Supplemental Information

Title: Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus

Authors:

Valéria Scorsato^{1, 2, 3}, Tatiani B. Lima^{1,2}, Germanna L. Righetto², Nilson I. T. Zanchin⁴, José Brandão-Neto⁵, James Sandy⁵, Humberto D'Muniz Pereira⁶, Állan Ferrari¹, Fabio C. Gozzo¹, Juliana H. C. Smetana^{2*} and Ricardo Aparicio^{1*}

Affiliations:

1. Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.

2. Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil.

- 3. Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
- 4. Carlos Chagas Insitute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil,
- 5. Diamond Light Source, OX11 0DE, Chilton, UK
- 6. Physics Institute of São Carlos, Brazil
- * Co-senior author.

Correspondence and requests for materials should be addressed to J.H.C.S (e-mail juliana.smetana@lnbio.cnpem.br) or R.A. (e-mail aparicio@iqm.unicamp.br).

Fig. S1. Dimerization of TIPRLAN after TEV cleavage.

(A) Coomassie stained SDS-PAGE analysis of purified TIPRL Δ N and full length TIPRL, before (-) and after (+) removal of the histidine tag with TEV protease. TIPRL Δ N undergoes partial cleavage as seen by the presence of a double band, while full length TIPRL is completely cleaved under the same conditions. Uncleaved protein in the second lane is marked with an asterisk. TEV protease appears as a faint band in the second and fourth lanes. (B) Size exclusion profiles of TIPRL Δ N on a Superdex 200 10/30 column after cleavage with the TEV protease. TIPRL Δ N was analyzed at three different concentrations - 3, 20 and 40 mg ml⁻¹, showing a concentration-dependent dimerization which was observed as a second peak eluting around 14 ml, indicated with a black arrow. Uncleaved TIPRL Δ N, as well as full length TIPRL both cleaved and uncleaved (not shown) were not able to form this second peak under similar conditions.

Fig. S2. Cross-linking/MS analysis of TIPRL Δ N dimerization. (A) The crystal structure of TIPRL Δ N contains two molecules in the asymmetric unit that seem to form a dimer, depicted as pale green (chain A) and blue (chain B) cartoon representations. The dimer interface involves the N-terminus, more specifically the β 1 strand. Cross-linking-MS analysis detected an interpeptide crosslink between Lys29 in both molecules, suggesting that this N-terminal dimer is also observed in solution. Lys29 is shown in sticks representation and the 18.4Å distance to its counterpart in the other molecule is indicated with a red trace. The black arrow indicates the position of the N-terminus. The bound peptides are shown in sticks representation. (B) MS spectrum of the detected cross-link.

Figure S3. Crosslinking/MS analysis of the C-terminus of TIPRL. The C-terminal lysine 267 was crosslinked to each one of the tryptic peptides which are highlighted in different colors on the TIPRL structure (top) and sequence (bottom). Each cross-linked lysine is shown as sticks in the structure and highlighted in bold in the sequence. The arrow indicated the position of the C-terminus. The tryptic peptide shown in red does not appear in the electron density.

Figure S4. Docking models of the TIPRL-PP2Ac interaction without the C-terminal region of PP2Ac (A) and after insertion of the C-terminus with manual building of the connecting residues (B). An ensemble of five models is shown in each panel.

Table S1. TIPRL DSS cross-linked inter-peptides (labeled alpha and beta) and intra-peptides identified by LC-MS/MS. Cross-linked residues are underlined.

Cross-linked inter-peptides	
Peptide alpha	Peptide beta
L <u>K</u> VVPTTDHIDTEK	LKAR
LYHEAD <u>K</u> TYMLR	LKAR
IDPNPADSQ <u>K</u> STQVE	LKAR
THIMKSADVEK	LKAR
IDPNPADSQ <u>K</u> STQVE	THIMKSADVEK
LYHEADKTYMLR	THIMKSADVEK
IDPNPADSQ <u>K</u> STQVE	L <u>K</u> VVPTTDHIDTEK
EAVCE <u>K</u> LIFPER	LKAR
LKVVPTTDHIDTEK	LYHEADKTYMLR
IDPNPADSQ <u>K</u> STQVE	LYHEAD <u>K</u> TYMLR
IDPNPADSQ <u>K</u> STQVE	GTLLGESLKLK
IDPNPADSQ <u>K</u> STQVE	EAVCEKLIFPER
LYHEAD <u>K</u> TYMLR	EAVCEKLIFPER
THIMKSADVEK	THIMKSADVEK
ESKISSLMHVPPSLFTEPNEISQYLPIK	EVIKPYDWTYTTDYK
ES <u>K</u> ISSLMHVPPSLFTEPNEISQYLPIK	CVNNYQGML <u>K</u> VACAEEWQESR
SADVEKLADELHMPSLPEMMFGDNVLR	IDPNPADSQ <u>K</u> STQVE
L <u>k</u> vvpttdhidtek	EAVCEKLIFPER
VVPTTDHIDTE <u>k</u> lk	LYHEAD <u>K</u> TYMLR
ESKISSLMHVPPSLFTEPNEISQYLPIK	EAVCEKLIFPER
TEGEHSKEVIKPYDWTYTTDYK	GTLLGESL <u>K</u> LK
TEGEHSKEVIKPYDWTYTTDYK	LYHEADKTYMLR
IDPNPADSQKSTQVE	DFCFGPWKLTASK

