling vs. standing) 

ANOVA including the former factor as repeated measures indicated that only the main effect of 

recipient type was significant, F1, 102 = 78.07, p < .001, and other effects were not significant in 

experiment 1. Participants were more likely to give their resource to the ‘good ’recipient (.71, sd = 

0.30) than the ‘bad’ recipient (.45, sd = 0.26). 

 In experiment 2, where participants played the game against four image-scoring players and 

one ALLD player, the comparable ANOVA again revealed the significant main effect of recipient 

type, F1, 97 = 58.73, p < .001 (.83, sd = 0.22 vs. .65, sd = 0.26 towards the ‘good’ vs. ‘bad’ recipient, 

respectively). However, in experiment 2, an unexpected interaction effect between the recipient type 

and game type was also significant, F1, 97 = 5.74, p = .019. Participants were less likely to give the 

resource to the ‘bad’ recipient in the signalling condition (.58, sd = 0.29) than in the standing 

condition (.71, sd = 0.23). We do not have any good explanation for this unexpected effect as we 

randomly assigned participants to the two game conditions, and we did not give any 

condition-specific instructions at this stage (prior to the main signalling vs. standing game). 

 In sum, the results of the practice session clearly showed that participants discriminated 

recipients in terms of the recipients’ previous behaviour. We thus proceeded to examine how 

participants’ behaviour towards the previous giver and non-giver would be moderated by the 

opportunity of signalling or the availability of second-order information. 

 



(b) Reaction time in the experimental games  

 According to Milinski et al. [1], the standing strategy, which utilises second-order 

information, is cognitively demanding and thus difficult for people to use. If intSIG is a more 

intuitive strategy than the standing strategy, it is predicted that the time to make the decision (‘give’ 

or ‘not give’) will be shorter in the signalling condition than in the standing condition. Therefore, we 

compared the reaction time (RT) in the two conditions. The prediction was corroborated only in 

experiment 2. In experiment 1, although the mean RT was slightly shorter in the signalling condition 

(2.61 sec., sd = 1.17) than in the standing condition (2.74 sec., sd = 0.87), the difference was not 

statistically significant, t102 = 0.61, p = .54. On the other hand, in experiment 2, the mean RT was 

significantly shorter in the signalling condition (2.19 sec., sd = 0.72) than in the standing condition 

(2.49 sec., sd = 0.76), t102 = 1.99, p = .049. Recall that participants in the standing condition did not 

utilise second-order information in experiment 1, whereas participants utilised second-order 

information in experiment 2. Therefore, the different pattern in the RT data might be explained by 

whether participants utilised second-order information. Although the results are not conclusive, 

information about the partner’s behaviour plus signal appears less cognitively taxing than 

information about the partner’s behaviours plus the partner’s previous partner’s behaviour. 

(c) Total payoff in the experimental games 

 We then examined in which condition (signalling vs. standing) participants earned a greater 

net payoff. In experiment 1, the mean net payoff was not significantly different across the two 

conditions (349.81 JPY, sd = 83.95 vs. 356.44 JPY, sd = 52.56 in the signalling vs. standing 

conditions, respectively), t102 = 0.48, p = .630; whereas in experiment 2, the mean net payoff was 

significantly smaller in the signalling condition (388.47 JPY, sd = 22.32) than in the standing 

condition (440.00 JPY, sd = 42.47), t97 = 7.53, p < .001. This result is understandable because, in the 

signalling condition, participants wasted some of their payoff in exchange for good standing. In 

contrast, in the standing condition, there was no option to waste their payoff. However, this does not 



necessarily mean that the standing strategy is a more cost-effective strategy than intSIG. The 

standing strategy demands less visible cognitive cost. Notice that although the cognitive cost is less 

visible, it may have real consequences. If you are busy processing some information, you might 

overlook some fitness-relevant cues, such as cues of predators or nutrition-rich foods. Therefore, 

whether intSIG is an adaptive strategy might depend on the trade-off between the tangible signalling 

cost and the less-visible cognitive cost. 

