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A APPENDIX

A.1 POSSESSING GROUPING COHERENCE

Data with fully aliased structures commonly appear in observational studies and designed

experiments. For example, in survey data, household income is the sum of the income of all

family members. If all income variables are present, there is perfect aliasing. For large scale

problems it can be computationally infeasible to determine which columns of a design matrix

are aliased. In such situations it is desirable to use a methodology that can accomodate

aliasing gracefully. Unlike other grouping techniques that require a prespecified grouping

structure, we show that OEM naturally groups columns that are fully aliased. The group

lasso penalty requires knowledge of which columns must be grouped, whereas OEM groups

aliased columns without group structure specification a priori. We provide an illustration

of grouping coherence in Section B.3.2. In this section, we consider the convergence of the

OEM algorithm when the regression matrix X in (6) is singular due to fully aliased columns.

Let X be standardized as in (9) with columns x1, . . . ,xp. If xi and xj are fully aliased, i.e.,

|xi| = |xj|, then the objective function in (8) for the lasso is not strictly convex and has

many minima (Zou and Hastie 2005).

If some columns of X are identical, it is desirable to have grouping coherence with

the same regression coefficient. This is suggested by Zou and Hastie (2005) and others.

Definition 1 makes this precise.

Definition 1. An estimator β̂ = (β̂1, . . . , β̂p)
′ of β in (6) has grouping coherence if xi = xj

implies β̂i = β̂j and xi = −xj implies β̂i = −β̂j.

Some penalties other than the lasso can produce estimators with grouping coherence (Zou

and Hastie 2005; Bondell and Reich 2008; Tutz and Ulbricht 2009; Petry and Tutz 2012).

But they often require more than one tuning parameters, which lead to more computational

burden. Instead of changing the penalty, OEM can give a lasso solution with this property.

This also holds for SCAD and MCP. Recall that β̂
∗

= (X ′X)+X ′y, which can be obtained

by OEM, has a stronger property than grouping coherence.
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Let 0p denote the zero vector in Rp. Let e+
ij be the vector obtained by replacing the ith

and jth entries of 0p with 1. Let e−ij be the vector obtained by replacing the ith and jth

entries of 0p with 1 and −1, respectively. Let E denote the set of all e+
ij and e−ij. By Definition

1, an estimator β̂ has grouping coherence if and only if for any α ∈ E withXα = 0, α′β̂ = 0.

Lemma A.1. Suppose that (X ′X + ∆′∆ = dIp) holds. For the OEM sequence {β(k)} of

the lasso, SCAD or MCP, if Xα = 0 and α′β(k) = 0 for α ∈ E , then α′β(k+1) = 0.

Proof. See Section C

Remark 1. Lemma A.1 implies that, for k = 1, 2, . . ., β(k) has grouping coherence if β(0) has

grouping coherence. Thus, for this case, any limit point of {β(k)} has grouping coherence.

When X in (6) has fully aliased columns, the objective function in (8) for the lasso has

many minima and hence the condition in Theorem 4 does not hold. Theorem A.1 shows

that, even with full aliasing, an OEM sequence (13) for the lasso converges to a point with

grouping coherence.

Theorem A.1. Suppose that (X ′X + ∆′∆ = dIp) holds. If β(0) has grouping coherence,

then as k →∞, the OEM sequence {β(k)} of the lasso converges to a limit that has grouping

coherence.

Proof. See Section C

A.1.1 Grouping Coherence Illustration

We illustrate grouping coherence of OEM in Section A.1 with a simulated data set of four

predictors, where the variables X1 and X2 are generated from independent standard normal

distributions. The degenerated design matrix is formulated by X3 = −X1 and X4 = −X2,

where the predictors consist of two pairs of perfectly negative correlated random variables.

The true relationship between the response and predictors is y = −X3 − 2X4.

