Supporting Material

S.1. Additional experimental data

Fig. S.1. Additional representative results showing the extension vs. force curves (increasing and decreasing force) in 0.15, 0.5, 1.0, and 3 M NaCl and 50 mM phosphate buffer at 24°C for a dsDNA construct (coloured curves) and a control curve for dsDNA without homologous regions in the corresponding ionic conditions (dashed gray with an additional black points for a second control experiment). Five control curves obtained with different beads at 24°C and phosphate buffer- 0.15 M NaCl are shown in yellow, orange, light red, red, and dark red (bottom right).

First, we present unprocessed experimental data (at 24°C) for other experimental runs in addition to what is shown in Fig.1 of the main text. In the top two panels we present the results of two separate controls and construct experiments done at the same conditions. We see that the difference between the construct and control experiments is present in both experiments. Though, its magnitude varies somewhat, leading to a large uncertainty in the fitting parameters as seen below.

We also show that this difference persists with changing salt concentrations between 0.15 M and 3M. Last of all, we show that the variation in the curves of multiple control experiments is much smaller than the differences seen between construct and control curves at a given salt concentration. This is first seen by looking at the middle right panel where we plot two control curves against one construct; clearly the biggest difference is between the construct and the two controls that lie close to each other.

Furthermore, we show in the bottom right hand panel the curves of multiple control experiments for 0.15 M NaCl, again the difference is much smaller than observed differences between constructs and controls.

Fig. S.2. WLC fit to the control experiment. In this figure we show a fit to the data for the control DNA in 0.15M NaCl aqueous solution to the worm like chain extension formula. Using Eq. (3) of the main text with $L_{loop} = 0$, the fitted value of bending persistence length is $l_p = 636.57$ Å.

In Fig. S.2 we show a typical fit of the bending persistence length to control experimental data. Fits were done on control experiment runs and those values were used in fitting Δz . Though the fit is quite good, the value of $l_p = 636.57$ Å should really be considered as an apparent value bending persistence length as its value is larger than the commonly accepted value of $l_p \approx 500$ Å. This value is due to the fit being performed at relatively large values of the pulling force. In fact, there is quite a large spread of values in l_p about $l_p \approx 500$ Å, when we fitted them to available experimental data.

This is because the uncertainty in the extension (for repeated runs) for larger force values affects l_p more than extensions at lower forces, due to the non-linear nature of the extension formula. A fit containing more low force values would likely give a range of values closer to 500 Å. Importantly, we demonstrate that difference between construct and control lies outside this uncertainty in extension values (see Fig S.1).

Fitting extension curves over the range of force values considered reflects, however, better the true nature of these curves and the uncertainty in extension values. One could introduce DNA extensibility into the wormlike chain formula, which would be a small correction at these force values, but this seems rather pointless as the fits to the control curves are adequate.

S.2. Model 1: formulating the non-linear term

We will use polymer scaling arguments to deduce what the form of the non-linear term in the free energy of the loop, supposing that a non-linear term comes from different parts of the loop interacting in an attractive manner. We may write down for the average interaction attractive energy

$$E_{\rm int} = -\iint_{\Gamma} d\mathbf{r} \, d\mathbf{r}' \rho(\mathbf{r}) V(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}'). \tag{S.1}$$

Here, $\rho(\mathbf{r})$ is the local looped DNA density at position \mathbf{r} and $-V(\mathbf{r} - \mathbf{r}')$ is an attractive interaction energy between two parts of the loop at positions \mathbf{r} and \mathbf{r}' . Both volume integrals are taken over average volume of space, Γ , that the loop occupies. If we suppose that the interaction is short ranged such that $V(\mathbf{r} - \mathbf{r}') \approx V_0 \delta(\mathbf{r} - \mathbf{r}')$ and we assume the density $\rho(\mathbf{r})$ to be uniform in the volume taken up by the loop, i.e. $\rho(\mathbf{r}) = \overline{\rho}$, then

$$E_{\rm int} \approx -\bar{\rho}^2 V_0 \Gamma. \tag{S.2}$$

Now since the density should go as $\,
ho \,{\propto}\, L_{_{loop}}\,/\,\Gamma\,\,$ we have that

$$E_{\rm int} \sim L_{loop}^2 \Gamma^{-1}.$$
 (S.3)

We now use polymer scaling arguments to deduce the dependence of E_{int} on L_{loop} . Supposing that volume taken up by the loop goes as $\Gamma \sim R_g^3 \sim L_{loop}^{3\nu}$, so that we have

$$E_{\rm int} \sim L_{loop}^{2-3\nu}.$$
 (S.4)

