
Appendix A: Outline of transition rate derivations

Transition rates between compartments can be obtained from standard first passage pro-

cess results [1]. Consider a particle undergoing Brownian motion, starting from xj, the

residence point of the jth compartment. The probability distribution for its position, p(x, t),

evolves in time following the diffusion equation,

∂p

∂t
= D

∂2p

∂x2
. (A1)

To calculate transition rates between compartments, we consider a first passage process on

the interval x ∈ [xj−1, xj−1] to determine the expected time until a particle starting from one

residence point reaches one of its neighbouring residence points. For the diffusion equation,

this means defining boundary conditions p(xj−1, t) = p(xj−1, t) = 0, and initial condition

p(x, 0) = δ(x − xj). By applying a Laplace transform, it is possible to obtain the eventual

hitting probabilities describing the likelihood of the particle leaving to either side of the

interval [2]

ε−(xj) =
xj+1 − xj
xj+1 − xj−1

, (A2)

ε+(xj) =
xj − xj−1
xj+1 − xj−1

. (A3)

Combining these values with the conditional mean exit times

〈t(xj)〉− =
(xj − xj−1)(2xj+1 − xj − xj−1)

6D
, (A4)

〈t(xj)〉+ =
(xj+1 − xj)(xj+1 + xj − 2xj−1)

6D
, (A5)

we can then obtain the unconditional exit time

〈t(xj)〉 = ε−(xj)〈t(xj)〉− + ε+(xj)〈t(xj)〉+

=
(xj − xj−1)(xj+1 − xj) ([2xj+1 − xj − xj−1] + [xj+1 + xj − 2xj−1])

6D(xj+1 − xj−1)

=
(xj − xj−1)(xj+1 − xj) (3xj+1 − 3xj−1)

6D(xj+1 − xj−1)

=
(xj − xj−1)(xj+1 − xj)

2D
. (A6)

1



Inverting the unconditional exit times gives the unconditional exit rate, and by multiplying

this value by the hitting probabilities we obtain the non-excluding transition rates

T −j =
ε−(xj)

〈t(xj)〉
=

2D

(xj − xj−1)(xj+1 − xj−1)
=

Dh

∆xjmj

,

T +
j =

Dh

∆xj+1mj

. (A7)

It is also possible to derive these values using a finite element approach [3]. Transition rates

for the two boundary compartments, j = 1, K, can be derived similarly using the reflection

principle of Brownian motion. For example, define a notional point x0 = −x2, then the

unconditional expected exit time for the first box is

〈t(x1)〉 =
(x1 − x0)(x2 − x1)

2D
=

(x1 + x2)(x2 − x1)
2D

. (A8)

Clearly ε+(x1) = 1, hence we write

T +
1 =

Dh

∆x2m1

. (A9)

We can similarly derive T −K by reflecting xK−1 about x = L.

Appendix B: Voronoi master equation derivations

The following derivations are based upon those found in the Supplemental Information

of a previous paper, generalised here to a non-uniform Voronoi lattice [4]. Recall that a

spatial lattice composed of K compartments has been defined. The distribution of particles

over this domain is given by the vector n(t) = [n1(t), n2(t), ..., nK(t)], where ni(t) denotes

the number of particles in the ith compartment at time t. Particles in compartment i may

attempt to jump out to compartments i− 1 or i+ 1 with rates T −i and T +
i , respectively.

We define two operators, J+
i : RK → RK , for i = 1, ..., K − 1, and J−i : RK → RK , for

i = 2, ..., K, as

J+
i : [n1, ..., ni, ..., nK ]→ [n1, ..., ni−2, ni−1, ni + 1, ni+1 − 1, ni+2, ..., nK ], (B1)

J−i : [n1, ..., ni, ..., nK ]→ [n1, ..., ni−2, ni−1 − 1, ni + 1, ni+1, ni+2, ..., nK ]. (B2)

Both operators move a particle into compartment i, taken from the compartment to the

right or left, respectively. We assume that attempted jumps into some compartment j fail
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with probability nj/mj due to exclusion effects. We can then write the probability master

equation as

dPr(n, t)

dt
=

K−1∑
i=1

T+
i

{
(ni + 1)Pr(J+

i n, t)− niPr(n, t)
}

+
K∑
i=2

T−i
{

(ni + 1)Pr(J−i n, t)− niPr(n, t)
}
.

=
K−1∑
i=1

T +
i

{
(ni + 1)

[
1− ni+1 − 1

mi+1

]
Pr(J+

i n, t)− ni

[
1− ni+1

mi+1

]
Pr(n, t)

}
+

K∑
i=2

T −i
{

(ni + 1)

[
1− ni−1 − 1

mi−1

]
Pr(J−i n, t)− ni

[
1− ni−1

mi+1

]
Pr(n, t)

}
.