Figure 4 displays the solution paths for the data using the lasso fitted by R packages

glmnet and oem on the same set of tuning parameters λ. The package lars gives the same
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Figure 1: Solution paths of the lasso fitted by CD (the upper panel) and OEM (the lower
panel).

solution path as glmnet. This figure reveals that OEM estimates the perfectly negative

correlated pairs to have exactly the opposite signs but CD only has X1 and X2 in the model

and fixes X3 and X4 to be zero for any λ. This difference is due to the fact that in every

iteration, both CD and LARS will find the predictor with the largest improvement on the

target function and if more than one coordinates can give better results, only the one with

the smallest index will enter the model. OEM considers all the predictors in every iteration

equally, so the ones with same contribution to the target will receive equal steps. The

grouping coherence property of OEM also holds for non-convex penalties such as SCAD,

with the solution paths shown in Figure 1 in the Supplementary Materials, where the same

data are used as above for the lasso.
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A.2 CONVERGENCE RATE OF OEM

We now derive the convergence rate of the OEM sequence in (7). Following Dempster, Laird,

and Rubin (1977), write

β(k+1) = M(β(k)),

where the map M(β) = (M1(β), . . . ,Mp(β))′ is defined by (7). We capture the convergence

rate of the OEM sequence {β(k)} through M. Recall

S = diag(s1, . . . , sp), (1)

Let β∗ be the limit of the OEM sequence {β(k)}. As in Meng (1994), we call

R = lim sup
k→∞

‖β(k+1) − β∗‖
‖β(k) − β∗‖

= lim sup
k→∞

‖M(β(k))−M(β∗)‖
‖β(k) − β∗‖

, (2)

the global rate of convergence for the OEM sequence. If there is no penalty in (8), i.e.,

computing the OLS estimator, the global rate of convergence R in (2) becomes the largest

eigenvalue of J(β∗), denoted by R0, where J(φ) is the p × p Jacobian matrix for M(φ)

having (i, j)th entry ∂Mi(φ)/∂φj for φ = (φ1, . . . , φp)
′. For S in (1), J(β∗) = S−2A/d

with A = ∆′∆. Recall that γp is the smallest eigenvalue of S−1X ′XS−1. We have

R0 =
d− γp
d

. (3)

For (8), the penalty function P (β;λ) typically is not sufficiently smooth and R in (2)

has no analytic form. Theorem A.2 gives an upper bound of RNET, the value of R for the

elastic-net penalty.

Theorem A.2. For S in (1), RNET 6 R0.

Remark 2. Theorem A.2 indicates that, for the same X and y in (6), the OEM solution

for the elastic-net numerically converges faster than its counterpart for the OLS. Since the

lasso is a special case of the elastic-net, this theorem holds for the lasso as well.
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Figure 2: (Left) the average values of R0 in (3) against increasing n for Example 1; (right)
the average iteration numbers against increasing n for Example 1, where the dashed and
solid lines denote the OLS estimator and the lasso, respectively.

Remark 3. From (3) and Theorem A.2, the convergence rate of the OEM algorithm depends

on S and d. For a given S, clearly d = γ1 reaches the optimal rate. With such a d, it is

desirable to use the S that maximizes γp/γ1. Unfortunately, numerical experiments show

that this optimization problem does not have a trivial solution like (5) or S = Ip. Therefore,

we usually use S = Ip in practice;

Remark 4. For S = Ip, the rate in (3) and Theorem A.2 is the fastest when d = γ1 = γp,

i.e., if X is orthogonal and standardized. This result suggests that OEM converges faster if

X has controlled correlation like from a supersaturated design or a nearly orthogonal Latin

hypercube design (Owen 1994).

Example 1. We generate X from a p dimensional Gaussian distribution N(0,V ) with n

independent observations, where the (i, j)th entry of V is 1 for i = j and ρ for i 6= j. Let

βj = (−1)j exp
[
− 2(j − 1)/20

]
for j = 1, . . . , p. (4)

Values of y and β are generated by (6) and (4). The same setup was used in Friedman,

Hastie, and Tibshirani (2009). For p = 10, ρ = 0.1, λ = 0.5 and increasing n, the left

panel of Figure 2 depicts the average values of R0 in (3) against increasing n and the right

panel of the figure depicts the average iteration numbers against increasing n, with the

dashed and solid lines corresponding to the OLS estimator and the lasso, respectively. This
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figure indicates that OEM requires fewer iterations as n becomes larger, which makes OEM

particulary attractive for situations with big data. The OEM sequence for the lasso requires

fewer iteration than its counterpart for the OLS, thus validating Theorem A.2.