We will choose the value $\nu = 1/2$. We cannot assert that this value is exact; as for excluded volume polymer it is known to be close to 3/5 in the absence of sufficiently strong attraction between the polymer segments [M.Doi, *Introduction to polymer physics*, Clarendon Press, Oxford, 1996]. In our rather complex system there may well be a balance of the attractions between different parts of the loop and electrostatic repulsions, allowing for a lower value of ν . For simple estimates we take the

value of ν of a simple random walk, thus behaving as a polymer in a ' θ -solvent', which fits the experimental data well. Thus when the loop is large we suggest the form

$$E_{\rm int} = -aL_{loop}^{1/2}.$$
 (S.5)

An additional factor $\exp(-b/L_{loop})$ is introduced to take account of the bending free energy cost to form a loop that hinders these interactions. This yields the form for F_{loop} presented in Eq. (4) of the main text.

S.3. Equations for the length of the loop

For Model 1, the length of the loop, obtained by numerical minimization of Eq. (4) of the main text, can be well approximated by

$$L_{loop} = \left(\frac{a}{\varepsilon_{loop} - 2g_{WLC}(f)}\right)^2 H\left(\left(\frac{\varepsilon_{loop} - 2g_{WLC}(f)}{a}\right)^2 b\right),\tag{S.6}$$

where

$$H(\tilde{b}) = (0.249 + 1.85\tilde{b} - 12.50\tilde{b}^{2} + 46.35\tilde{b}^{3} - 76.82\tilde{b}^{4})\theta(0.315 - \tilde{b}).$$
(S.7)

The value of the argument of the function H, $\tilde{b} = (\varepsilon_{loop} - 2g_{WLC}(f))^2 b / a^2$, increases as one increases both b and the pulling force f. One should note that when \tilde{b} exceeds the value 0.315 the $L_{loop} \neq 0$ state is no longer stable, the only stable one is then the $L_{loop} = 0$ state. Thus, we have allowed for the $L_{loop} \neq 0$ state to be metastable. The latter assumes that the energy barrier is sufficiently large for the molecule complete unfolding of the loop, i.e. emergence of the $L_{loop} = 0$ state. Hence, thermal fluctuations are not expected to cause a significant unfolding. We plot this function and the resulting expression for z in Fig.2 and use it to fit the experimental data shown in Fig. 5 (both in the main text), with the additional constraint that the maximum value of L_{loop} is

$$L_{\rm max} = 34000 {\rm A}$$
.

For Model 2 the minimization is simple and we obtain

$$L_{loop} = L_0 + \beta g_{wlc}(f), \tag{S.8}$$

with the requirement that $L_{max} \ge L_{loop} \ge 0$ We plot this function (and the resulting expression for z) in Fig.3 and use it to fit experimental data in Fig 6 of the main text.

S.4. Additional parameter plots for Model 1

Here, we show additional plots for the readers to get a better feeling of how Model 1 works. In Fig. S.3 we plot the L_{loop} depending part of the total free energy, $F_{loop}(L_{loop}) - 2g_{wlc}(f)L_{loop}$, vs L_{loop} . We see that decreasing a, as well as increasing either $\varepsilon = \varepsilon_{loop} - 2g_{wlc}(f)$ or b destabilizes the free energy minimum at $L_{loop} \neq 0$.

Fig. S.3. Plots of the free energy contribution $F_{loop}(L_{loop}) - 2g_{wlc}(f)L_{loop}$ for various values of the parameters a, b and $\varepsilon = \varepsilon_{loop} - 2g_{wlc}(f)$.

a.) We fix b = 1000Å and $a = 100k_BT / Å^{1/2}$ The thick solid (black), long dashed (blue), medium dashed (red), and short dashed (green) lines correspond, respectively, to the values $\varepsilon = 0.75$, 1, 1.5, 2 $k_BT / Å$

b.) We fix $a = 100k_BT / \text{\AA}^{1/2}$ and $\varepsilon = 1k_BT / \text{\AA}$. The thick solid (black), long dashed (blue), medium dashed (red), and short dashed (green) lines correspond to the values $b = 500, 1000, 2000, 4000 k_BT / \text{\AA}$

c.) We fix b = 1000 Å and $\varepsilon = 1k_{B}T/\text{ Å}$. The thick solid (black), long dashed (blue), medium dashed (red), and short dashed (green) lines correspond to the values $a = 70, 100, 150, 200 k_{B}T/\text{ Å}^{1/2}$. In Fig S.4 we show the effect of changing b on the value of L_{loop} / L_{max} . Here we see that the shape of the continuous part of the curves where $L_{loop} \neq 0$ is not affected much by changing b, but increasing b reduces the force at which we see a sudden jump down to $L_{loop} = 0$, as well as the magnitude of that jump.

