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1 Analytical derivation of the relaxation time
First, let us derive the general solution of the differential equation governing a set of concentrations
xm(t) (m = 1, ..., N):

d xm
d t

= Axm−1 − (A+B)xm +Bxm+1 (1)

Separating the dependence on time and position, we set xm(t) = T (t)Xm. Then

T ′

T
=
AXm−1 − (A+B)Xm +BXm+1

Xm
(2)

The left hand side is independent of m while the right hand side is independent of t, so both must
be equal to the same constant which we denote by −λ.

The dependence on time is immediate: T (t) = T (0) exp(−λt).
The equations eq.2 for the Xm correspond to finding an eigenvector of a matrix H of eigenvalue

−λ. The diagonal elements of H are −(A+B) while the off diagonal parts are restricted to nearest
neighbors and are again independent of m. Given this translational invariance, the eigenvectors
can be taken to be of the form Xm = X0e

(γ±jω)m. Plugging this in, one has

−λ = Ae−(γ±jω) − (A+B) +Be−(γ±jω)

For the studied system, both A and B are real.
Let us start by searching for the real eigen values. We can solve for the real and imaginary

parts:

Imaginary part Real part
Ae−γ sin(∓ω) +Beγ sin(±ω) = 0 λ = Ae−γ cos(ω)− (A+B) +Beγ cos(ω)

γ = 1
2 log

(
A
B

)
λ = 2

√
AB cos(ω)− (A+B)

A general solution of eq.2 is a combination of the two complex conjugates X+
m and X−m:

Xm = C−X−m + C+X+
m = C−e(γ−jω)m + C+e(γ+jω)m
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Whith boundary conditions X0 = XN+1 = 0:

X0 = 0

0 = C− + C+

C− = −C+

Xm = Ceγm sin(ωm)

XN+1 = 0

sin(ω(N + 1)) = 0

ωκ =
κπ

N + 1
κ ∈ {0, 1, ..., N − 1}.

The search for real eigen values provides us with N real eigen values which is the rank of the
matrix H, thus all the eigen values are real.

xκm(t) = Cκe
1
2 log(A/B)m sin

(
mκπ

N + 1

)
eλκt

with (3)

λκ = 2
√
AB cos

(
κπ

N + 1

)
− (A+B), κ ∈ Z∗

A relaxation time is associated to each λκ:

τκ =
1

A+B − 2
√
AB cos

(
κπ
N+1

) (4)

In practice, one refers to the relaxation time as the longest such times, i.e., τ = 1

A+B−2
√
AB cos( π

N+1 )
.

Case of a symmetric system: For a system that is left-right symmetric (A = B), τ ≈ (N+1)2

Aπ2

for large N which is characteristic of diffusing systems. (Clearly, if A = B, the equations describe
a diffusing particle that has no bias towards left or right.)

Case of an asymmetric system: If the system is not left-right symmetric (A 6= B), at large
N the relaxation time become independent of N (and in fact at fixed κ all τκ become independent
of N :

τκ ≈ −
1

2
√
AB − (A+B)

.

A crossover size for N between the two regimes τ ∝ N2 and τ = cst: If the difference
between A and B is sufficiently small, the relaxation time will behave as the case A = B, that is
τ will scale as N2 until N is large enough for the regime of constant τ to set in. To understand
the scale in N where this crossover behavior arises, let us note A = B + ε. Then for large N

1/τ ≈ 2B + εB − 2B
√
1 + ε(1− π2

2(N + 1)2
)

1/τ ≈ 2B + εB − 2B(1 +
ε

2
− ε2

8
)(1− π2

2(N + 1)2
)

1/τ ≈ 2B + εB − 2B −Bε+ Bε2

4
+

Bπ2

(N + 1)2
+

Bεπ2

2(N + 1)2

1/τ ≈ Bε2

4
+

Bπ2

(N + 1)2
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This last equation shows that one has a crossover between the two regimes when

Bε2

4
≈ Bπ2

(N + 1)2

ε

2
≈ π

(N + 1)

The transition between a diffusing regime and a regime independent on the network size N
thus occurs for a characteristic size

N cross = 1 +
2Bπ

A−B
(5)

2 Generalisation of the concept of tracer to complex reac-
tions

2.1 Kinetic for a tracer in a linear chain
The case of the linear chain provides a ideal case since every reaction has one substrate and one
product. In such a case it is relatively easy to derive the reactions for tracers. Let us consider the
reaction:

A↔ B

with the kinetic for the conventional direction from left to right:

v =
α a

K
(S)
A

− β b

K
(P )
B

1 + a

K
(S)
A

+ b

K
(P )
B

= v+ − v− (6)

with v+ =
α a

K
(S)
A

1 + a

K
(S)
A

+ b

K
(P )
B

and v− =
β b

K
(P )
B

1 + a

K
(S)
A

+ b

K
(P )
B

Where a and b are the concentrations of A and B and α, β and the Ks are the parameters of
the equations. Note that the rate law is a summary of the difference between the forward(v+) and
backward(v−) fluxes. When tracer molecules are introduced downtream in a chain of reactions,
some of them will move against the current although the global flux of the reactions indicate the
opposite direction. The correct expression for the tracer rate is

vt =
at

atot
v+ −

bt

btot
v−(6= v+ − v−) (7)

The superscript t and tot stand respectively for tracer and total. Interestingly, the eq.7 is still
true at steady state, then the dynamics of the tracers depends on their fraction at

atot or bt

btot in the
network.

