Text S1. Supplemental Materials and Methods.

Contents of Text S1

a. Quantification of mRNA expression level

b. Derivation of stoichiometric models for glucose metabolism in E. coli

a. Quantification of mRNA expression level

The expression level of mRNA of a bacterial culture can be quantified by reads per kilobase transcriptome per million mapped reads (RPKM) defined as follows (1):

 $RPKM = \frac{10^6 C}{NL/10^3}$

where C is the reads of the target gene, N is the reads of total genes, and L is the number of bases of the target gene. To accommodate the deviation of RPKM for J3 and JB caused by the heterologous expression of Rubisco and/or PrkA, a modified RPKM (M-RPKM) is defined for strain j:

M - RPKM = $\frac{10^6 C}{N' L / 10^3}$

where N' is calculated by subtracting the reads of *rbcLS* and/or *prkA* from the reads of total genes.

The differential expression of mRNA between wild-type *E. coli* BL21(DE3) and strain j is now as follows:

 $log_2 Ratio = \frac{M - RPKM_{j,x}}{RPKM_{BL21(DE3),x}}$

where M-RPKM_{j,x} is the modified RPKM of gene x for strain j where RPKM_{BL21(DE3),x} is the RPKM of gene x for wild-type *E. coli* BL21(DE3). It is suggested that a statistically significant \log_2 Ratio should be accompanied by a p-value of less than 1×10^{-3} and a FDR of less than 0.05 (2).

b. Derivation of stoichiometric models for glucose metabolism in E. coli.

- (a) glucose + 2 ADP + 2 NADH \rightarrow 2 ethanol + 2 formate + 2 ATP + 2 NAD⁺
- (b) glucose + 4 ADP + 2 NAD⁺ \rightarrow 2 acetate + 2 formate + 4 ATP + 2 NADH

(c) glucose + 4.8 NADH \rightarrow 2.4 ethanol + 1.2 formate + 4.8 NAD⁺

(d) glucose + 2.4 ADP \rightarrow 2.4 acetate + 1.2 formate + 2.4 ATP

(a) glucose + 2 ADP + 2 NADH
$$\rightarrow$$
 2 ethanol + 2 formate + 2 ATP + 2 NAD⁺

(1) glucose + 2 ADP + 2 NAD⁺ $\xrightarrow{Glycolysis}$ 2 pyruvate + 2 ATP + 2 NADH

② pyruvate + $CoA \xrightarrow{pflB} acetyl-CoA + formate$

(3) acetyl-CoA + 2 NADH \xrightarrow{adhE} ethanol + 2 NAD⁺ + CoA

(a) can be derived from $(1+2)\times 2+(3)\times 2$

(b) glucose $+4 \text{ ADP} + 2 \text{ NAD}^+ \rightarrow 2 \text{ acetate} + 2 \text{ formate} + 4 \text{ ATP} + 2 \text{ NADH}$

- ① glucose + 2 ADP + 2 NAD⁺ $\xrightarrow{\text{Glycolysis}}$ 2 pyruvate + 2 ATP + 2 NADH
- ② pyruvate + CoA \xrightarrow{pflB} acetyl-CoA + formate
- (4) acetyl-CoA \xrightarrow{pta} acetyl-P + CoA
- (5) acetyl-P + ADP \xrightarrow{ackA} acetate + ATP
- (b) can be derived from $(1)+(2)\times 2+(4)\times 2+(5)\times 2$

(c) glucose + 4.8 NADH \rightarrow 2.4 ethanol + 1.2 formate + 4.8 NAD⁺

(d) glucose +2.4 ADP $\rightarrow 2.4$ acetate +1.2 formate +2.4 ATP

$\begin{array}{l} \text{non-oxidative pentose phosphate pathway} \\ & +rpe \text{ and } rpi \\ \hline &$

(d) can be derived from $(9 \times 0.2 + (10 + 11)) \times 1.2 + (12 + (2) + (4) + (5)) \times 2.4$

References

- 1. **Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B.** 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth **5:**621-628.
- 2. **Benjamini Y, Yekutieli D.** 2001. The control of the false discovery rate in multiple testing under dependency. **29:**1165-1188.

SUPPLEMENTAL MATERIALS

Name	Sequence
LDH-HP1	AAATATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGA
	GAAAGTCTTGTGTAGGCTGGAGCTGCTTC
LDH-HP2	ATTGGGGATTATCTGAATCAGCTCCCCTGGGTTGCAGGGGAG
	CGGCAAGAATTCCGGGGGATCCGTCGACC
LDH-U	AAATATTTTAGTAGCTTAA
KANk2- k2	CGGTGCCCTGAATGAACTGC
FRDhf-NEW-HP1	CTTACCCTGAAGTACGGGGGCTGTGGGGATAAAAAACAATCTG
	GAGGAATGTCGTGTAGGCTGGAGCTGCTTC
FRDhr-NEW-HP2	CCATACAAAACGGCCCGCCATAGGCGGGCCGGATTTACATTG
	GCGATGCGATTCCGGGGGATCCGTCGACC
FRD-U	CTTACCCTGAAGTACGGGGC
rbcL-K198G-F	GGACTTCACCGGTGACGACGAAAACATCAACTCGC
rbcL-K198G-R	AGACCGCCGCGCAGACAT
rbcL-D200G-E201G-F	CACCAAAGACGGTGGTAACATCAACTCGCAGCCGTTCCAAC
rbcL-D200G-E201G-R	AAGTCCAGACCGCCGCGC
rbcL-K172G-F	TTGCACGATCGGTCCAAAACTCGGTCTGTCGGCG
rbcL-K172G-R	CCCAGCATCGGACGGCCG
rbcL-K331G-F	CGTCGTCGGCGGTCTGGAAGGCGAC
rbcL-K331G-R	GTGCCGGAGTGGAGGTGG

 Table S1. Primers used for gene disruption and site-directed mutagenesis.

Fig. S1 The transcriptome of *E. coli* strains J3 (first value) and JB (second value) regarding the glyoxylate shunt. Values for each gene are log_2 Ratio that are defined in Text S1. All log_2 Ratio reported here are statistically significant where all p-values are less than 1×10^{-3} and all False Discovery Rates (FDRs) are less than 0.05. The pathway was constructed based on KEGG (Kyoto Encyclopedia of Genes and Genomes) database. Abbreviation: CIT, citrate; ICT, isocitrate; GOX, glyoxylate; α -KG, α -ketoglutarate; SUC, succinate; FUM, fumarate; MAL, malate; OAA, oxaloacetate.

Fig. S2 SDS-PAGE for confirming the overexpression of Rubisco (K198G). M, Marker; lane 1, MZLF3(K198G)+IPTG (supernatant); lane 2, *E. coli* BL21(DE3) (whole cell); lane 3, *E. coli* BL21(DE3)+IPTG (whole cell); lane 4, MZLF (whole cell); lane 5, MZLF+IPTG (whole cell); lane 6, MZLF3 (whole cell); lane 7, MZLF3+IPTG (whole cell); lane 8, MZLF3(K198G) (whole cell); lane 9, MZLF3(K198G)+IPTG (whole cell); lane 12, MZLF3+IPTG (supernatant); lane 13, MZLF3+IPTG (supernatant); lane 14, MZLF3(K198G) (supernatant).