B EXAMPLES

B.1 Orthogonalization Examples

Example 2. Suppose that X in (6) is orthogonal. Take d = γ1 and

S = diag

[
(
n∑
i=1

x2
i1)1/2, . . . , (

n∑
i=1

x2
ip)

1/2

]
. (5)

Note that S−1X ′XS−1 is an identity matrix. Consequently, t = p, and ∆ in (21) is empty,

which indicates that active orthogonalization will not overshoot.

Example 3. Consider a two-level design in three factors
−1 −1 −1

−1 1 1

1 −1 1

1 1 −1

 .

The regression matrix including all main effects and two-way interactions is

X =


−1 −1 −1 1 1 1

−1 1 1 −1 −1 1

1 −1 1 −1 1 −1

1 1 −1 1 −1 −1

 ,

where the last three columns for the interactions are fully aliased with the first three columns
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for the main effects. For S = I3 and d = γ1, (21) gives

∆ =


0 −2 0 0 −2 0

0 0 −2 −2 0 0

−2 0 0 0 0 −2

 .

The structure of ∆ is flexible in the sense that the interaction columns do not need to be a

product of other two columns.

Example 4. Consider a 1000 × 10 random matrix X = (xij) with entries independently

drawn from the uniform distribution on [0, 1). Using S in (5), (21) gives

∆ =



−7.99 16.06 −6.39 −18.26 12.91 −8.67 7.56 34.08 −17.04 −11.81

26.83 −12.09 7.91 1.02 −22.75 −6.90 −19.98 26.10 −0.86 0.88

−4.01 1.48 9.51 −21.99 19.46 −10.27 −25.12 −3.39 7.29 27.90

21.77 10.72 −0.61 −6.46 28.00 1.28 −6.86 −7.04 11.13 −30.64

−15.78 5.60 −15.26 −7.67 −9.76 23.93 −14.71 12.25 29.45 −7.89

16.34 10.61 −41.82 11.82 6.49 −7.38 −6.14 −1.82 −1.86 13.09

−8.15 24.97 12.11 24.35 3.66 −2.59 −27.84 −3.45 −9.40 −13.72

−5.35 −21.70 −4.16 7.42 13.98 29.84 −10.26 7.60 −25.13 7.78

−19.62 −22.43 −2.61 22.58 11.80 −22.08 1.25 15.87 14.94 0.31



.

Only nine rows need to be added to make this large X matrix orthogonal.

B.2 Iterative Formulas for Various Penalties

The regression model

y = Xβ+ ε, (6)

where X = (xij) is an n× p regression matrix.
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The third step of OEM is the M-step,

β(k+1) = arg min
β∈Θ

Q(β | β(k)), (7)

Consider a penalized version of (6):

min
β∈Θ

[
‖y −Xβ‖2 + P (β;λ)

]
, (8)

where β ∈ Θ, Θ is a subset of Rp, P is a penalty function, and λ is the vector of tuning

parameters. To apply the penalty P equally to all the variables, the regression matrix X is

standardized so that
n∑
i=1

x2
ij = 1, for j = 1, . . . , p. (9)

β
(k+1)
j = argmin

βj∈Θj

[
djβ

2
j − 2ujβj + Pj(βj;λ)

]
, for j = 1, . . . , p, (10)

with u = (u1, . . . , up)
′ defined in (23).

For the model in (6), denote the objective function in (8) by

l(β) = ‖y −Xβ‖2 + P (β;λ), (11)

which is defined on a subset Θ of Rp

1. The lasso (Tibshirani 1996), where Θj = R,

Pj(βj;λ) = 2λ|βj|, (12)

and (10) becomes

β
(k+1)
j = sign(uj)

(
|uj| − λ
dj

)
+

. (13)

Here, for a ∈ R, (a)+ denotes max{a, 0}.

