Supplementary Information

Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA

Lihui Tian, Li Liu, Yueyuan Li, Qin Wei, Wei Cao^{*}

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China

Lihui Tian (E-mail: jndx_Tianlihui@163.com)

Li Liu (E-mail: liul_jndx@163.com)

Yueyuan Li (E-mail: yueyuanli86@163.com)

Qin Wei (E-mail: sdjndxwq@163.com)

Wei Cao (E-mail: jn_chm302@163.com)

*Corresponding author. Tel.: +86-531-82767890. Fax: +86-531-82765475.

E-mail address: jn_chm302@163.com (jncw88@163.com)

Figure S1 SEM images of NGs (A) and CD-NGs (B); The TEM of NGs (C) and CD-NGs (E);(D) The UV-vis spectra of CD-NGs (a), β-CD (b) and NGs (c);

Nanomaterials	Marker	Linear range	Limit of Detection	Deferrer
		(ng/mL)	(pg/mL)	Reference
PdPt nanocages/MWCNT-Ab ₂	CEA	0.001-20	0.2	1
Ab ₂ -Au-TB-rGO	CEA	0.01-100	3	2
Ag-Ab ₂	CEA	0.001-50	0.27	3
Fe ₃ O ₄ /Au-Ab ₂	CEA	0.001-30	0.39	4
HRP-Ab ₂ -PtNPs	CEA	0.02-120	12	5
Ab ₂ -NiAuPt-NGs	CEA	0.001-100	0.27	This work

 Table S1 Comparison of the performance of the proposed electrochemical CEA immunosensor

 for other reports

Table S2. Comparison of different methods for the detection of CEA

Methods	Linear range	Limit of detection	References
FL quenching method	0.257~12.9 ng/mL	5 pg/mL	6
Paper-based microfluidic electrochemical	0.01~100 ng/mL	0.01 ng/mL	7
Electrochemical immunosensor	0.001~20 ng/mL	0.2 pg/mL	1
ECL immunosensor	20 fg/mL~1.0 ng/mL	6.7 fg/mL	8
Electrochemical immunosensor	0.001~100ng/mL	0.27 pg/mL	This method

References

- Li, N. *et al.* An ultrasensitive electrochemical immunosensor for CEA using MWCNT-NH₂ supported PdPt nanocages as labels for signal amplification. *J. Mater. Chem. B.* **3**, 2006-2011 (2015).
- Liu, N., Liu, Z., Han, H. & Ma, Z. Graphene oxide reduced directly by redox probes for multiplexed detection of tumor markers. *J. Mater. Chem. B.* 2, 3292-3298 (2014).
- Wang, X. *et al.* An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. *Sensor. Actuat. B-Chem.* 206, 30-36 (2015).
- Dong, P., Liang, R., Huang, H. & Qiu, J. Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe₃O₄/Au NPs. *J. Electroanal. Chem.* **761**, 112–117 (2016).
- Yang. H. *et al.* Electrochemical immunosensor for detecting carcinoembryonic antigen using hollow Pt nanospheres-labeled multiple enzyme-linked antibodies as labels for signal amplification. *Biochem. Eng. J.* 56, 116–124 (2011).
- Zhou, Z. M. *et al.* Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. *Biosens. Bioelectron.* 59, 397-403 (2014).
- Wu, Y., Xue, P., Hui, K. M. & Kang, Y. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. *Biosens. Bioelectron.* 52, 180-187 (2014).
- Zhuo, Y. *et al.* Sandwich-format electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-L-cysteine-hollow gold nanosphere nanocomposites. *Biosens. Bioelectron.* 53, 459-464 (2014).