Engineered production of cancer targeting peptide (CTP)-containing C-1027 in *Streptomyces globisporus* and biological evaluation

Wenli Li^a , Xiuling Li^b, Tingting Huang^c, Qihui Teng^c, Ivana Crnovcic^c, Christoph Rader^{b,d} and Ben Shen^{*a,c,d,e}

^aDivision of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA, and ^bDepartment of Cancer Biology, ^cDepartment of Chemistry, ^dDepartment of Molecular Therapeutics, and ^eNatural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA.

*Correspondence to: E-mail: <u>shenb@scripps.edu</u>, Tel: (561) 228-2456, Fax: (561) 228-2472

Supplementary Information

Table S1.	Bacterial plasmids and strains used in this study	S2		
Figure S1.	C-1027 biosynthetic gene cluster and sequence alignment	S3		
Figure S2.	Electrospray mass spectra for native and NGR-containing CagAs	S4		
Figure S3.	Flow cytometric pattern of CD13 expression in selected cancer cell lines	S5		
Figure S4.	Cytotoxicity of native and NGR-containing C-1027 chromoproteins toward			
	selected cancer cell lines	S6		
References				

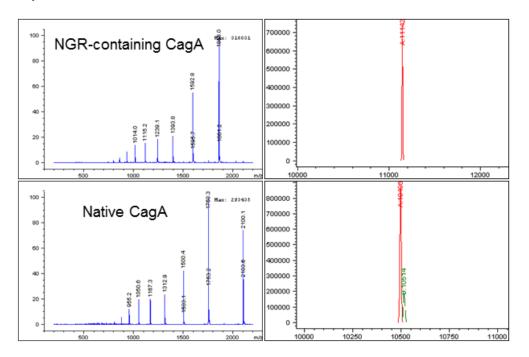
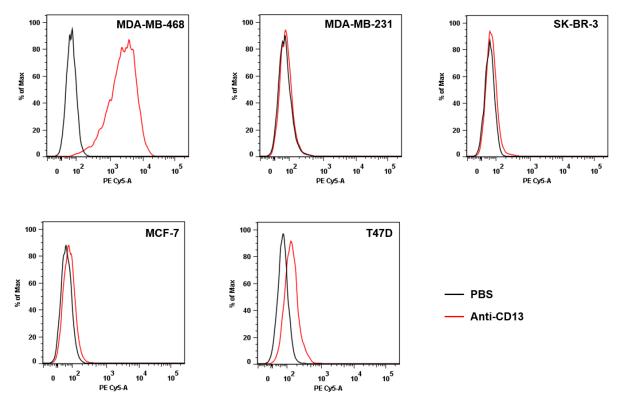