Fig. S.4. The ratio of loop length to maximal extension as a function of the pulling force: the effect of Kuhn length. Here we fix $\varepsilon_{loop} = 0.5k_BT/\text{\AA}$ and $a = 100k_BT/\text{\AA}^{1/2}$, and plot curves for different values of Kuhn length: $b = 1000\text{\AA}$ (black solid line), $b = 2000\text{\AA}$ (blue long dashed line), $b = 4000\text{\AA}$ (red medium dashed line) and $b = 8000\text{\AA}$ (green short dashed line).

S.5. Model parameter fit values

Here, we present values for model parameters fitted to various experimental runs. Shown in Fig. S.5 and Fig. S.6 are the fitted values of Model 1 and 2, respectively, to the available experimental data. The fitted values, averaged over experimental runs done at the same conditions, are also presented in Tables S.1 and S.2. Some of the data seem to indicate that the degree of pairing first increases with salt concentration, before reducing. However, the data of multiple experimental runs have large scatter; the uncertainty on the fitted values is large, so the existence of this trend remains uncertain.

Fig S.5. The fitted parameter values of Model 1, $r (= a / \varepsilon_{loop})$ and ε_{loop} , for different temperatures and ionic conditions. Panels a.) and b.) show the fitted values for the ratio r, while c.) and d.) display the values of ε_{loop} . As indicated in the labels on the x-axis, a.) and c.) correspond to data at the lower temperature value 24° C, while b.) and d.) correspond to the higher temperature values of 37° C and 40° C. The red triangles correspond to individual experimental runs, whereas the blue circles correspond to the averaged values.

Temperature	Ionic conditions	Mean Fitted values of	Mean Fitted values of
		$r = a / \varepsilon_{loop}$	\mathcal{E}_{loop}
24°C	0.15M NaCl	222 Å ^{1/2}	0.167 k _₿ T/Å
24°C	0.5M NaCl	293 Å ^{1/2}	6.68 k _₿ T/Å
24°C	1M NaCl	241 Å ^{1/2}	1.75 k _B T/Å
24°C	3M NaCl	181 Å ^{1/2}	0.547 k _в T/Å
24°C	3M KCl	188 Å ^{1/2}	0.571 k _B T/Å
37°C	0.15M NaCl	187 Å ^{1/2}	0.547 k _B T/Å
37°C	0.5M NaCl	90.6 Å ^{1/2}	0.664 k _₿ T/Å
37°C	1M NaCl	256 Å ^{1/2}	0.390 k _₿ T/Å
37°C	3M NaCl	182 Å ^{1/2}	0.450 k _₿ T/Å
37°C	3M KCl	210 Å ^{1/2}	0.476 k _₿ T/Å
40°C	3M NaCl	176 Å ^{1/2}	0.454 k₀T/Å

Table S.1. The average values of the fitted parameters of Model 1, $r = a / \varepsilon_{loop}$ and ε_{loop} for the various ionic conditions and temperatures probed in the pulling experiments.

Fig. S.6. The fitted parameter values of Model 2, L_0 and β , for different temperatures and ionic conditions. The fitted values for L_0 are presented in a.) and b.) while c.) and d.) display the values of β . As indicated in the labels on the x-axis, a.) and c.) correspond to data at the lower temperature value 24° C, while b.) and d.) correspond to the higher temperature values of 37° C and 40° C. The red triangles correspond to individual experimental runs, whereas the blue circles correspond to the averaged values.

Temperature	lonic conditions	Mean Fitted values of $L_{\!_0}$	Mean Fitted values of eta
24°C	0.15M NaCl	10500Å	61600 Å/pN
24°C	0.5M NaCl	18100Å	12300 Å/pN
24°C	1M NaCl	11300Å	50600 Å/pN
24°C	3M NaCl	5880Å	25500 Å/pN
24°C	3M KCl	6790Å	23400 Å/pN
37°C	0.15M NaCl	6090Å	26200 Å/pN
37°C	0.5M NaCl	3200Å	11600 Å/pN
37°C	1M NaCl	14800Å	47700 Å/pN
37°C	3M NaCl	6340Å	27900 Å/pN
37°C	3M KCl	8010Å	35100 Å/pN
40°C	3M NaCl	6340Å	25200 Å/pN

Table S.2. The average values of the fitted parameters of Model 2, L_0 and β , for the various ionic conditions and temperatures probed in the pulling experiments.

