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1 Supplementary material 

1.1 The model structure in matlab 

This section explains the Matlab structure of a metabolic model based on the structure of the 
human genome-scale reconstruction or Recon2 [1]. The content of the model can be queried 

on http://vmh.life (Figure S2). Updated versions of Recon 2 can be downloaded from the same 
database. The Recon 2 model contains numerous variables (Figure S1).  These are vectors or 
matrices and specify, e.g., the reactions, the metabolites, or the connections between these 

components.  

The model can be loaded into Matlab, e.g., by navigating the current folder to the location 
where the model is saved and dragging it into the Matlab command window. Once the model 

is loaded, it appears in the workspace. Double-click on the model structure in your work-space 
to see the structure as in Figure S1.  

mailto:ines.thiele@uni.lu
http://vmh./
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Supplementary Figure 1: Variables in the human metabolic model. 

The variables in the human metabolic model (Figure S1) can be divided into different 

categories: (1) matrices that connect metabolites with reactions or genes to reactions; (2) 
reaction variables that specify reactions, reaction identifiers, and other information relevant to 
the reactions; (3) metabolite variables that specify the metabolites, metabolite identifiers, and 

other information relevant to the metabolites; (4) variables for modeling (reactions); (5) 
boolean vectors to easily identify individual reaction sets. Many of these variables are not 

mandatory, and most metabolic models contain only a subset of the variables and identifiers. 

 

Detailed discussion of the different variable categories:  

(1) Matrices 

Variable Comment 

S S- matrix, associates metabolites and reactions 

RxnGeneMat matrix for association of reactions and genes 

 

(2) Reaction variables 

Variable Comment 

rxns reaction abbreviations (same as you find in the database) 

rxnsNames full reaction name 

subSystems sorts reactions into ‘metabolic subsystem/pathways’ 

rxnsKeggID Kegg ID 

rxnECNumbers  E.C. numbers (enzyme identifier) 

rxnsConfidenceScore  depends on the support (literature/experimental) that is 

associated with the reaction (check Nature Protocol 
Table 2) 

rxnsConfidenceEcoIDA alternative confidence scoring system recon 2 (explained 
in the supplement of recon 2 paper) Evidence Code 

Ontology, an ontology created by the Gene Ontology 
consortium 
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rxnReferences references associated with the reaction 

rxnNotes comments on reactions 

 

(3) Concerning metabolites 

Variable Comment 

mets metabolite abbreviations (human metabolism database) 

metNames metabolite Name (human metabolism database)  

metFormula metabolite Formula 

metCharge metabolite charge 

metCHEBIID metabolite identifier  

metKeggID metabolite identifier  

metpubChemID metabolite identifier 

metInchiString metabolite identifier 

metHMDB metabolite identifier 

metHepatoNetID metabolite ID in Hepatonet-applies to those metabolites that 
originate from Hepatonet 

metEHMNID metabolite ID in EHMNID - applies to those metabolites 
that originate from Hepatonet 

 

(4) Variables for modeling (reactions) 

Variable Comment 

rev  reaction reversibility 

rules gene-proteine-reaction associations 

grRules Gene-Proteine-reaction associations 

b equality constraint (nothing should be consumed or 
produced, for optimization) 

c vector specifying the objective  

lb lower bound (reaction constraint) 

ub upper bound (reaction constraint) 

 

(5) Boolean vectors (to easily identify reaction sets) 

Variable Comment 

ExchRxnBool redundant for EXRxnBool, does not identify any reaction 

EXRxnBool identifies exchange reactions  

DMRxnBool  identifies demand reactions  

SinkRxnBool  identifies sink reactions 

SIntRxnBool identifies internal reactions 

 

Double-clicking on the variables in the opened model will open the display of its content, e.g., 

the vector of lower bounds (model.lb). The S matrix is large and saved as sparse matrix. It can 
be displayed using the matlab command spy(model.S).  

 

1.2 Infinite constraints 

The model reactions can in theory carry a flux that is between zero and ‘infinity’. In the models 

this ‘infinity’ is replaced by a large numerical value, e.g., ub = 1000 U and lb = -1000 U. The 
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span of possible fluxes for a reversible reaction can therefore be between an infinite forward 
flux (1000 U), and an infinite flux in the reverse direction (-1000 U). Exchange reaction 

stoichiometry is defined such that a negative flux means uptake and a positive flux means 
secretion.   

 

1.3 Conversion of the theoretical mass  

Below an example calculation for the conversion from the theoretical mass ng/ml to mM: 

MW(molecular weight) = g/mol 

mM = mol*1000/L 

LOD = ng/ml 

MW(NAD) = 123 g/mol 

LOD(NAD)= 3ng/ml 

(3ng/ml) / (123 g/mol) | *1e-06  

= (0.000003g/l) /(123 g/mol)  

= 2.4390e-08 mol/L | *1000 

= 2.4390e-05 Mm 

 

1.4 Calculate cell dry weight 

The weight of the cell is a necessary input to calculate flux values from the data. If 

measurements of the dry weight are not available but the wet cell weight, the dry weight can 
be either assumed to constitute 30% from the wet cell weight [2]. In case the dry weight and 
the wet weight are not reported in the literature, it can be estimated based on the relative volume 

difference and comparison with similar cells with reported dry weight in the literature [3]. 
 