2. The nonnegative garrote (Breiman 1995), where Θj = {x : xβ̂j > 0}, Pj(βj;λ) =

9



2λβj/β̂j, β̂j is the OLS estimator of βj, and (10) becomes

β
(k+1)
j =

(
ujβ̂j − λ
djβ̂2

j

)
+

β̂j.

3. The elastic-net (Zou and Hastie 2005), where Θj = R,

Pj(βj;λ) = 2λ1|βj|+ λ2β
2
j . (14)

and (10) becomes

β
(k+1)
j = sign(uj)

(
|uj| − λ1

dj + λ2

)
+

. (15)

5. SCAD (Fan and Li 2001), where Θj = R, Pj(βj;λ) = 2Pλ(|βj|), and

P ′λ(θ) = λI(θ 6 λ) + (aλ− θ)+I(θ > λ)/(a− 1), (16)

with a > 2, λ > 0, and θ > 0. Here, I is the indicator function. If X in (6) is

standardized as in (9) with dj > 1 for all j, (10) becomes

β
(k+1)
j =


sign(uj)

(
|uj| − λ

)
+
/dj, when |uj| 6 (dj + 1)λ,

sign(uj)
[
(a− 1)|uj| − aλ

]
/
[
(a− 1)dj − 1

]
, when (dj + 1)λ < |uj| 6 aλdj,

uj/dj, when |uj| > aλdj.

(17)

6. The MCP (Zhang 2010), where Θj = R, Pj(βj;λ) = 2Pλ(|βj|), and

P ′λ(θ) = (λ− θ/a)I(θ 6 aλ) (18)

with a > 1 and θ > 0. If X in (6) is standardized as in (9) with dj > 1 for all j, (10)
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becomes

β
(k+1)
j =

 sign(uj)a
(
|uj| − λ

)
+
/(adj − 1), when |uj| 6 aλdj,

uj/dj, when |uj| > aλdj.
(19)

7. The “Berhu” penalty (Owen 2006), where Θj = R, Pj(βj;λ) = 2λ
{
|βj|I(|βj| < δ) +

(β2
j + δ2)I(|βj| > δ)/(2δ)

}
for some δ > 0, and (10) becomes

β
(k+1)
j =

 sign(uj)
(
|uj| − λ

)
+
/dj, when |uj| < λ+ djδ,

ujδ/(λ+ djδ), when |uj| > λ+ djδ.

B.3 FIGURES

B.3.1 Illustration of the geometry of OEM

For illustration of the implications of Lemma 1, Figure 3 expands two vectors x1 and x2 in

R2 to two orthogonal vectors xc1 and xc2 in R3.

B.3.2 Grouping Coherence

We illustrate grouping coherence of OEM in Section A.1 with a simulated data set of four

predictors, where the variables X1 and X2 are generated from independent standard normal

distributions. The degenerated design matrix is formulated by X3 = −X1 and X4 = −X2,

where the predictors consist of two pairs of perfectly negative correlated random variables.

The true relationship between the response and predictors is y = −X3 − 2X4.

Figure 4 displays the solution paths for the data using the lasso fitted by R packages

glmnet and oem on the same set of tuning parameters λ. The package lars gives the same

solution path as glmnet. This figure reveals that OEM estimates the perfectly negative

correlated pairs to have exactly the opposite signs but CD only has X1 and X2 in the model

and fixes X3 and X4 to be zero for any λ. This difference is due to the fact that in every

iteration, both CD and LARS will find the predictor with the largest improvement on the

target function and if more than one coordinates can give better results, only the one with

11



y
x

2

x
c2

z

O

x
c1

x
1

x

Figure 3: Expand two two-dimensional vectors x1 and x2 to two three-dimensional vectors
xc1 and xc2 with x′c1xc2 = 0.

the smallest index will enter the model. OEM considers all the predictors in every iteration

equally, so the ones with same contribution to the target will receive equal steps. The

grouping coherence property of OEM also holds for non-convex penalties such as SCAD,

with the solution paths shown in Figure 1 in the Supplementary Materials, where the same

data are used as above for the lasso.
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Figure 4: Solution paths of the lasso fitted by CD (the upper panel) and OEM (the lower
panel).