S.5. The DNA coding of the homologous segments in the construct DNA

The construct molecules were made by adding an additional DNA segment to the Lambda DNA. This segment was made by PCR reaction amplifying between positions 16322 and 26598 on lambda DNA. The segment was attached so that base pair text (the Lambda DNA base pair sequence from positions 16322 to 26598) ran in the opposite direction to that of the Lambda DNA. The sequence between positions 16322 and 26598 reads as:

16322	cctggtgtc	tgtgggatat	gctgacccat	ccgcgctacg	gcatggggaa	acgtcttggt
16381	gcggcggatg	tggataaatg	ggcgctgtat	gtcatcggcc	agtactgcga	ccagtcagtg
16441	ccggacggct	ttggcggcac	ggagccgcgc	atcacctgta	atgcgtacct	gaccacacag
16501	cgtaaggcgt	gggatgtgct	cagcgatttc	tgctcggcga	tgcgctgtat	gccggtatgg
16561	aacgggcaga	cgctgacgtt	cgtgcaggac	cgaccgtcgg	ataagacgtg	gacctataac
16621	cgcagtaatg	tggtgatgcc	ggatgatggc	gcgccgttcc	gctacagctt	cagcgccctg
16681	aaggaccgcc	ataatgccgt	tgaggtgaac	tggattgacc	cgaacaacgg	ctgggagacg
16741	gcgacagagc	ttgttgaaga	tacgcaggcc	attgcccgtt	acggtcgtaa	tgttacgaag
16801	atggatgcct	ttggctgtac	cagccggggg	caggcacacc	gcgccgggct	gtggctgatt
16861	aaaacagaac	tgctggaaac	gcagaccgtg	gatttcagcg	tcggcgcaga	agggcttcgc
16921	catgtaccgg	gcgatgttat	tgaaatctgc	gatgatgact	atgccggtat	cagcaccggt
16981	ggtcgtgtgc	tggcggtgaa	cagccagacc	cggacgctga	cgctcgaccg	tgaaatcacg
17041	ctgccatcct	ccggtaccgc	gctgataagc	ctggttgacg	gaagtggcaa	tccqqtcaqc
17101	gtggaggttc	agtccgtcac	cqacqqcqtq	aaqqtaaaaq	tgagccgtgt	tcctgacggt
17161	gttgctgaat	acagegtatg	qqaqctqaaq	ctgccgacgc	tgcgccagcg	actqttccqc
17221	tgcgtgagta	tccqtqaqaa	cqacqacqqc	acqtatqcca	tcaccqccqt	gcagcatgtg
17281	ccqqaaaaaq	aggccatcgt	qqataacqqq	gcgcactttg	acqqcqaaca	gagtggcacg
17341	gtgaatggtg	tcacgccgcc	agcggtgcag	cacctgaccg	cagaagtcac	tgcagacagc
17401	gaggaatato	aggtactage		acaccgaagg	taataaaaaa	
17461	ctactccatc	taaccataac	adcddacdac	aacaataaac	aactaatcaa	cacaacccaa
17521	acqacqqaaa	ccacatacco	cttcacqcaa	ctaacactaa	qqaactacaq	actaacaatc
17581	caaacaataa	atacatagaa	acaacaaaaa	atccacat	caatatcatt	ccagattacc
17641	acaccaacaa	caccatcaaa	geugeuggge	acaccagact	atttcadat	aaccaccaca
17701	ccacatetta	ccatttataa	cccacacata		tetaattete	adeegeeaeg
17761	attacagata	tcagacaggt	taaaccaac	acqcqttatc	ttaatacaac	ggaaaagtag
17821	atageggata	atataatat	caaaccoooc			geograetata
17021	acageegeea	gcaccacacac	attactgggc	catgattatt	accollatat	tatagaaaa
170/1	aataccytty	gcaaaloggo	accegiggag	geegeegee	gggcgagcga	razartarta
10001	ggilacetgg	attituda	agguaagata	accyaattee	accegycaa	ggagetgetg
10001	yaaaaaytey	ayetyaeyya	ggalaacycc	ageagaetgy	aggagttttt	yaaayaytyy
10101	aayyatyeea	glyalaagly	yaatyccaty	lyggelytea	aaallyayca	yaccaaayac
10101	ggcaaacall	alglogoggg	Lallggcclc	agcalggagg	acacggagga	aggcaaactg
10241	agccagtttc	tggttgccgc	caatcgtatc	gcatttattg	acccggcaaa	cgggaatgaa
18241	acgccgatgt	ttgtggcgca	gggcaaccag	atattcatga	acgacgtgtt	cctgaagcgc
18301	ctgacggccc	ccaccattac	cagcggcggc	aatcctccgg	ccttttccct	gacaccggac
18361	ggaaagctga	ccgctaaaaa	tgcggatatc	agtggcagtg	tgaatgcgaa	ctccgggacg
18421	ctcagtaatg	tgacgatagc	tgaaaactgt	acgataaacg	gtacgctgag	ggcggaaaaa
18481	atcgtcgggg	acattgtaaa	ggcggcgagc	gcggcttttc	cgcgccagcg	tgaaagcagt
18541	gtggactggc	cgtcaggtac	ccgtactgtc	accgtgaccg	atgaccatcc	ttttgatcgc
18601	cagatagtgg	tgcttccgct	gacgtttcgc	ggaagtaagc	gtactgtcag	cggcaggaca
18661	acgtattcga	tgtgttatct	gaaagtactg	atgaacggtg	cggtgattta	tgatggcgcg
18721	gcgaacgagg	cggtacaggt	gttctcccgt	attgttgaca	tgccagcggg	tcggggaaac
18781	gtgatcctga	cgttcacgct	tacgtccaca	cggcattcgg	cagatattcc	gccgtatacg
18841	tttgccagcg	atgtgcaggt	tatggtgatt	aagaaacagg	cgctgggcat	cagcgtggtc
18901	tgagtgtgtt	acagaggttc	gtccgggaac	gggcgtttta	ttataaaaca	gtgagaggtg
18961	aacgatgcgt	aatgtgtgta	ttgccgttgc	tgtctttgcc	gcacttgcgg	tgacagtcac
19021	tccggcccgt	gcggaaggtg	gacatggtac	gtttacggtg	ggctattttc	aagtgaaacc
19081	gggtacattg	ccgtcgttgt	cgggcgggga	taccggtgtg	agtcatctga	aagggattaa
19141	cgtgaagtac	cgttatgagc	tgacggacag	tgtgggggtg	atggcttccc	tggggttcgc
19201	cgcgtcgaaa	aagagcagca	cagtgatgac	cggggaggat	acgtttcact	atgagagcct
19261	gcgtggacgt	tatgtgagcg	tgatggccgg	accggtttta	caaatcagta	agcaggtcag
19321	tgcgtacgcc	atggccggag	tggctcacag	tcggtggtcc	ggcagtacaa	tggattaccg