genotype and description	reference
E. coli host for general subcloning	1
	2
plasmid.	
C-1027 wild type producer strain	3
cagA mutant resulted from integration of pBS1138 into S.	This study
	This study
	This study
	This study
S. globisporus SB1034, Apr ^S and Erm ^S , NGR-containing C-	
1027 producing	
Enedivne bioassay strain to measure the antibacterial activity	4
	·
Vector in <i>E. coli</i> for sub-cloning	Promega
•	Stratagene
	5
E. coli-Streptomyces shuttle vector, temperature-sensitive	6
replication origin, aac(3)/V resistance	
pOJ446-derived S. globisporus genomic library cosmid	7
	This study
5.76-kb Sacl fragments from pBS1136 insert into EcoRV of	This study
pKC1139	,
5.76-kb Sacl fragments from pBS1137 insert into EcoRV of	This study
pKC1139	
	This study
	This stude
	This study
4.3-KD ECOKI/ MINUM HAGMENT HOM PBS1141 INSERTED INTO	This study
	<i>E. coli</i> host for general subcloning Methylation-deficient <i>E. coli</i> host for intergeneric conjugation; contains pUZ8002, a non-transmissible <i>oriT</i> mobilizing plasmid. C-1027 wild type producer strain <i>cagA</i> mutant resulted from integration of pBS1138 into <i>S.</i> <i>globisporus</i> wild-type, <i>ermE</i> inserted in the middle of <i>cagA</i> , Erm ^R , C-1027 nonproducing <i>cagA</i> mutant resulted from integration of pBS1139 into <i>S.</i> <i>globisporus</i> wild-type, <i>ermE</i> inserted downstream of <i>cagA</i> , Erm ^R , C-1027 nonproducing recombinant strain resulted from integration of pBS1142 into <i>S. globisporus</i> SB1034, Apr ^S and Erm ^S , NGR-containing C- 1027 producing Enediyne bioassay strain to measure the antibacterial activity Vector in <i>E. coli</i> for sub-cloning Vector ontaining the <i>ermE</i> cassette <i>E. coli-Streptomyces</i> shuttle vector, temperature-sensitive replication origin, <i>aac(3)IV</i> resistance pOJ446-derived <i>S. globisporus</i> genomic library cosmid pUC18 containing 4.3-kb <i>Sacl</i> fragment from pBS1005 <i>ermE</i> from pIJ4026 ligated into <i>Bst</i> XI site (downstream of <i>cagA</i>) of pBS1135 <i>ermE</i> from pIJ4026 ligated into <i>Xhol</i> site (within the <i>cagA</i>) of pBS1035 5.76-kb <i>Sacl</i> fragments from pBS1136 insert into <i>Eco</i> RV of pKC1139 5.76-kb <i>Sacl</i> fragments from pBS1137 insert into <i>Eco</i> RV of

 Table S1. Bacterial strains and plasmids used in this study


Figure S1: The C-1027 biosynthetic gene cluster from *S. globisporus* (accession no: AY048670) with the *cagA* gene highlighted with an arrow, and sequence alignment between CagA (accession no: BAA01609) and selected apo-proteins of enediyne chromoproteins NcsA for neocarzinostatin (accession no: BAA01764), KedA for kedarcidin (accession no: ADG01894), AxnA for actinoxanthin (accession no: BAA02014) and McmA for macromomycin (accession no: P01549). The leader peptides, which are cleaved after the transport of the chromoproteins outside of the cell, are indicated with a red box.

0	10	cagA	20	30	40	50	60	70	80 kb
		Ļ							
					() ((a a a a aire a			
En En	ediyne cor	e 📕	Benzoxazo	linate 🗾 β-Aι	mino acid 📕	Sugar 📕	Resistance	Regulation	Unknown
			20		40	.t.	60	4	
CaqA	-MST.DH				40 8VAE001		DGOSVSVSVSGAZ		AP: 71
AxnA							DGOSVSVSVSGA		
NCSA				~			DGTVVKVAGAGL		
KedA							DGATVTVSASGF7		
McmA		• ~					NGOTVTVSATGLI		
nome	•	STO TO T	SAL BARAO,	IVOVANOLI A		OVIVILAIOID	NOVI VI VORI OLI		. /0
	80		* 1	.00	- 120	. *	140	*	
CagA	: VG-GQI	ACNPA	TATSFTTDZ	SCAASFSFVVR	KSYTGST-PE	TPVGSVDCATA	ACNLGAGNSG-	LDLGHVALTE	G : 143
AxnA	: VG-GQI	A CN PA	TATSFTTDZ	SCAASFSFVVR	KSYAGST-PE	GTPVGSVDCATE	ACNLGAGNSG-	LDLGHVALTE	G : 143
NcsA	: VDTGVI	ACNPA	dfssv h ad%	NGSASTSLTVR	RSFEGFL-FD	TRWGTVDCTTA	ACOVGLSDAAG	NGPEGVAISE	N : 147
KedA	: LADGRG	ACNVA	EFHDFSLS-	GEGITSVVVR	RSFTGYVMPD	SPEVGAVDCDTA	PGGCQIVVGGNT	E-YGNAAISE	G : 145
McmA	: VEPGVI	GCDAT	TSTDVTADZ	ACKITAQLKVH	SFQAVVGAN	gipw <mark>givnc</mark> kvv	SCSAGLGSDSC	EGAA-Q <mark>AITE</mark>	A : 144