(d) Post-experiment questionnaire 

 In order to assess participants’ strategies in more detail, we had participants fill out a 

vignette post-experiment questionnaire. In the questionnaire, we presented participants with every 

possible situation as a donor. In the signalling condition, they were presented the following three 

situations: the partner’s choice in the previous round was ‘gave’, ‘did not give + abandoned, and ‘did 

not give + did not abandon’. In the standing condition, participants were presented the following four 

situations: GG, GN, NG, and NN. Given each of these situations, participants rated their impression 

of the recipient on a five-point scale (1 = ‘very bad’ to 5 = ‘very good’), inferred the goodness of the 

recipient’s intention in the previous round (1 = ‘very bad’ to 5 = ‘very good’), and indicated how 

they would behave towards the recipient (either ‘give’ or ‘not give’). In the signalling condition, we 

included two additional questions. When participants chose ‘not give’ to the third question, they were 

further asked whether to abandon their resource. Participants were also asked whether they would 

abandon their resource if an implementation error occurred. 

 The analyses of the responses to the post-experiment questionnaire paralleled the results 

reported in the main text. As shown in figure S1, in the signalling condition, participants’ impression 

of the partner was influenced by the recipient’s previous behaviour: F2, 102 = 90.66, p < .001 and F2, 96 

= 150.96, p < .001 for experiments 1 and 2, respectively. A post-hoc test by Ryan’s method indicated 

that participants’ impression of the ‘giver’ was the most favourable in both experiments 1 and 2. 

More importantly, participants’ impression of the ‘signalling non-giver’ was more favourable than 



that of the ‘non-signalling non-giver’ in both experiments 1 and 2. 

 

  

figure S1. Mean impression score as a function of the recipient’s previous behaviour in the 

signalling condition of (a) experiment 1 and (b) experiment 2. The error bars indicate standard 

error of the mean. 

 

 As for the inferred intention, as shown in figure S2, the effect of recipient type was 

significant: F2, 102 = 53.46, p < .001 and F2, 96 = 49.40, p < .001 for experiments 1 and 2, respectively. 

Again, participants attributed a more benign intent to the ‘giver’ and ‘signalling non-giver’ than to 

the ‘non-signalling non-giver’. 

  

figure S2. Mean good-intention score as a function of the recipient’s previous behaviour in the 

signalling condition of (a) experiment 1 and (b) experiment 2. The error bars indicate standard 

errors of the mean. 

 



 Participants’ hypothetical behaviour towards the recipient showed a similar pattern as their 

actual behaviour in the game experiment (see figure S3). We conducted a series of McNemar tests 

using the Bonferroni correction. The proportion of participants who chose ‘give’ was greater when 

the recipient was a ‘giver’ than when the recipient was a ‘non-signalling non-giver’ in both 

experiments 1 and 2 (p < .001 for each comparisons). More importantly, the proportion of 

participants who chose ‘give’ was greater when the recipient was a ‘signalling non-giver’ than a 

‘non-signalling non-giver’ (p < .001 for each comparisons) in both experiments 1 and 2. Therefore, it 

was shown that the signal option was effective to amend the recipient impression, communicate the 

recipient’s benign intent, and induce helping behaviour from future partners. 

 

  

figure S3. Proportion of participants who chose ‘give’ as a function of recipient type in the 

signalling condition of (a) experiment 1 and (b) experiment 2. 

 

 In the signalling condition, we further assessed participants’ willingness to use the signal 

option if they chose the ‘not give’ option in response to the previous question. As can be seen in 

figure S3, only a small portion of participants chose the ‘not give’ option in response to the ‘giver’ 

and ‘signalling non-giver’. Therefore, it was impossible to test whether justified defectors, who 

chose ‘not give’ only to the ‘non-signalling non-giver’, are more likely to use the signal option than 

genuine defectors, who chose ‘not give’ to all three types of recipients. Accordingly, we only report 

the omnibus signal use rates here. Among those who chose ‘not give’ to the ‘non-signalling 



non-giver’, 29% and 90% of participants (in experiments 1 and 2, respectively) reported willingness 

to use the signal option. 

