

Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria

Haohao Dong^{1§}, Zhengyu Zhang^{1§}, Xiaodi Tang^{2§}, Shihai Huang^{1,3}, Huanyu Li¹, Bo Peng¹,
Changjiang Dong^{1*}

Figure S1. Structure of cardiolipin.

Figure S2. SDS-PAGE of purified *StPbgA* and crystals and the gel filtration chromatography of the *StPbgA245-586*. (A) SDS-PAGE of purified PbgA proteins and crystals from the *Salmonella*. 1, purified *StPbgA191-585* protein, 2, crystals from the *StPbgA191-585* protein, indicating the protein was cleaved during crystallization. 3, *StPbgA191-585* was digested with elastase for 2hrs at room temperature at 1:100 mole ratio.4, crystals from the *StPbgA191* after elastase digestion. 5. Purified protein *StPbgA245-585*. (B) The gel filtration chromatograph of the *StPbgA245-586*.

Figure S3. The structures of *St*PbgA245-586, *St*PbgA191-586 and *Ec*PbgA245-586 are very similar. The three structures of *St*PbgA245-586 (red), *St*PbgA191-586 (blue) and *EC*PbgA245-586 (green) are superimposed well with RMSD of 0.405 Angstrom over 338 Ca atoms between *St*PbgA245-586, *St*PbgA191-586, and RMSD of 1.08 angstrom over 310 Ca atoms between *St*PbgA245-586 and *Ec*PbgA245-586. (A) The three structures are superimposed. (B) The figure a rotates 180° along y axis.