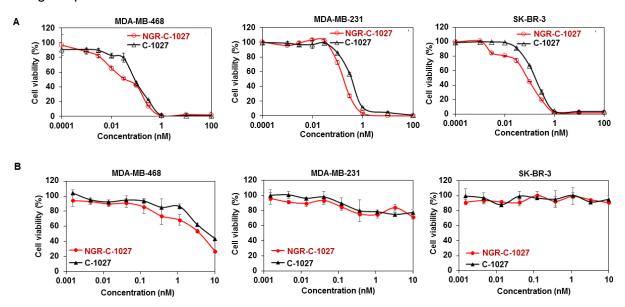

Figure S2. Electrospray mass spectra for native and NGR-containing CagAs. The predicted molecular weights of native and NGR-containing CagAs are 10,501.5 and 11,149.2 Da, respectively.

Figure S3. Flow cytometric pattern of CD13 expression in selected breast cancer cell lines. The expression levels of CD13 in breast cancer cell lines were analyzed by flow cytometry. Cells were stained with PE-conjugated anti-CD13 antibody.

Figure S4. Cytotoxicity of native and NGR-containing C-1027 (NGR-C-1027) chromoproteins toward MDA-MB-468 (CD13-positive), MDA-MB-231 (CD13-negative), and SK-BR-3 (CD13-negative) cell lines. (A) Cells were incubated with the indicated concentration of C-1027 chromoproteins for 24 h before the MTS assay was developed. (B) Cells were incubated with indicated concentration of drugs for 15 min before being washed with PBS. Cells were further incubated with drug-free complete medium for 72 h before the MTS assay was developed. Cell viability was calculated as percentage of untreated control. Each point represents the mean \pm SD of 3 replicates, and the IC₅₀s were determined by a computerized curve fitting using GraphPad Prism as summarized in Table 1.

References

- 1. Sambrook, J.; Fritsch, E, F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, Second Edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; **1989**.
- 2. Kieser, T., Bibb, M. J.; Chater, K. F.; Buttner, M. J.; Hopwood, D. Practical *Streptomyces* genetics: a laboratory manual. Norwich: John Innes Foundation, Norwich, UK; **2000**.
- 3. Liu, W.; Christenson, S. D.; Standage, S.; Shen, B. Biosynthesis of the enediyne antitumor antibiotic C-1027. *Science.* **2002**, *297*, 1170-1173.
- 4. Hu, J. L. Xue, Y. C. Xie, M. Y. Zhang, R. Otani, T. Minami, Y. Yamada, Y. Marunaka, T. A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. *J Antibiot*. **1988**, *41*, 1575-1579.
- 5. Bibb, M. J.; Janssen, G. R.; Ward, J. M. Cloning and analysis of the promoter region of the erythromycin resistance gene (*ermE*) of *Streptomyces erythraeus*. *Gene*, **1985**, *38*, 215–226.
- 6. Bierman, M.; Logan, R.; O'Brien, K.; Seno, E. T.; Rao, R. N.; Schoner, B. E. Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene*. **1992**, *116*, 43-69.
- 7. Liu, W.; Shen, B. Genes for production of the enediyne antitumor antibiotic C-1027 in *Streptomyces globisporus* are clustered with the *cagA* gene that encodes the C-1027 apoprotein. *Antimicrob Agents Chemother*. **2000**, *44*, 382-392.
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T. J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J. D.; Higgins, D. G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol.* 2011, 7, 539.
- 9. Nicholas, K. B., Nicholas, H.B. Jr., Deerfield, D.W. II. GeneDoc: Analysis and Visualization of Genetic Variation, EMBNEW.NEWS. **1997**, *4*, 14.