19381	taagacggaa	atcactcccg	ggtatatgaa	agagacgacc	actgccaggg	acgaaagtgc
19441	aatgcggcat	acctcagtgg	cqtqqaqtqc	aggtatacag	attaatccgg	cagcgtccgt
19501	cattattaat	attgcttatg	aaggeteegg	caqtqqcqac	tggcgtactg	acqqattcat
19561	cattagaatc	ggttataaat	tctgattagc	caggtaacac	agtgttatga	cagecegeeg
19621	gaaccogtog	actttttat	ggggtgaata	toocaqtaaa	gatttcagga	gtcctgaaag
19681	acaacacaaa	aaaaccoota	cagaactoca	ccattcaget	gaeeeccagga	cataacaaca
19741		aataacaca	atgaactcaa	agaatcoggee	taaaaccaaa	cattacagea
1 9 8 0 1	taatataa	ggegaaeaeg	tacagtotca	tactacagat	taacaattt	ccaccator
10061	eggaegegga	geacggeeag	tatagegeea	ccccgcagge	agaagtagat	coattatege
10021	acyccyyyac		lalyaayall	cacaaccyyy	yacyclyaal	galllllllll
19921	glyccalgac	yyayyatyat	geeeggeegg	aggigeigeg	logicilgaa	Clyalyglyg
19981	aagagguggc	gcglaacgcg	LCCGLGGLGG	cacagagtac	ggcagacgcg	aagaaatCag
20041	ccggcgatgc	cagtgcatca	gctgctcagg	tcgcggccct	tgtgactgat	gcaactgact
20101	cagcacgcgc	cgccagcacg	tccgccggac	aggetgeate	gtcagctcag	gaagcgtcct
20161	ccggcgcaga	agcggcatca	gcaaaggcca	ctgaagcgga	aaaaagtgcc	gcagccgcag
20221	agtcctcaaa	aaacgcggcg	gccaccagtg	ccggtgcggc	gaaaacgtca	gaaacgaatg
20281	ctgcagcgtc	acaacaatca	gccgccacgt	ctgcctccac	cgcggccacg	aaagcgtcag
20341	aggccgccac	ttcagcacga	gatgcggtgg	cctcaaaaga	ggcagcaaaa	tcatcagaaa
20401	cgaacgcatc	atcaagtgcc	ggtcgtgcag	cttcctcggc	aacggcggca	gaaaattctg
20461	ccagggcggc	aaaaacgtcc	gagacgaatg	ccaggtcatc	tgaaacagca	gcggaacgga
20521	gcgcctctgc	cgcggcagac	gcaaaaacag	cggcggcggg	gagtgcgtca	acggcatcca
20581	cgaaggcgac	agaggctgcg	ggaagtgcgg	tatcagcatc	gcagagcaaa	agtgcggcag
20641	aagcggcggc	aatacgtgca	aaaaattcgg	caaaacgtgc	agaagatata	gcttcagctg
20701	tcgcgcttga	ggatgcggac	acaacgagaa	aggggatagt	gcagctcagc	agtgcaacca
20761	acagcacgtc	tgaaacgctt	gctgcaacgc	caaaqqcqqt	taaqqtqqta	atggatgaaa
20821	cqaacaqaaa	agcccactgg	acaqtccqqc	actgaccgga	acqccaacaq	caccaaccqc
20881	geteagggga	acaaacaata	cccagattgc	gaacaccoct	tttgtactgg	ccgcgattgc
20941	agatattatc	gacgcgtcac	ctgacgcact	gaatacocto	aatgaactgg	ccacaacact
21001	caddaatdat	ccagattttg	ctaccaccat	gactaacqcq	cttacaaata	aacaaccgaa
21061	gaggaacgae	ctaacaacac	tagcaggact	ttccacqcq	aaaaataaat	taccotattt
21121	tacaaaaat	ratrococca	acctaactaa	actractcar	attaacaaaa	atattetaac
21121		gatgeegeea	ttattaata	actgacteag	geeggeaggg	acacetta