(B3)

Define the mean vector, M = [M1, ...,MK ], where

Mj =
N∑

n1=1

N∑
n2=1

· · ·
N∑

nK=1

njPr(n, t) :=
N∑

n1,n2,...,nK=0

njPr(n, t). (B4)

Multiplying Eq. (B3) by nj and summing over all possible values that the vector n(t) can

take we have

dMj

dt
=

N∑
n1,n2,...,nK=0

nj

(
K−1∑
i=1

T +
i

{
(ni + 1)

[
1− ni+1 − 1

mi+1

]
Pr(J+

i n, t)− ni

[
1− ni+1

mi+1

)

]
Pr(n, t)

}

+
K∑
i=2

T −i
{

(ni + 1)

[
1− ni−1 − 1

mi+1

]
Pr(J−i n, t)− ni

[
1− ni−1

mi+1

]
Pr(n, t)

})
.

(B5)

We begin by considering only the first term of this expression, with Pr(J+
i n, t) expanded

explicitly to give

N∑
n1,n2,...,nK=0

nj

K−1∑
i=1

d(ni + 1) [1− f(ni+1 − 1)] Pr(n1, n2, ..., ni + 1, ni+1 − 1, ...nK , t). (B6)

When i 6= j, j − 1 each term of this expression reduces to

T +
i 〈njni〉 − T +

i 〈njnif(ni+1)〉, (B7)

where 〈njni〉 indicates the mean of the product. When i = j,

N∑
n1,n2,...,nK=0

njT +
j (nj + 1) [1− f(nj+1 − 1)] Pr(n1, n2, ..., nj + 1, nj+1 − 1, ...nK , t)

=
N∑

n1,n2,...,nK=0

T +
j (nj + 1)2 [1− f(nj+1 − 1)] Pr(n1, n2, ..., nj + 1, nj+1 − 1, ...nK , t)

− T +
j (nj + 1) [1− f(nj+1 − 1)] Pr(n1, n2, ..., nj + 1, nj+1 − 1, ...nK , t)

= T +
j [〈njnj〉 − 〈njnjf(nj+1)〉 −Mj + 〈njf(nj+1)〉]. (B8)
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Similarly for i = j − 1,

N∑
n1,n2,...,nK=0

T +
j−1nj(nj−1 + 1) [1− f(nj − 1)] Pr(n1, n2, ..., nj−1 + 1, nj − 1, ...nK , t)

= T +
j−1[〈nj−1nj〉 − 〈nj−1njf(nj)〉+Mj−1 − 〈nj−1f(nj)〉]. (B9)

We then consider the second term,

−
N∑

n1,n2,...,nK=0

nj

K−1∑
i=1

T +
i ni [1− f(ni+1)] Pr(n1, n2, ..., ni, ..., nK , t), (B10)

which evaluates to

−
K−1∑
i=1

T +
i [〈ninj〉 − 〈nif(ni+1)nj〉] . (B11)

When combined with the expressions derived from the first term these give us

−T +
j Mj + T +

j 〈njf(nj+1)〉+ T +
j−1Mj−1 − T +

j−1〈nj−1f(nj)〉. (B12)

Applying the same approach to the third and fourth terms we obtain

−T −j Mj + T −j 〈njf(nj−1)〉+ T −j+1Mj+1 − T −j+1〈nj+1f(nj)〉. (B13)

Adding this expression to Eq. (B12), we arrive at

dMj

dt
= T +

j−1

(
Mj−1 −

1

mj

〈nj−1nj〉
)
− T −j

(
Mj −

1

mj−1
〈nj−1nj〉

)
− T +

j

(
Mj −

1

mj+1

〈njnj+1〉
)

+ T −j+1

(
Mj+1 −

1

mj

〈njnj+1〉
)
, (B14)

as stated in Eq. (??) of the main text.

Variance equations can be derived using the same approach. We begin by using Eq. (B3)
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to obtain

d

dt

N∑
n2
iP (n) = T +

i−1

(
2〈ni−1ni〉 −

2

mi

〈ni−1nini〉+Mi−1 −
1

mi

〈ni−1ni〉
)

+ T +
i

(
−2〈nini〉+

2

mi+1

〈ninini+1〉+Mi −
1

mi+1

〈nini+1〉
)

+ T −i
(
−2〈nini〉+

2

mi−1
〈ni−1nini〉+Mi −

1

mi−1
〈ni−1ni〉

)
+ T −i+1

(
2〈nini+1〉 −

2

mi

〈ninini+1〉+Mi+1 −
1

mi

〈nini+1〉
)
,

⇒ d

dt
〈n2

i 〉 = T +
i−1

(
2〈ni−1ni〉+Mi−1 −

1

mi

〈ni−1ni〉
)