 We also assessed participants’ willingness to use the signal option after implementation error. 

The proportions of participants (experiments 1 and 2, respectively) who reported they would use the 

signal option at least once in the three situations (where the recipient was ‘giver’, ‘signalling 

non-giver’, and ‘non-signalling non-giver’, respectively) were 50% and 82% in experiment 1 and 2, 

respectively. There were 12 and one genuine defectors, who had never chosen ‘give’, and thus were 

not expected to experience implementation error. Once these participants were discarded, the 

proportions of signal users increased to 65% and 83%. In addition, 42% and 76% of participants 

(experiments 1 and 2) reported to use the signal option consistently across the three situations (the 

proportions increased to 55% and 77% once the genuine defectors were discarded from the data). 

 In the standing condition, we presented the four recipients (GG, GN, NG, and NN) to 

participants and asked the three following questions: impression of the recipient, perceived good 

intention of the recipient, and willingness to give. The results are mixed in terms of participants’ 

discrimination of the NG and NN recipients. The main effect of the recipient type on impression 

score was significant, F3, 153 = 94.87, p < .001 and F3, 147 = 111.46, p < .001, in experiments 1 and 2. 

As shown in figure S4, post-hoc tests revealed that participants had a more favourable impression of 

GG and GN recipients than NG and NN recipients. Moreover, in both experiments, participants 

formed a better impression of NN than that of NG. 

 Participants attributed different levels of good intention to different types of recipients, F3, 

153 = 41.49, p < .001 and F3, 147 = 58.27, p < .001 in experiments 1 and 2 (figure S5). Again, 

participants attributed a more benign intent to GG and GN recipients than to NG and NN recipients 

in both experiments 1 and 2. In addition, participants attributed a more benign intent to the NN 

recipient than NG recipient. 

  



 

  

figure S4. Mean impression score as a function of recipient type (GG, GN, NG, and NN) in the 

standing condition of (a) experiment 1 and (b) experiment 2. The error bars indicate standard 

error of the mean. 

 

  

figure S5. Mean good-intention score as a function of recipient type (GG, GN, NG, and NN) in 

the standing condition of (a) experiment 1 and (b) experiment 2. The error bars indicate 

standard error of the mean. 

 

 As for willingness to give, we conducted a series of McNemar tests with the Bonferroni 

correction. The results were almost identical with the behavioural data reported in the main text 

(figure S6). Participants were more willing to give to GG and GN recipients than to NN and NG 

recipients (p < .001 for each comparisons). Moreover, participants did not differentiate NN and NG 

recipients (p = 1.00 and p = .052 in experiments 1 and 2, respectively). In sum, the results of the 



post-experiment questionnaire provided mixed support for the standing strategy. Although 

participants perceived the NN recipient slightly more favourably than the NG recipient, they were 

not willing to treat the NN recipient more favourably than the NG recipient. 

  

figure S6. Proportion of participants who chose ‘give’ as a function of recipient type (GG, GN, 

NG, and NN) in the standing condition of (a) experiment 1 and (b) experiment 2. 

 

In addition to these questionnaire, in experiment 2, we asked participants to fill out the 

questionnaire containing the Japanese version of the Test of Self-Conscious Affect (TOSCA) [2], 

which was originally developed by Tangney and Dearing [3] to assess respondents’ propensity to feel 

shame and guilt, along with some less focal emotions. Participants’ trait shame and guilt scores were 

not related to the participants’ behaviours in the donation game. Although we do not report the 

details of the results associated with the TOSCA here, interested readers can find the analysable data 

in the dataset attached to this article. 
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