212/1	aaaaaattee	getgeagatg	racataara	tategttagg	tataaataaa	tggtgttttt
21241	ggcaggigcg	tttaaaaat	gyccatcaga		atagatata	actogratat
21301	gggggcaggcg	lllyacaaat	cayeetaeee	aaaactiyci	glegeglate	
21301	gelleelgal	algegagget	ggacaalcaa	ggggaaaccc	geeageggte	glgclglall
21421	gtctcaggaa	caggatggaa	ttaagtcgca	cacccacagt	gccagtgcat	ccggtacgga
21481	tttggggacg	aaaaccacat	cgtcgtttga	ttacgggacg	aaaacaacag	gcagtttcga
21541	ttacggcacc	aaatcgacga	ataacacggg	ggctcatgct	cacagtetga	gcggttcaac
21601	aggggccgcg	ggtgctcatg	cccacacaag	tggtttaagg	atgaacagtt	ctggctggag
21661	tcagtatgga	acagcaacca	ttacaggaag	tttatccaca	gttaaaggaa	ccagcacaca
21721	gggtattgct	tatttatcga	aaacggacag	tcagggcagc	cacagtcact	cattgtccgg
21781	tacagccgtg	agtgccggtg	cacatgcgca	tacagttggt	attggtgcgc	accagcatcc
21841	ggttgttatc	ggtgctcatg	cccattcttt	cagtattggt	tcacacggac	acaccatcac
21901	cgttaacgct	gcgggtaacg	cggaaaacac	cgtcaaaaac	attgcattta	actatattgt
21961	gaggcttgca	taatggcatt	cagaatgagt	gaacaaccac	ggaccataaa	aatttataat
22021	ctgctggccg	gaactaatga	atttattggt	gaaggtgacg	catatattcc	gcctcatacc
22081	ggtctgcctg	caaacagtac	cgatattgca	ccgccagata	ttccggctgg	ctttgtggct
22141	gttttcaaca	gtgatgaggc	atcgtggcat	ctcgttgaag	accatcgggg	taaaaccgtc
22201	tatgacgtgg	cttccggcga	cgcgttattt	atttctgaac	tcggtccgtt	accggaaaat
22261	tttacctggt	tatcgccggg	aqqqqaatat	cagaagtgga	acqqcacaqc	ctgggtgaag
22321	gatacggaag	cagaaaaact	gttccggatc	caadaadacaa	aaqaaacaaa	aaaaaqcctq
22381	atgcaggtag	ccagtgagca	tattgcgccg	cttcaggatg	ctgcagatct	ggaaattgca
22441	acgaaggaag	aaacctcgtt	gctggaagcc	tagaagaagt	atcoogtott	gctgaaccgt
22501	attaatacat	caactocacc	tgatattgag	taacctacta	tecetattat	agaataatca
22561	ttttatata	taccacaaaa	acattatata	aaataacot+	ctacaattea	ttagtatatat
22601	atazaactaa	atattaatt	atttaacast	tattatotto	annanaeteo	taraart+ot
22021	ataaataaat	tattastaat	atttacator		ayyuyaatad	taacacota
22001 227/1	acyacicaal	tttootooto	ttttacated	actattants	tttataagaC	cyaacycacy
22/41 22001	aaalalyyil	atatacati	tttaastar	yeryrtyata	cuccidaayt	
ZZØUL	LCLLCGTTTT	ciccaactat	LLLCCATGAA	atacatttt	yaccattatt	lyaatcaatt
22861	ccaattacct	gaagtettte	atctataatt	ygcattgtat	gtattggttt	attggagtag
22921	atgcttgctt	ttctgagcca	tagctctgat	atccaaatga	agccataggc	atttgttatt
22981	ttggctctgt	cagctgcata	acgccaaaaa	atatatttat	ctgcttgatc	ttcaaatqtt