 

1.5 Generate metabolic fluxes  

 The constraints on each reaction (lower bound and upper bound) define how much the model 
can be maximally consume or release. Flux units depend on the applied constraints. Based on 

cell concentration, experimental duration and the cellular dry weight fluxes can be calculated 
Flux = MetConc/(CellConc*CellWeight*T*1000).  

 

1.6 Additional information on scaling of infinite bounds and defined constraints 

Metabolite concentrations in cells span multiple magnitudes. The “infinite” bounds need to be 
higher than the constraints applied to the model, since otherwise these fluxes might limit the 

model and compromise its predictions.  

If any constraints defined in the model, e.g., LOD based qualitative constraints or uptake or 
secretion fluxes, turn out to be smaller than zero (i.e., 1e-8, see also COBRA function 
getCobraSolverParameters [4]), the flux unit can be altered to shift the values over the cutoff. 

This is achieved by multiplying (or dividing) the defined constraints by the same value (e.g., 
model.lb*10 and model.ub*10). By doing this, also the infinite bounds are increased which 

might be unnecessary. Additionally, the coefficients of metabolites in the biomass objective 
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function need to be multiplied or divided by the same factor to retain the relationship (growth 
rate = ln(2)/td) of growth rate to doubling time (dt). This can be done by multiplying (or 

dividing) the column of the S matrix that corresponds to the biomass reaction by the same value 
as was used to scale the remaining constraints.  

However, scaling might cause other constraints to exceed the constraints. This can be solved 

by increasing the infinite bounds. However, increasing the infinite bounds increases the 
solution space. An increase of the infinite bounds only does not change the unit fluxes are 
reported in.  

  

1.7 Additional remarks on the integration of Gene Expression data   

Although generation a functional model using an algorithm that assumes gene regulation in 
order to fulfil the requirement of a functional model is quite fast, this automation comes with 
drawbacks. Thus, it might be worthwhile to invest the time to manually curate the network or 

explore different statistical thresholds to generate a more conservative reaction set [3, 5]. The 
trade-off is less reduction of the internal network redundancy for less network gaps. A less 

stringent threshold could, in combination with the constraints from the metabolomic data, 
describe a good compromise. However, the best strategy might be different between data sets. 
At last, manual curation is always also an opportunity to gain insight into the data, rather than 

just a necessary, time consuming task. In fact, knowledge about the data can help later on 
during interpretation of the simulation results, e.g., why one pathway might be chosen over 

another and might help to uncover “method-driven” false predictions.  
 

1.8 Additional remarks on “Sampling the solution space”  

During sampling analysis every ith point (i.e., each one flux vector) are collected while 

performing a random-walk with “random” direction and step length, through the solution space 
(Figure 8).  i describes the number of points skipped between two collected points, and defines 

the mixing of the points. Files of points are saved after a defined number of points have been 
collected. In case more points need to be collected, use the last point of the last file saved to 
generate more points. Before starting the sampling, increased the java heap space in Matlab to 

the maximum. The duration of the analysis depends on the size of the model, the computer, the 
number of collected points, and number of skipped points. 

When do you know that you have sampled enough: In order do know when one has sampled 

“enough”, it is good to look at the histograms (Figure 8), which can be generated using the 
function summarizeSamplingResults from the model and the sampling results. A good 

evaluation is to look at the probability distribution and specifically at the shape of the 
distribution. If the distributions are evenly round-shaped and no edges stick out this is an 
indication that enough sampling points have been collected (which of course also varies with 

the binning of the histogram, Figure 8B). A good test is to compare the distributions e.g. for 
60x 5000 points and 65x5000, … , and so on. If the distributions keep improving or the shape 

keeps changing, this is a sign that one should continue sampling (Figure 8B, D). For a previous 
analysis 100 x 5000 points were generated [3].  

It should be noted that one can only obtain regular distributions for bounded reactions (Figure 
8B, C) and that the distributions will continue to change for unbounded (or loop) reactions (see 

Box 1). One way to evaluate the sampling is to check if the distributions converge with the 
minFlux and maxFlux values obtained through flux variability analysis.  
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Supplementary Table 1: Appeal from a computational biologist to the metabolomics  

community. The table lists points that simplify the integration of metabolomics data sets into 

the model context. 

Consideration  Explanation Solution 

Report of standard 

metabolite 
identifiers 

Simplifies matching the namespace of the metabolic 

model and the data and prevents errors in the 
translation. 

e.g., HDMI. 

Refer to [1] 

Multiple time 
points 

Constraint-based modeling uses metabolic fluxes, i.e., 
the change of metabolite concentration over time.  

Refer to [6] 

High coverage The better the metabolic model can be defined, the 
more accurate will be the predictions. The human 

model includes currently ~800 metabolites that can be 
exchanged with the extracellular environment. 

Missing quantification can be compensated by a well-
defined culture medium. 

Refer to [6] 

Quantification of  
metabolites 

High coverage in combination with quantificat ion 
provides an ideal prerequisite for intra-model analys is. 

Refer to [7] 
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