Cross-linked intra-peptides

THIMKSADVEKLADELHMPSLPEMMFGDNVLR
ESKISSLMHVPPSLFTEPNEISQYLPIKEAVCEK
EVIKPYDWTYTTDYKGTLLGESLK
GTLLGESL <u>K</u> LVVPTTDHIDTEK
ISSLMHVPPSLFTEPNEISQYLPIKEAVCEKLIFPER
LTAS <u>K</u> THIM <u>K</u> SADVEK
TEGEHSKEVIKPYDWTYTTDYK
VVPTTDHIDTE <u>K</u> LKAR
E <u>SK</u> ISSLMHVPPSLFTEPNEISQYLPIK

Table S2. Sequences of mutagenic primers

Mutants	Sequence (5' - 3')
TIPRL	
N68A-F	catettaacgcatetgtagcagcgaactcaattecaaagecaga
N68A-R	tctggctttggaattgagttcgctgctacagatgcgttaagatg
D71L-F	gttgtttacacatcttaacgctaatgtagcattgaactcaattccaaagccaga
D71L-R	tctggctttggaattgagttcaatgctacattagcgttaagatgtgtaaacaac
I136T-F	${\tt ctctggctttcaattttctgtatccgtatgatctgttgtaggtacaacctt}$
I136T-R	aaggttgtacctacaacagatcatacggatacagaaaaattgaaagccagag
L141A-F	cttaatctgttctctggctttcgcttttctgtatctatatgatctgttgtag
L141A-R	ctacaacagatcatatagatacagaaaaagcgaaagccagagaacagattaag
I147A-F	aaaggagaacttcttcaaaaaacttagcctgttctctggctttcaatttttctg
I147A-R	cagaaaaattgaaagccagagaacaggctaagttttttgaagaagttctccttt
F150A-F	aaaaggagaacttcttcagcaaacttaatctgttctctggctttcaatttttctg
F150A-R	cagaaaaattgaaagccagagaacagattaagtttgctgaagaagttctcctttt
F180A-F	ccgcaacagcagggcaaagctagaaggcattactctaatc
F180A-R	gattagagtaatgccttctagctttgccctgctgttgcgg
L182A-F	ctcaagaaaaaccgcaacgccaggaaaaagctagaaggca
L182A-R	tgccttctagctttttcctggcgttgcggtttttcttgag
R184A-F	ccatcaattctcaagaaaaacgccaacagcaggaaaaagctaga
R184A-R	tctagctttttcctgctgttggcgtttttcttgagaattgatgg
R200A-F	ttgtcagcctcatggtaaagtgccgtgtcattcattctgataag
R200A-R	cttatcagaatgaatgacacggcactttaccatgaggctgacaa
S239E-F	cttcctttattggtaaatactgctctatttcattaggttccgtgaagagggaag
S239E-R	cttccctcttcacggaacctaatgaaatagagcagtatttaccaataaaggaag
F180L182AA-F	teteaagaaaaacegeaacgeeagggeaaagetagaaggeattaetetaatetteaca
F180L182AA-R	tgtgaagattagagtaatgccttctagctttgccctggcgttgcggtttttcttgaga

PP2Ac

C-Terminal	aggagaaatttataggaactcgtctggggtgcgccgtg
C-Terminal	cacggcgcaccccagacgagttcctataaatttctcct
C-Terminal	aatttataggaagtagtctggctagcgccgtgtaacatgaggctc
C-Terminal	gagceteatgttacaeggegetageeagaetaetteetataaatt
PP2Acß _Y307E_F	attggatccttacaggaactcgtctggggtacgacgag
PP2Acβ_Y307E_R	ctcgtcgtaccccagacgagttcctgtaaggatccaat
PP2Ac _{β_} T304Stop	cttacaggaagtagtctggctaacgacgagtaacatgtggctc
PP2Acβ_T304Stop	gagccacatgttactcgtcgttagccagactacttcctgtaag

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Docking. All computational calculations were performed employing protocols included in Rosetta Molecular Modeling Suite (rosetta_src_2015.38.58158_bundle version): Relax protocol (relax.mpi.linuxccrelease), RosettaDock protocol (docking_protocol.mpi.linuxccrelease), Interface Analyser application (Interface_Analyser.mpi.linuxccrelease). The list of options for each protocol is described below.

Relax protocol -database {Rosetta database directory} -1 {file containing a list of pdb files name to process} -ex1 -ex2 -use_input_sc -out:file:scorefile (output file name desired) -out:prefix (desired prefix to add to each decoy) -nstruct (number of decoys to generate) # RosettaDock protocol -database {Rosetta database directory} -1 {file containing a list of pdb files name to process} -dock_pert 3 8 -ex1 -ex2aro -use input sc -out:file:scorefile (output file name desired) -out:prefix (desired prefix to add to each decoy) -nstruct (number of decoys to generate) #Interface Analyser application -database {Rosetta database directory} -1 {file containing a list of pdb files name to process} -compute packstat -ex1

-ex2aro -use_input_sc -pack_input -pack_separated

-add_regular_score_to_scorefile

-out:file:score only

-out:file:scorefile (output file name desired)

8

Inter-peptide 1 (TIPRLAN)

m/z

Intra-peptide 2 (TIPRLΔN)

Intra-peptide 3 (TIPRLAN)

Intra-peptide 4 (TIPRLAN)

Supplementary Dataset 2. Sequence coverage map and deuterium incorporation plots related to Fig. 4 d, e, f.

Sequence coverage map for TIPRL. Solid blue bar under the sequence denotes the peptides identified after HDX-MS analysis with approximately 87% of sequence coverage.

Total: 72 Peptides, 87.3% Coverage, 3.09 Redundancy

Deuterium incorporation plots related to Fig. 4 d, e, f.

