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Materials and Methods

Image velocities and elemental motions

In this section we motivate the use of differential features of optical flow for characterizing ciliary motion

dynamics. First, we provide an overview of optical flow research for general scientific audiences. The

subsequent discussion follows the notation from Kooenderink et al (30) and Kovesi et al (42), in which

we provide the optical flow and image velocity derivations.

Overview

Optical flow is apparent motion of objects in a scene caused by the relative motion between an observer

and the subject. Optical flow can be used for tracking objects, but tracking across more than each pair of

frames is not an inherent property of optical flow, and is not the strategy we use in this work. Instead, we

work directly with the vector fields generated from each pair of frames in the original video (Fig. 1C,D).

For each pixel at which we compute flow, constraints on the direction and magnitude are incorpo-

rated by considering a neighborhood around the pixel. While the size of the neighborhood and strength

of contribution of the neighborhood to the final optical flow of the pixel of interest varies across imple-

mentations, pooling these constraints over a neighborhood accounts for and eliminates a certain quantity

of noise. This also results in the overdetermined system of equations that is referenced in the following

section.

There are a list of “best practices” when computing optical flow, such as temporal smoothing and

median filtering, which we adhere to (Materials and Methods, Sun et al (29)). Additional instances of

smoothing and filtering of noise in this work include spatial median filtering of dominant frequencies for

frequency histograms, and the principal component analysis in the AR models which discards all but the

dominant modes of motion. Since the publication of the Canny edge detector in 1986, all derivatives

in image processing are preceded by Gaussian filtering with an appropriate scale parameter. We do the

same in computing optical flow and its derivatives of rotation and deformation. The effect of this filter

can be observed in Fig. 2E-G: there are no abrupt changes in the waveform, and the waveforms remain

roughly periodic where appropriate.

We chose the Farneback optical flow implementation in OpenCV over the Sun et al (29) version in

Matlab out of practicality. Both algorithms produced near-identical optical flow fields; however, the



Sun algorithm incorporated non-local optimizations for constraining the optical flow computations over

much larger neighborhoods. While this could help the reliability of optical flow computations in videos

with large discontinuities, e.g. shaking cameras or sudden rapid movements, we found this was not a

particularly prevalent issue in our study; fig. S2 shows that over 98% of the observed motion displacement

occurred over fewer than 1 pixel; over 99% of the displacement spanned fewer than 2 pixels. Given the

relatively small displacement across our data, and that the non-local considerations in the Sun et al

algorithm resulted in significantly longer optical flow computations, we elected to use the Farneback

OpenCV algorithm. Furthermore, by using the OpenCV algorithm, we could implement our entire

framework in Python.

Optical flow has also been used extensively in dynamic texture recognition in the form of rotation,

divergence, and deformation, as first explored by Koenderink et al (31). Extensive work has been done

applying optical flow to the recognition of texture waveforms in dynamic video data (22-28). In particular,

(27) applies this technique to the biomedical and clinical contexts, analogous to our work.

There is also some precedent in the literature for using image processing in the analysis of ciliary

motion. In one work (13), the authors used the OpenCV framework for reading the video data, as we

did. The authors then computed local gradients of the video frames to estimate CBF; no particle tracking

was performed, though these local gradients would be the first step to computing optical flow. The second

work (21) was our own, in which we used optical flow and its derivatives to compute preliminary results

upon which this work capitalizes. We built rotation and deformation magnitude histograms for a handful

of clinically recognized ciliary motion types.

Ultimately, optical flow methods have been extensively studied and compared with ground truth in

the computer vision community. We cite several landmark studies in this regard; optical flow has even

been used in Hollywood for special effects (see Michael Black’s talk 1). However, there is no ground truth

for optical flow of ciliary motion; we cannot generate error bars for optical flow of ciliary motion as the

current ground truth of ciliary beat pattern analysis is manual expert assessment. The closest comparison

we can make is to correlate our classification results with these expert assessments. A future experiment

for establishing ground truth of optical flow in ciliary motion could entail comparing the computed flow

of beads among the cilia biopsies to manual tracking of the beads’ motions.

1https://www.youtube.com/watch?v=tIwpDuqJqcE

https://www.youtube.com/watch?v=tIwpDuqJqcE


Optical Flow

Optical flow computation follows from invoking the standard brightness constancy assumption,

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt), (1)

which states that image intensity I (or a filtered version of it) at a location (x, y) at time t is preserved

locally for small changes (uδt, vδt) observed in space in a small time interval δt. Here (u, v) are the

horizontal and vertical image velocity components of the optical flow vector ~f T at pixel location (x, y).