23041	gtattgatta	aatcaattgg	atggaattgt	ttatcataaa	aaattaatgt	ttgaatgtga
23101	taaccgtcct	ttaaaaaagt	cgtttctgca	agcttggctg	tatagtcaac	taactcttct
23161	gtcgaagtga	tatttttagg	cttatctacc	agttttagac	gctctttaat	atcttcagga
23221	attatttat	tgtcatattg	tatcatgcta	aatqacaatt	tqcttatqqa	qtaatctttt
23281	aattttaaat	aagttattct	cctggcttca	tcaaataaaq	agtogaatga	tattaacaa
23341	atcacatcot	cacccattog	attottatt	tatataccaa	gagagttaca	gcagttatac
23401	attctgccat	agattatage	taaggcatgt	aataattoot	aatctttag	catattagca
23461	accentente	tttctcattt	aataatadat	gattcagtta	aatatgaagg	taatttottt
23521	tatacoorta	taratarat	++++atagae	atatttaaaa	tactttcatt	tataataaaa
23521	tgigtaagit	tyactaactt	ataaataaa	atylilaata		ratataaat
23301	tatacataga		ytaayatyaa	acaayaytay	tagagaaga	getalacall
23041	tastttt			ttatagaaaa	tayeeeaaye	tattattat
23701		allllCaal	aacallally	LLALACCAAA	tylcalalcc	LalaalClyy
23/61	ttttgttt	tttgaataat	aaatgttact	gttcttgcgg	tttggaggaa	ttgattcaaa
23821	ttcaagcgaa	ataattcagg	gtcaaaatat	gtatcaatgc	agcatttgag	caagtgcgat
23881	aaatctttaa	gtcttctttc	ccatggtttt	ttagtcataa	aactctccat	tttgataggt
23941	tgcatgctag	atgctgatat	attttagagg	tgataaaatt	aactgcttaa	ctgtcaatgt
24001	aatacaagtt	gtttgatctt	tgcaatgatt	cttatcagaa	accatatagt	aaattagtta
24061	cacaggaaat	ttttaatatt	attattatca	ttcattatgt	attaaaatta	gagttgtggc
24121	ttggctctgc	taacacgttg	ctcataggag	atatggtaga	gccgcagaca	cgtcgtatgc
24181	aggaacgtgc	tgcggctggc	tggtgaactt	ccgatagtgc	gggtgttgaa	tgatttccag
24241	ttgctaccga	ttttacatat	tttttgcatg	agagaatttg	taccacctcc	caccgaccat
24301	ctatgactgt	acgccactgt	ccctaggact	gctatgtgcc	ggagcggaca	ttacaaacgt
24361	ccttctcggt	gcatgccact	gttgccaatg	acctgcctag	gaattggtta	gcaagttact
24421	accggatttt	gtaaaaacag	ccctcctcat	ataaaagta	ttcgttcact	tccgataagc
24481	gtcgtaattt	tctatctttc	atcatattct	agatccctct	qaaaaaatct	tccgagtttg
24541	ctaggcactg	atacataact	cttttccaat	aattqqqqaa	gtcattcaaa	tctataataq
24601	gtttcagatt	tgcttcaata	aattctgact	gtagctgctg	aaacgttgcg	gttgaactat
24661	atttccttat	aacttttaco	aaagagtttc	tttgagtaat	cacttcactc	aagtgcttcc
24721	ctgcctccaa	acgatacctg	ttagcaatat	ttaatagett	gaaatgatga	agagetetgt
24781	attatette	ctgcctccag	ttcaccaaac	attcaacata	aaaactgata	acacccadaa