+ T +
i

(
−2〈nini〉+Mi −

1

mi+1

〈nini+1〉
)

+ T −i
(
−2〈nini〉+Mi −

1

mi−1
〈ni−1ni〉

)
+ T −i+1

(
2〈nini+1〉+Mi+1 −

1

mi

〈nini+1〉
)
, (B15)

where we have used T −i /mi−1 = T +
i−1/mi and T −i+1/mi = T +

i /mi+1. We then use 〈ninj〉 =

Vi,j −MiMj to obtain

dVj
dt

= −2
(
T −j + T +

j

)
Vj + 2T+

j−1

(
1− 1

mj

)
Vj−1,j + 2T−j+1

(
1− 1

mj

)
Vj,j+1

+T +
j−1Mj−1

(
1− Mj

mj

)
+ T −j Mi

(
1− Mj−1

mj−1

)
+T +

j Mj

(
1− Mj+1

mj+1

)
+ T −j+1Mj+1

(
1− Mj

mj

)
, (B16)

with equations for the covariances obtainable in a similar manner.

Appendix C: Outline of simulation algorithm

In second part of this paper, we compare realisations of four different models of volume-

excluding diffusion. The following algorithm was used to generate realisations between t = 0

and t = 25:

1. Set timeElapsed = 0 to track the duration of the simulation, and initialise an array

to track particle locations.

2. Generate the exponentially distributed

timeUntilNextEvent = −ln(rand)/totalEventPropensity, (C1)
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where rand is a uniformly distributed random number in the range [0, 1].

3. If timeElapsed + timeUntilNextEvent > 25, then go to Step 7, otherwise continue

to Step 4.

4. Use a uniformly distributed random number to determine what event has occured.

The probability of each event being chosen is given by the array of eventPropensities

divided by the totalEventPropensity.

5. Update the array of particle locations to reflect the outcome of the event, and update

the individual eventPropensities and the totalEventPropensity accordingly.

6. Set timeElapsed = timeElapsed+ timeUntilNextEvent, and return to Step 2.

7. Store the array describing the particle positions at time t = 25.

In the first two test cases, the array of eventPropensities consists of left and right jump

propensities for each compartment, some of which will be reduced or elimated completely due

to filled volumes in neighbouring compartments, and the totalEventPropensity is their sum.

For the morphogen gradient case, the eventPropensities will also include decay propensi-

ties for each occupied compartment in the system and a constant particle in-flux term. The

second test case also records particle positions at t = 1, 2, . . . , 24, in addition to the final

distribution at t = 25. For each test case, we generated 50,000 realisations of each model,

plus another 50,000 realisations of the fully-excluding model to provide comparison data for

the HDE, and then calculated the mean and variance of particle numbers in each compart-

ment. This algorithm follows a deliberately simple design, demonstrating that no advanced

programming ability is required to implement any of the models.

Appendix D: Comparison to non-excluding model

To illustrate the effects of multi-species volume exclusion in Section ??, we compare the

simulation results to the solution of the diffusion equation,

∂c

∂t
= D

∂2c

∂x2
, (D1)

where c(x, t) is the concentration of particles. This PDE was solved using the Matlab routine

pdepe, with grid spacing 1.05× 10−2 and time step ∆t = 2.5× 10−3.
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FIG. 1. A comparison of the results from Section ?? to a non-excluding PDE. The dark and light

blue bars represent the mean number of species A particles, while the red line shows the solution

of the non-excluding diffusion equation, starting from the same initial conditions. At time t = 3,

when interaction with the species B particles is negligible, all three results agree well; by time t = 6

the effects of interaction with species B begin to be seen, and the models continue to diverge for

the remainder of the simulation.

We plot comparisons between the PDE solution and the mean number of species A

particles in Figure 1, using both the fully-excluding and partially-excluding models, (similar

results can be obtained for species B particles). At time t = 3, all three sets of results

are in agreement as we would expect. There has been little interaction with the species

B particles for times t < 3, so the behaviour of species A particles can be approximated

as a single species model. The fully-excluding results therefore match both the partially-

excluding results and the diffusion equation. As t increases, however, the effects of volume

exclusion become apparent and all three sets of results begin to diverge. As an aside, we

note that if the mean total number of particles was plotted, counting both species A and B,

then the resulting simulation results would be in agreement with the PDE [5].
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FIG. 2. An example rectilinear Voronoi partition in two spatial dimensions, illustrating one way in

which a coarse-grained region in the bottom-left can be connected to the fine-grained region in the

top-right. Residence points are located at the intersections of the red dashed lines and black lines

mark compartment boundaries. Grey and white shading is used to indicate regions which would

be aggregated to obtain S
(m)
i,j terms.