B.3.3 Data Analysis Solution Paths

C PROOFS

C.1 Proof of Lemma 1

Define

B = diag(d− γt+1, . . . , d− γp) (20)

and

∆ = B1/2V 1S, (21)
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Figure 5: Solution paths of SCAD fitted by CD (from package ncvreg) in the upper panel
and OEM for the lower panel

where V 1 is the submatrix of V consisting of the last p− t rows. Put X and ∆ row by row

together to form a complete matrix Xc

Proof. From (20) and (21),

X ′cXc = X ′X + ∆′∆ = S(V ′ΓV + V ′1BV 1)S.

For the p× p identity matrix Ip,

dIp − Γ =

 0 0

0 B


It then follows that X ′cXc = S[V ′ΓV + V ′(dIp − Γ)V ]S = dS2, which completes the
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Figure 6: Solution paths for LASSO, SCAD and MCP for US census bureau data.
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proof.

C.2 Proof of Lemma 2

Proof. Let

u = (u1, . . . , up)
′ = X ′y +Aβ(k), (22)

We have ∆′∆ = dS2 −X ′X = S(dIp − S−1X ′XS−1)S. By the eigenvalue decomposition

of S−1X ′XS−1, the rank of the right side is p − t. We complete the proof by noting that

the ranks of ∆′∆ and ∆ are identical.

C.3 Proof of Theorem 1

Proof. Define D = Ip − γ−1
1 X ′X. Note that β(k+1) = γ−1

1 X ′y +Dβ(k). By induction,

β(k) = γ−1
1 (Ip +D + · · ·+Dk−1)X ′y +Dkβ(0)

= γ−1
1 V ′

Ip +

 Ir − γ−1
1 Γ0 0

0 −Ip−r

+ · · ·+

 (Ir − γ−1
1 Γ0)k−1 0

0 (−1)k−1Ip−r


·V V ′

 Γ
1/2
0 0

0 0

Uy +Dkβ(0)

= γ−1
1 V ′

 {
Ir + (Ir − γ−1

1 Γ0) + · · ·+ (Ir − γ−1
1 Γ0)k−1

}
Γ

1/2
0 0

0 0

Uy +Dkβ(0).

As k →∞,

Dk → V ′

 0

Ip−r

V
and Dkβ(0) → 0, which implies that

β(k) → V ′

 Γ
−1/2
0 0

0 0

Uy = β̂
∗
.
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This completes the proof.

C.4 Proof of Theorem 4

Proof. It suffices to show that S = {β∗}. For φ ∈ Θ with φ 6= β∗ and t > 0,

l
(
(1− t)φ+ tβ∗

)
− l(β∗)

t
6
tl(β∗) + (1− t)l(φ)− l(φ)

t
= l(β∗)− l(φ) < 0.

This implies φ /∈ S.

C.5 Proof of Theorem 5

Proof. Note that Q(β(k+1) | β(k)) = l(β(k+1)) + ‖∆β(k+1) − ∆β(k)‖2 6 Q(β(k) | β(k)) =

l(β(k)). By Theorem 2, ‖∆β(k+1) −∆β(k)‖2 6 l(β(k)) − l(β(k+1)) → 0 as k → ∞. Thus,

‖β(k+1) −β(k)‖ → 0. This theorem now follows immediately from Theorem 5 of Wu (1983).

C.6 Proof of Theorem A.2

Proof. Let xj denote the jth column of n× p matrix X in (6) and aj denote the jth column

of A = ∆′∆, respectively. For an OEM sequence for the elastic-net, by (15),

Mj(β) = fj(x
′
jy + a′jβ), for j = 1, . . . , p,

where

fj(u) = sign(u)

(
|u| − λ1

ds2
j + λ2

)
+

.

17



For j = 1, . . . , p, observe that

|Mj(β
(k))−Mj(β

∗)|
‖β(k) − β∗‖

=
|fj(x′jy + a′jβ

(k))− fj(x′jy + a′jβ
∗)|

|(x′jy + a′jβ
(k))− (x′jy + a′jβ

∗)|

·
|(x′jy + a′jβ

(k))− (x′jy + a′jβ
∗)|

‖β(k) − β∗‖

6
1

ds2
j

·
|a′j(β

(k) − β∗)|
‖β(k) − β∗‖

.