2.2 Kinetic for a tracer in a realistic network
In a more complex reaction such as

A+B ↔ C +D (8)

the dynamics of the tracer is not as straight forward as for the linear chain. Now a labelled
carbon can go from A to C but it can also go from A to D; its fate depends on the chemical
mechanism of the reaction. To investigate the dynamics of a tracer in a whole network, one has to
determine the exact mechanism of every reaction, this task is tedious and can becomes for large
networks. Thus we decided to add a simplification to the dynamics, during a reaction all the
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carbon of the tracer substrate are mixed and shuffled with the carbons of the of the non-tracer
substrate. It results that every carbon coming from a labelled A can go either to the pool of
labelled C or to the pool of labelled D.

Let us exemplify this on the tracer flow from A to C and D:

F =
at

aSS
vSS+

aSS and at are the total concentration of A at steady state and the tracer concentration of A. The
chance for At to take part in the reaction is proportional to its fraction. The flow produces C and D
in proportions that depends on the number of carbons in each molecules and in the stoichiometry
of the reaction. To prevent carbon creation, the following balance has to be satisfied:

νCnC + νDnD
K

= nA ⇒ K =
νCnC + νDnD

nA

where the νs are the stoichiometric coefficients and the ns the number of carbons contains in one
molecule.

Finally one obtains the evolution

da

dt
= −F dc

dt
=
νCnC
K

F
dd

dt
=
νDnD
K

F

The get the full dynamics obtained by completting the flows FB→C+D, FC→A+B and FD→A+B .

3 Computing the different characteristic times
Our characteristic times are defined using infinitesimal perturbations of the steady state. Such a
choice has the advantage of facilitating the treatment of the time dependence of the perturbation
since one can exploit the linearity of the dynamics. Denoting by ~δC the infinitesimal vector giving
the concentration deviation from the steady state and by J the jacobian matrix associated with
the linearized dynamics, one has:

~δC = ~C − ~CSS

~C is the total concentration and ~CSS is the steady state concentration.

d ~δC

d t
= J ~δC

~δC(t) = eJt ~δC(t = 0)

| ~δC(t)| = |eJt ~δC(t = 0)|

We showed in the first section that the eigenvalues of J are all real and negative in the case of a
homogeneous linear chain as might be expected in a dissipative system.

Our matrix formulation allows us to conveniently define the “lifetime” associated with a per-
turbation ~δC(t) introduced at time t = 0 via

T =
1

| ~δC(t = 0)|

∫ ∞
0

| ~δC(t)|dt

=
1

| ~δC(t = 0)|

∫ ∞
0

|eJt ~δC(t = 0)|dt

Because of the linearity, the characteristic time T does not depend on the amplitude of the initial
perturbation, | ~C(t = 0)|. In addition, we shall impose the initial perturbation to be localized to
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just one site of the metabolic network. In consequence, and without any loss of generality, we can
take the initial perturbation to be positive, and then it is easy to see that all of the components
of ~C(t) remain positive at all times. using this property, we can interchange the integration and
the taking of the norm if we work with the L1 norm:

T =
1

| ~δC(t = 0)|
|
∫ ∞
0

eJt ~δC(t = 0)dt|

=
1

| ~δC(t = 0)|
|[J−1eJt ~δC(t = 0)]∞0 |

=
1

| ~δC(t = 0)|
|J−1 ~δC(t = 0)|

The lifetime T as specified is dependent on the position where the perturbation was introduced
at t = 0. To overcome this drawback, we define the characteristic time of the system as the maximal
lifetime when considering all possible positions of the initial perturbation.

Our global algorithm to compute our characteristic time is then as follows:

Data: vector_param: best_vector,conc_ss: concentration at steady state, F: function
returning the derivative the system

Result: lifetime of the system
J = linearize F(. . . ,param) near conc_ss;
max_time = 0;
for i=1 to i=conc_ss do

~δC
0
= {0,. . . ,0};

~δC
0
[i] = 1;

time = 1

| ~δC(t=0)|
|J−1 ~δC

0
| ;

if time>max_time then
max_time = time;

end
end
return max_time;

Algorithm 1: Algorithm to compute the lifetime

Note that that all the previous derivation is done for the lifetime of a concentration perturbation
but it remains valid for the lifetime of a tracer when taking the steaty state vector 0 and replacing
the perturbation ~δC by the concentration of tracer.
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