A first-order approximation of the right hand term in the brightness constant equation above gives

rise to the gradient constraint:

Ixu+ Iyv + It = 0, (2)

where the subscripts x, y and t on image intensity I denote partial derivatives of the image structure

at location (x, y). The gradient constraint is pooled over a small image neighborhood around pixel

(x, y) to form an overdetermined system of linear equations from which the optical flow vector (u, v)

is estimated. We use a variation of the classical optical flow algorithm suggested by Black and co-

workers that incorporates a non-local smoothness term to integrate information over larger neighborhoods.

While optical flow vector ~f = (u, v) T provides information on the image dynamics, the first-order flow

derivatives: (ux, uy, vx, vy), can be additionally used to derive a linear (affine) model of optical flow, and

provide a statistical means of characterizing ciliary dynamics.

Differential Invariants

Consider two spatially nearby image points ~r1 = ~r and ~r2 = ~r+δ~r along a cilium. The vector δ~r = ~r2−~r1

gives their relative position. We assume that the points move according to their optical flow velocities

~f1 = ~f = (u, v)
T

and ~f2 = ~f + δ~f and after a small time interval δt they are at locations ~r1́ = ~r1 + ~f1δt

and ~r2́ = ~r2 + ~f2δt. It follows that:



~r2́ − ~r1́ = (~r2 − ~r1) +
(
~f2 − ~f1

)
δt, (3)

δ~r´= δ~r + δ~fδt. (4)

Given the spatial nearness of the two points ~r1 and ~r2, we can relate the flow vectors ~f1 and ~f2 by Taylor

series expansion that uses first-order differentials of optical flow:

~f2 ≈ ~f1 +
∂ ~f1
∂~r

δ~r + · · · , (5)

~f2 ≈ ~f1 +

ux uy

vx vy

 δ~r + · · · , (6)

where (ux, uy, vx, vy) are elements of the spatial derivative of optical flow, i.e. flow gradient: ∂ ~f
∂~r . As shown

by Kooendernik and van Doorn, the flow gradient can be further decomposed into scaling (divergence),

shearing (deformation) and rotational (curl) components. These are scalar quantities defined as:

div~f = ux + vy, (7)

rot~f = vx − uy, (8)(
def~f

)
cos(2µ) = ux − vy, (9)(

def~f
)

sin(2µ) = uy + vx, (10)

where µ is the angle of maximal distortion (described below). The quadruplet of quantities:

div~f, rot~f,
(

def~f
)

cos(2µ),
(

def~f
)

sin(2µ)

form a linear space and provide an equivalent representation of flow gradient ∂ ~f
∂~r . Observe that the

deformation magnitude and orientation can be derived as:



def~f =

√
(ux − vy)

2
+ (uy + vx)

2
, (11)

2µ = arctan

(
uy + vx
ux − vy

)
. (12)

The quantities def~f , div~f , and rot~f are differential invariants as they are independent of coordinate

system used to measure the flow.

Using these definitions the velocity gradient can be rewritten as:

ux uy

vx vy

 =
div~f

2

1 0

0 1

+
curl~f

2

0 −1

1 0

+ (13)

def~f

2

cos(2µ) sin(2µ)

sin(2µ) − cos(2µ)

 .

Figure 1E illustrates the geometric/image distortions that each of these differential features are associated

with; these are discussed in greater detail below.

Divergence

Divergence is image distortion seen geometrically as a local isotropic expansion with speed 1
2 div~f about

a focus of expansion. We do not expect these distortions to appear in the lateral views of the cilia, but

they could be useful in characterizing the ciliary motions captured by a perpendicular view of the cilia.

Divergence is invariant to the orientation of the cilia in the image plane.

Rotation

The most salient feature of ciliary motions is the sweeping forward and backward strokes. Rotation (or

curl) captures the local rotation of cilia with angular velocity 1
2 rot~f . Note this rotation is a component

perpendicular to the viewing direction. Curl is orthogonal to divergence. Like divergence, curl is invariant

to the orientation of the cilia in the image plane.