Thus,
‖M(β(k))−M(β∗)‖
‖β(k) − β∗‖

6
1

d
· ‖S

−2A(β(k) − β∗)‖
‖β(k) − β∗‖

6
d− γp
d

.

This completes the proof.

C.7 Proof of Lemma A.1

u = (u1, . . . , up)
′ = X ′y +Aβ(k), (23)

Proof. For u in (13), α′u = α′X ′y + α′(dIp −X ′X)β(k) = 0 for any α ∈ E with Xα = 0

and α′β(k) = 0. Then by (13), (17) and (19), an OEM sequence of the lasso, SCAD or MCP

satisfies the condition that if α′u = 0, then α′β(k+1) = 0 for α ∈ E . This completes the

proof.

C.8 Proof of Theorem A.1

Proof. Partition columns of X in (6) as (X1 X2), where no two columns of X2 are fully

aliased and any column of X1 is fully aliased with at least one column of X2. Let J

denote the number of columns in X1. Partition β as (β′1, β
′
2)′ and β(k) as (β

(k)′

1 , β
(k)′

2 )′,

corresponding to X1 and X2, respectively. For j = 1, . . . , p, let

ω(j) = #{i = 1, . . . , p : |xi| = |xj|}.
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By Lemma 3, for j = 1, . . . , J , β
(k)
j = β

(k)
j′ if xj = xj′ and β

(k)
j = −β(k)

j′ otherwise, where

j′ ∈ {J + 1, . . . , p}. It follows that {β(k)
2 } is an OEM sequence for solving

min
θ
‖y − X̃θ‖2 + 2

p−J∑
j=1

|θj|, (24)

where θ = (θ1, . . . , θp−J)′, and the columns of X̃ are ω(J + 1)xJ+1, . . . , ω(p)xp. Because the

objective function in (24) is strictly convex, by Theorem 4, {β(k)
2 } converges to a limit with

grouping coherence. This completes the proof.
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D NUMERICAL RESULTS

D.1 Simulation Speed for Moore-Penrose Generalized Inverse-based

Least Squares

p n OEM SVD

50, 000

10 0.0482 0.1153
50 0.4203 0.4176
200 1.9159 5.2053
1000 8.4626 47.7653
5, 000 71.8477 440.6741

Table 1: Average runtime (second) comparison between OEM and the SVD least squares
method for p > n

D.2 Simulation Speed for OEM and CD for SCAD Penalty

p n
OEM CD

ρ = 0 ρ = 0.2 ρ = 0.8 ρ = 0 ρ = 0.2 ρ = 0.8

200
100 0.8074 0.7742 0.8038 0.1209 0.1278 0.1073
200 1.4081 1.3519 1.5147 0.4489 0.2995 0.4458
400 0.0770 0.0730 0.1361 0.5716 0.6296 0.7261

500
250 6.4954 6.7119 6.6319 1.0902 1.5966 1.2908
500 9.5813 9.6927 9.8703 2.6176 4.5323 3.5150
1000 0.5645 0.5636 0.9473 5.0932 5.1822 6.0234

1000
500 25.9380 26.2019 26.3059 7.4023 8.1918 8.3594
1000 43.3394 44.0728 45.5136 17.4205 22.6260 15.9565
2000 2.6293 2.5586 4.5881 23.9226 21.3800 34.5852

1200
100 8.1952 8.4076 8.2836 0.3108 0.4289 0.3863
150 10.9885 11.1938 11.4019 0.5889 0.7644 0.6864
240 16.2885 16.4598 16.4883 1.7953 2.1551 1.8841

Table 2: Average runtime (seconds) comparison between OEM and CD for SCAD for large
p
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E ALGORITHM

E.1 OEM: Least Squares

Algorithm 1 OEM algorithm for least-squares

Input: Regression matrix X, response vector y, threshold ε

Initialize estimate as β(0)