24841	ttccqqaaac	gaaatttoca	tatacccatt	actcacqaaa	aaaaatotco	ttatcatat
2/9/1	aggatgat	cacttaatat		ctocoaaaaa	ttaacettta	tctcccatat
2/961	tacatcaca	acacastara	actaattaa	taggataac	casasttcs	aataatata
25021	caataggegg	aaaataatat		tatggcaccac	atcaccacaa	astggacatt
25021	tttaacayyaay	tanangaloo	atattettet		accaccacaa	ttttt
2JUOL 25141	agagattatt	tyaaacaayc	atyteateyt	aalalyllol	agegggtttg	
25141	ggagallall	llCalaaagc	llllclaall	Laaccillgi	caggilacca	actactaagg
25201	ttgtaggete	aagagggtgt	gtcctgtcgt	aggtaaataa	ctgacctgtc	gagettaata
25261	ttctatattg	ttgttctttc	tgcaaaaaag	tggggaagtg	agtaatgaaa	ttatttctaa
25321	catttatctg	catcatacct	tccgagcatt	tattaagcat	ttcgctataa	gttctcgctg
25381	gaagaggtag	ttttttcatt	gtactttacc	ttcatctctg	ttcattatca	tcgcttttaa
25441	aacggttcga	ccttctaatc	ctatctgacc	attataattt	tttagaatgg	tttcataaga
25501	aagctctgaa	tcaacggact	gcgataataa	gtggtggtat	ccagaatttg	tcacttcaag
25561	taaaaacacc	tcacgagtta	aaacacctaa	gttctcaccg	aatgtctcaa	tatccggacg
25621	gataatattt	attgcttctc	ttgaccgtag	gactttccac	atgcaggatt	ttggaacctc
25681	ttgcagtact	actggggaat	gagttgcaat	tattgctaca	ccattgcgtg	catcgagtaa
25741	gtcgcttaat	gttcgtaaaa	aagcagagag	caaaggtgga	tgcagatgaa	cctctggttc
25801	atcgaataaa	actaatgact	tttcgccaac	gacatctact	aatcttgtga	tagtaaataa
25861	aacaattgca	tgtccagagc	tcattcgaag	cagatatttc	tggatattgt	cataaaacaa
25921	tttagtgaat	ttatcatcgt	ccacttgaat	ctgtggttca	ttacgtctta	actcttcata
25981	tttagaaatg	aggctgatga	gttccatatt	tgaaaagttt	tcatcactac	ttagtttttt
26041	gatagettea	agccagagtt	qtctttttct	atctactctc	atacaaccaa	taaatgctga
26101	aatgaattct	aagcqqaqat	cgcctagtga	ttttaaacta	ttgctggcag	cattettgag
26161	tccaatataa	aagtattoto	taccttt.toc	tgggtcaggt	tgttctttag	gaggagtaaa
26221	aggatcaaat	gcactaaacg	aaactgaaac	aagcgatcga	aaatatccct	ttaggattet
26281	tractorata	agtetattat	tttcagagaa	aaaatattca	ttattttcta	aattaataat
26341	tacaccaatc	attccattca	aaattattat	tttaccacac	ccatteeree	cgataaaag
26401	atgaatgtto	atactagace	tagaattaac	catcacctca	aaanntatan	ttaaatcact
26161	gaatooggoo	acac+++++	tattaat	agantanaa	totopopot+	ctage
26521	atttaacaa	glacillic	atcostasst	ttatassa	attaccata	
20021	agtattaga	accet+ta pr	yuccalyaal	liliyaaayd	yrractort	laaylaalyd
	yyıyılaayy	αυγυτικό βί				