Deformation

Deformation measures distortions that affect orientation of a ciliary region while preserving apparent

areas. Two axes, the axis of maximal extension and the axis of maximal contraction, form an orthogonal

basis for describing all possible motion field distortions or shearing motions. Since cilia are stuck to the

cell wall, it is more appropriate to see their motions as having both a rotational component and a shearing

motion (hence a directed shear).

Differential Feature Filters

Ciliary motion videos have high sampling frequency (200Hz) relative to their natural beats (≈ 10Hz).

While it is easy to construct the optical flow derivatives with Gaussian derivatives, it is also instructive to

consider how to design a filter mask that can elicit differential flow information. Intuitively, the detector

template mask would resemble a miniature vector field exhibiting atomic motion types: divergence, curl

or deformation. The magnitudes of individual vectors in the motion template will be proportional to

distances from the center of the filter and the vector directions will be a function of atomic motion type.

Indeed, Eqns. 10-13 make it obvious how to construct these filters, as shown in Fig. 1E.

The divergence filter mask has vectors that point radially outward, whereas the curl filter has tangen-

tial vectors. Observe in Fig. 1E that the curl filter is orthogonal to the divergence filter. For deformation

two orthogonal masks are necessary for capturing distortion in all directions. For illustration in Fig. 1E,

we show two deformation masks with maximal expansion axes aligned to 0 and π/4 degrees. To reduce

corner artifacts, a circular envelope is applied on each of these masks.



Video Preprocessing

The ROIs were processed through a pruning method designed to discard noisy or background pixels; for

example, pixels depicting cells or space beyond the cilia. This pruning method discarded pixels whose

intensity changes fell below a set threshold. The threshold value was adaptive and specific to each ROI,

as the intensities between ROIs varied greatly. For a single ROI, we computed the standard deviation

σi of the time-varying intensity changes at each pixel and constructed a histogram of these standard

deviations. We used the Kolmogorov-Smirnov distance metric to determine whether the histogram more

closely resembled a gamma distribution or a Gaussian distribution. In the former case, we used the

distribution’s peak, or σpeak, as the pruning threshold value, and discarded all pixels for which σi < σpeak.

If the distribution was better approximated by a Gaussian, we used the distribution’s mean, or σmean,

and discarded all pixels for which σi < σmean. We performed a connected component analysis on the

remaining pixels and discarded all but those in the largest component. Differential invariants were

computed and subsequent analysis was performed only on these remaining pixels.



Algorithm 1 Extract quantitative features of CM.

Input: List of CM video patches X ; number of AR dimensions q; number of frequency histogram bins
κ.

Output: Quantitative representations of CM as autoregressive motion parameters and magni-
tude/frequency rotation histograms (deformation magnitude/frequency histograms omitted for
brevity).

1: function ciliary motion features(X , q, κ)
2: R ← ∅,H ← ∅,A ← ∅ . Initialize empty sets.
3: for X ∈ X do . For each video patch/ROI.
4: X = preprocess(X) . Remove noisy pixels.
5: Ox, Oy = optical flow(X) . x and y components of optical flow.
6: R = rotation(Ox, Oy) . R has same dimensions as X, Ox, and Oy.
7: R.append(R)
8: H.append(histograms(R, κ))
9: end for

10: A = autoregressive(R, q) . AR parameters for all video patches are computed at once.
11: return [A,H]
12: end function

13: function histograms(R, κ)
14: Rm = temporal gaussian smoothing(R)
15: Hm = histogram(Rm, bins = 100) . Magnitude histograms.
16: Rf = temporal fft(R) . Fast Fourier Transform.
17: Hf = histogram(Rf , bins = κ) . Frequency histograms.
18: return [Hm, Hf ]
19: end function

20: function autoregressive(R, q)
21: U,Σ, V T = svd(R, q) . R has dimensions (width ∗ height)× (len(X ) ∗ frames). Σ has

dimensions q × q. V T has dimensions q × (len(X ) ∗ frames).
22: S = ΣV T

23: A = argminÂ||S
(n)
2 − ÂS(n−1)

1 ||F . S
(n−1)
1 is the first n− 1 rows of S; S

(n)
2 is also n− 1 rows of

S, starting with the 2nd row.
24: return A . Autoregressive motion parameters.
25: end function



Algorithm 2 Use quantitative features to predict CM.

Input: List of autoregressive motion parameters A; list of magnitude and frequency histograms H; list
of ground-truth patient labels (0 = healthy, 1 = abnormal) ~y.