Appendix E: Two-dimensional models

In this section, we sketch out how the hybrid methods could be extended to two spatial

dimensions. For a rectilinear Voronoi partition, of the kind illustrated in Figure 2, we

demonstrate that the mean master equation remains linear. We write n
(v)
i,j and mi,j to denote

the number of particles in, and the capacity of, the compartment with residence point at

(xi, yj). As before, we write M
(v)
i,j = 〈n(v)

i,j 〉. To denote the distance between residence points,

we use ∆xi = xi − xi−1 and ∆yj = yj − yj−1. By analogy to Eq. (??) in the main text, we
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assume that each particle is of size h× h, and hence write

mi,j =
(∆xi + ∆xi+1)(∆yj + ∆yj+1)

4h2
, 1 < i, j < K, (E1)

with similar expressions obtainable for the capacities of compartments at the boundaries of

the domain. Transition rates for diffusion on two-dimensional rectilinear Voronoi lattices,

in the absence of volume exclusion, are given in [6] as

T r
i,j =

2Dmi+1,j

mi,j∆xi+1(∆xi+1 + ∆xi+2)
, (E2)

T d
i,j =

2Dmi,j−1

mi,j∆yj(∆yj−1 + ∆yj)
, (E3)

T l
i,j =

2Dmi−1,j

mi,j∆xi(∆xi−1 + ∆xi)
, (E4)

T u
i,j =

2Dmi,j+1

mi,j∆yj+1(∆yj+1 + ∆yj+2)
, (E5)

where T r
i,j, T d

i,j, T l
i,j and T u

i,j denote, respectively, the transition rates from the compartment

indexed (i, j) to the compartments indexed (i+ 1, j), (i, j − 1), (i− 1, j) and (i, j + 1) (i.e.

movement up, right, down and left). After including standard blocking probabilities, we

hence obtain the mean master equation

dM
(v)
i,j

dt
= T l

i+1,j

(
M

(v)
i+1,j −

1

mi,j

〈n(v)
i,j n

(v)
i+1,j〉

)
− T r

i,j

(
M

(v)
i,j −

1

mi+1,j

〈n(v)
i,j n

(v)
i+1,j〉

)
+ T u

i,j−1

(
M

(v)
i,j−1 −

1

mi,j

〈n(v)
i,j−1n

(v)
i,j 〉
)
− T d

i,j

(
M

(v)
i,j −

1

mi,j−1
〈n(v)

i,j−1n
(v)
i,j 〉
)

+ T r
i−1,j

(
M

(v)
i−1,j −

1

mi,j

〈n(v)
i−1,jn

(v)
i,j 〉
)
− T l

i,j

(
M

(v)
i,j −

1

mi−1,j
〈n(v)

i−1,jn
(v)
i,j 〉
)

+ T d
i,j+1

(
M

(v)
i,j+1 −

1

mi,j

〈n(v)
i,j n

(v)
i,j+1〉

)
− T u

i,j

(
M

(v)
i,j −

1

mi,j−1
〈n(v)

i,j−1n
(v)
i,j 〉
)
, (E6)

where the four rows describe, respectively, the exchange of particles between compartment

(i, j) and the compartments right, below, left and above it. Examining the non-linear terms

on the first row, we note that(
−T l

i+1,j

mi,j

+
T r
i,j

mi+1,j

)
〈n(v)

i,j n
(v)
i+1,j〉 =

(
−2Dmi,j

mi,jmi+1,j∆xi+1(∆xi + ∆xi+1)

+
2Dmi+1,j

mi,jmi+1,j∆xi+1(∆xi+1 + ∆xi+2)

)
〈n(v)

i,j n
(v)
i+1,j〉

=
2D

mi,jmi+1,j∆xi+1

(
−mi,j

∆xi + ∆xi+1

+
mi+1,j

∆xi+1 + ∆xi+2

)
.

9



FIG. 3. An example pseudo-compartment method in two spatial dimensions. Partially-excluding

compartments are shown in grey.

Using the definition of capacity from Eq. (E1), it can be seen that the terms inside the

brackets of the final line cancel out, and hence the contribution from the non-linear terms

is zero. Similar reasoning can be applied to the other lines of Eq. (E6) to obtain

dM
(v)
i,j

dt
= T l

i+1,jM
(v)
i+1,j − T r

i,jM
(v)
i,j

+ T u
i,j−1M

(v)
i,j−1 − T d

i,jM
(v)
i,j

+ T r
i−1,jM

(v)
i−1,j − T l

i,jM
(v)
i,j

+ T d
i,j+1M

(v)
i,j+1 − T u

i,jM
(v)
i,j , (E7)

which is linear, as expected from the corresponding mean master equation in one spatial

dimension.

We do not present the details here, but the pseudo-compartment method could also be

extended to two or three dimensions, with one illustrative example presented in Figure 3.
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