Compute d← γ1 by the Lanczos algorithm
Set A← dIp −X ′X
k ← 0
while (β

(k)
j − β

(k−1)
j )/β

(k−1)
j > ε for j = 1, . . . , p do

k ← k + 1
u(k) ←X ′y +Aβ(k−1)

β(k) ← u(k)/d
end while

E.2 OEM: Lasso

Algorithm 2 OEM algorithm for lasso least-squares

Input: Regression matrix X, response vector y, threshold ε

Initialize estimate as β(0)

Compute d← γ1 by the Lanczos algorithm
Set A← dIp −X ′X
k ← 0
while (β

(k)
j − β

(k−1)
j )/β

(k−1)
j > ε for {j : β

(k−1)
j 6= 0} and β

(k)
j 6= 0 for {j : β

(k−1)
j = 0} do

k ← k + 1
u(k) ←X ′y +Aβ(k−1)

β
(k)
j ← sign(uj)

(
|uj |−λ
d

)
+

for j = 1, . . . , p

end while
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F DESCRIPTIONS AND DISCUSSION

F.1 Lanczos Algorithm Description

The Lanczos algorithm generates an orthonormal basis of the Krylov subspaces

Kj(X ′X, b) = span{b,X ′Xb, (X ′X)2b, . . . , (X ′X)j−1b}

in order to find an efficient approximation of the eigenvalues of X ′X. Specifically, it con-

structs tridiagonal matrices Tj , called Lanczos matrices, and Lanczos vectors Vj . The eigen-

values of Tj are the Ritz values ϑ
(j)
i , which are essentially the eigenvalues of X ′X restricted

to Kj(X ′X,Vj). ϑ
(j)
i approximate γi as j increases. These can be computed efficiently

by the tridiagonal QR algorithm. In practice only a few iterations are required to achieve

discretization error as noted in Hanke (1997). This method is attractive because it con-

verges quickly and requires very few arithmetic operations per iteration. Each iteration only

requires one matrix-vector multiplication as stated in (Kuczynski and Wozniakowski 1992).

F.2 Data Description

The 36 covariates in the dataset in Section 7.2 include

1. Economic variables like income per capita, household income, poverty.

2. Population distribution like percentages of different races, education levels.

3. Crime rates like violent crimes and property thefts.

4. Miscellaneous variables like Republic, Democratic, death and birth rates.

These variables are in percentage of population of the individual counties.

F.3 Data Example Selected Variables

The selected significant variables include
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• Percentage of Household income above 750, 000 dollars, which has large positive effect

on the percentage of population change.

• Social security program beneficiaries. The larger the number of beneficiaries in the

program, the higher the population change.

• Both the percentages of retired people and under 18 years old have negative effects

since they are major sources of migrants leaving the county.

• Birth and death rate with positive and negative effects, respectively.

F.4 Discussion

The algorithm can be sped up by using various methods from the EM literature (McLachlan

and Krishnan 2008). For example, following the idea in Varadhan and Roland (2008), one

can replace the OEM iteration in (7) by

β(k+1) = β(k) − 2γr + γ2v,

where r = M(β(k))−β(k), v = M(M(β(k)))−M(β(k))−r, and γ = −‖r‖/‖v‖. This scheme

is found to lead to significant reduction of the running time in several examples. For problems

with very large p, one may consider a hybrid algorithm to combine the OEM and coordinate

descent ideas. It partitions β in (6) into G groups and in each iteration, it minimizes the

objective function l in (11) by using the OEM algorithm with respect to one group while

holding the other groups fixed. Here are some details. Group β as β = (β′1, . . . ,β
′
G)′. For

k = 0, 1, . . ., solve

β(k+1)
g = arg min

βg

l(β
(k+1)
1 , . . . ,β

(k+1)
g−1 ,βg,β

(k)
g+1, . . . ,β

(k)
G ) for g = 1, . . . , G (25)

by OEM until convergence. Note that (25) has a much lower dimension than the iteration

in (7). For G = 1, the hybrid algorithm reduces to the OEM algorithm and for G = p, it
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becomes the coordinate descent algorithm. Theoretical properties of this hybrid algorithm

will be studied and reported elsewhere.
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