Output: CM predictions for each video patch.

1: function classify autoregressive(A, ~y)
2: Z ← ∅ . List of cross-validation classification accuracies.
3: for Atrain, Atest, ~ytrain, ~ytest ∈ cross validation sets(A, ~y) do
4: SVM.train(Atrain, ~ytrain) . Train Support Vector Machine (SVM).
5: accuracy = SVM.test(Atest, ~ytest)
6: Z.append(accuracy)
7: end for
8: return Z.mean()
9: end function

10: function classify histograms(H, ~y)
11: Z ← ∅ . List of cross-validation classification accuracies.
12: for Htrain, Htest, ~ytrain, ~ytest ∈ cross validation sets(H, ~y) do
13: Ktrain = histogram kernel(Htrain)
14: Ktest = histogram kernel(Htest)
15: SVM.train(Ktrain, ~ytrain) . Train Support Vector Machine (SVM).
16: accuracy = SVM.test(Ktest, ~ytest)
17: Z.append(accuracy)
18: end for
19: return Z.mean()
20: end function

21: function histogram kernel(H, w = 0.5) . Here w = 0.5 here as we use only two histogram
types. In the full paper, we use four histograms, thus w = 0.25.

22: Df ← ∅,Dm ← ∅
23: for i = 1 to len(H) do
24: for j = i+ 1 to len(H) do

25: df = χ2(H(i)
f ,H(j)

f ) . χ2 distance for frequency histograms.

26: dm = χ2(H(i)
m ,H(j)

m ) . χ2 distance for magnitude histograms.
27: Df .append(df )
28: Dm.append(dm)
29: end for
30: end for
31: µf = Df .mean()
32: µm = Dm.mean()
33: K = zeros(len(H), len(H))
34: for i = 1 to len(H) do
35: for j = i+ 1 to len(H) do

36: Ki,j = Kj,i =
∑

α∈{f,m}
w exp {−µαχ2(H(i)

α ,H(j)
α )} . Create the kernel matrix K of pairwise

weighted chi-square distances.
37: end for
38: end for
39: return K
40: end function



Algorithm 3 Perform majority vote on classification results to determine final classification accuracy.

Input: List of classifier predictions (0 = healthy, 1 = abnormal) of the ciliary motion in each patch ~ypred;
associative array providing the indices of the patches derived from each patient P.

Output: CM predictions for each patient.

1: function majority vote(~ypred,P)
2: W ← ∅ . Dictionary mapping each patient P to final CM prediction.
3: for P ∈ P do
4: ~yP = ~ypred[indices of patient(P )] . yP contains CM predictions for ROIs from patient P .
5: µ = sum(~yP )/len(~yP ) . 0 ≤ µ ≤ 1
6: if µ > 0.5 then
7: W[P ] = 1 . Abnormal prediction.
8: else
9: W[P ] = 0 . Healthy prediction.

10: end if
11: end for
12: return W
13: end function



Supplementary Figures

Figure S1. Aggregate optical flow displacement in CHP data cohort. These percentiles are
aggregated across all optical flow computations made on the CHP cohort, indicating that fewer than 1%
of optical flow displacements, or tracked motion between sequential frames, are greater than 2 pixels in
magnitude.



Figure S2. Pixel selection in a . The heatmap overlay indicates the dominant
frequencies at each pixel. Light blue indicates low-frequency motion (1-5Hz), where yellow and red
indicate higher-frequency motion (5-15Hz). Pixels without color overlays were discarded by the
adaptive pruning method.

n ROI



Figure S3. Breakdown of digital nasal biopsy video data sets. Relative fractions of each
demographic of our subjects in both data cohorts.



Figure S4. CM classification pipeline. Patient data, in the form of a handful of ROIs, is classified
as normal (0) or abnormal (1) based on the method (histograms or AR). A majority vote, or “consensus
classification,” is performed using the ROI classifications for a single patient to predict the CM of the
patient. All results are reported as predictions for each patient.



Figure S5. Classification confidence as a function of ROIs per patient. While the overall
classification accuracy for each method is specified in Table 2, these plots show classification accuracy
for individual patients as a function of the number of ROIs associated with that patient. 1.0 indicates
the CM of that particular patient was always identified correctly (whether normal or abnormal);
conversely, 0.0 indicates our framework consistently misclassified the CM of that patient. In the CHP
cohort (top row), there is a clear trend toward perfect CM classification as the number of ROIs per
patient increases; in the CNMC cohort (bottom row), this trend is much less apparent, even entirely
absent, suggesting quality of ROIs is more important than quantity in classifying patient CM.



Figure S6. Web site proof-of-concept screenshots. We implemented a barebones proof-of-concept
website for uploading, annotating, and analyzing videos of ciliary motion. This was used over the course
of this study to enhance remote collaboration. This shows the three manual steps involved in uploading
(1) and annotating (2 and 3) videos.



Figure S7. Pairwise angles between principal components of CM in AR model .
Mean-squared average of all pairwise inner products of principal components derived from all image
patches of ciliary motion used in this study. The large number of orthogonal (0 inner product) basis
vectors provides strong evidence that all instances of CM occupy the same subspace.

s



Figure S8. CM classification results of parameter scanning. Top row: scans over CHP cohort;
Bottom row: scans over CNMC cohort. Each column indicates a different classification strategy: the
leftmost is the histogram method; the middle is the AR model with rotation; the right is the AR model
with deformation. Optimal parameter combinations are indicated by the white dot with a black border.



Supplementary Tables

Table S1. Constant parameters used throughout this study.

Parameter name Parameter value Description

Median filter 5 Used to smooth spurious fre-
quencies in the heat map when
building frequency histograms
(RFH, DFH).

Maximum frequency 20 Hz Maximum allowed frequency at
each pixel when building fre-
quency histograms; higher fre-
quencies are suppressed.

Magnitude profile bins 100 Number of bins used in magni-
tude histograms (RMH, DMH).

ν 0.35 Used to train the SVM. See the
scikit-learn documentation.

Cross-validation iterations 100 Number of independent and ran-
domized cross-validations per-
formed before averaging all re-
sults.

Cross-validation folds 10 Number of folds used in one iter-
ation of cross-validation.

Maximum frames 250 Number of frames used from the
original video data for build-
ing histograms and autoregres-
sive parameters. Additional
frames are ignored.

Autoregressive patch size 15 Width and height in pixels of the
video patch used to train the au-
toregressive model.



Supplementary Movies

All videos are captured at 200 fps and formatted with a playback rate of 30 fps. All scale bars are 10

µm. Black boxes in each video depicts the ROIs selected for analysis.

Movie S1. Example of normal CM of nasal biopsy from control. These videos depict normal,
healthy motion (Fig. 1A). The cilia beat in synchronized waves with a forward power stroke followed by
a slower recovery stroke.

Movie S2. Example of abnormal CM of nasal biopsy from PCD patient. This video depicts
the abnormal CM of a patient with PCD. Note the slow, dyskinetic and restricted CM and also
immotile cilia.

Movie S3. Example of abnormal asynchronous and wavy CM. This video depicts wavy and
asynchronous CM (Fig. 1A). Thus the cilia movement is not synchronized, and the beat pattern is
symmetric with respect to the forward and backward strokes.

Movie S4. Example of abnormal CM with incomplete stroke. This video depicts wavy and
asynchronous CM (Fig. 1A). Thus the cilia movement is not synchronized, and the beat pattern is
symmetric with respect to the forward and backward strokes.

Movie S5. Example of abnormal CM with asynchronous beat and incomplete stroke. This
video depicts dyskinetic CM (Fig. 1A) that is asynchronous and with incomplete stroke.

Movie S6. Example of a video capture artifact of extraneous tissue motion. This video depicts
the effects of spurious sample motion. This motion is reflected in the optical flow computations,
resulting in rotation and deformation quantities that capture both the depicted CM and the motion of
the camera.

Movie S7. Example of a video capture artifact of poor camera focus. This video depicts the
effects of blurry, unfocused video captures. This results in a very low signal-to-noise ratio, making the
CM difficult to detect and quantify.



Movie S8. Example of a false negative prediction. This video depicts ROIs of a airway sample
with abnormal CM, but is consistently misclassified by our framework as having normal CM. In this
case, there is a significant amount of spurious motion due to interference from nearby cells in both
ROIs, causing the framework’s misclassification.

Movie S9. Example of a false positive prediction. This video depicts ROIs of normal CM our
method consistently misclassified as having abnormal CM. Videos from a top-down perspective were
rare in both datasets, but this perspective makes lateral motion much less apparent to our framework,
resulting in misclassification.
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