The American Journal of Human Genetics, Volume 99

Supplemental Data

Mutations in Citron Kinase Cause Recessive

Microlissencephaly with Multinucleated Neurons

Brian N. Harding, Amanda Moccia, Séverine Drunat, Omar Soukarieh, Hélène Tubeuf, Lyn S. Chitty, Alain Verloes, Pierre Gressens, Vincent El Ghouzzi, Sylvie Joriot, Ferdinando Di Cunto, Alexandra Martins, Sandrine Passemard, and Stephanie L. Bielas

Supplemental Data

Figure S1. Detection of variant-induced *CIT* splicing alterations by using a minigene splicing assay. (A) Analysis of the splicing pattern of pCAS2 minigenes carrying *CIT* variants identified in microcephaly probands described in this study, as indicated. The top panel

represents the structure of pCAS2-CIT minigenes used in the minigene splicing assay. The grey arrow indicates the CMV promoter, boxes represent exons, lines in between indicate introns, and arrows below the exons represent primers used in RT-PCR reactions (Table S1). The minigenes were generated by inserting a genomic fragment containing the exon of interest and at least 150 nucleotides of the flanking introns into the intron of pCAS2, as described in Gaildrat et al. (either by using proband gDNA as template or by introducing the variants into the minigenes by site-directed mutagenesis)¹. Then, wild-type (WT) and mutant constructs, as indicated, were transfected into HeLa cells and the minigenes' transcripts were analyzed by RT-PCR 24 hours later. The image shows the results of a representative experiment in which the RT-PCR products were separated on a 2.5% agarose gel stained with ethidium bromide and visualized by exposure to ultraviolet light. M indicates a 100 bp DNA ladder (New England Biolabs). The splicing events indicated under the gel are based on equivalent RT-PCR reactions performed by using a fluorescent forward primer (Table S1) and then separated in denaturing conditions by capillary electrophoresis on an automated sequencer (Applied Biosystems). Quantification results were obtained by using the GeneMapper v5.0 software (Applied Biosystems) and correspond to the average of two fluorescent-RT-PCR independent experiments. (B) Representative fluorescent RT-PCR experiment using pCAS2-CIT c.1111+1G>A-derived data as an example. The top panel shows superposed peaks corresponding to the WT and mutant products (in blue and red, respectively), as indicated. The bottom panel illustrates the outcome of the minigene assay relative to CIT exon 9 splicing both in the WT (top) and mutant (bottom) contexts, as well as in silico predictions relative to 5'ss and 3'ss in the genomic region of interest. In silico predictions were obtained by simultaneously interrogating 3 algorithms (SpliceSiteFinder-Like, MaxEntScan, and Human Splice Finder) through the integrated software tool Alamut (Interactive Biosoftware, France, http://www.interactive-biosoftware.com), as previously described². For simplicity, thresholds for 5'ss and 3'ss scores were set at 66 and 84 for SpliceSiteFinder-Like, 0 and 7 for MaxEntScan, and at 70 and 84 for Human Splice Finder, respectively.

Figure S2. Multinucleated neurons throughout the neuraxis of Proband B. (**A**) Thalamus, (**B**) Spinal cord anterior horn. Cells indicated by arrowheads are enlarged in the inserts and multinucleated.

	Forward (F) or reverse (R) primers		
Purpose	Name	Sequence (5'-3')	
PCR (cloning/minigene preparation)	CIT_Ex2 InFus BamHI-F	AAGAAGTGCA <u>GGATCC</u> GTCAGATAAGTGTATCATCTCCTGTCA	
	CIT_Ex2 InFus Mlul-R	TCAAAACAAGACGCGTTTCCCCTAAAATATTATCCCTGGTCC	
	CIT_Ex4 InFus BamHI-F	AAGAAGTGCA <u>GGATCC</u> GTAGCTGCCATGGAAACTGTAC	
	CIT_Ex4 InFus Mlul-R	TCAAAACAAG <u>ACGCGT</u> CATCAAGAGGAATTTGTGAGCCTTC	
	CIT_Ex5 InFus BamHI-F	AAGAAGTGCA <u>GGATCC</u> GGCTAAGTGACAGCCCCTTC	
	CIT_Ex5 InFus Mlul-R	TCAAAACAAGACGCGTACCACGTTCAGCCCAATGAG	
	CIT.ex9.BamHI-F	TGGGAA <u>GGATCC</u> TTTGGTCCAAAGGGAAGAGGG	
	CIT.ex9.Mlul-R	ACTCAA <u>ACGCGT</u> CTACATCATTAGCCTTTACTACTCCTGTAG	
Sequencing of minigene inserts	pCAS-Seq-F	GGGTCAATAGCAGTGAGAGG	
	pCAS-Seq-R	GCTCCATTTCACAGGTAGAGA	
Site-directed mutagenesis by two-stage overlap PCR	CIT Ex2 c.29_38del-F	ATATGGAGCGCGGA <i>TGCTGGTGCTGCTG</i>	
	CIT Ex2 c.29_38del-R	CAGCAGCACCAGCATCCGCGCTCCATAT	
	CIT Ex4 c.412CT-F	GGCCCAGGAG <u>T</u> AGGTAGGAGG	
	CIT Ex4 c.412CT-R	CCTCCTACCT <u>A</u> CTCCTGGGCC	
	CIT Ex5 c.473CG-F	GCCCGTGGATCC <u>G</u> CCAATTACAG	
	CIT Ex5 c.473CG-R	CTGTAATTGG <u>C</u> GGATCCACGGGC	
RT-PCR and sequencing of RT-PCR products	pCAS-KO1-F	TGACGTCGCCGCCCATCAC	
	pCAS-2R	ATTGGTTGTTGAGTTGGTTGTC	
Fluorescent RT-PCR	6FAM-pCAS-KO1-F	TGACGTCGCCGCCCATCAC	
	pCAS-2R	ATTGGTTGTTGAGTTGGTTGTC	

Table S1. Primers used in the pCAS2 minigene splicing assay for the analysis of CIT variations in exons 2, 4, 5 and 9.

Table S2.	Mammalian	models	of null	mutations in	CIT.
-----------	-----------	--------	---------	--------------	------

Species	Human Proband B	<i>Cit^{/-}</i> Knockout Mouse ³ (Di Cunto et al. 2000)	<i>Flathead fh/fh</i> Mutant Rat ^{4,5} (Sarkisian et al. 2002) (Ackman et al. 2007)	
Citron Kinase Mutation	10 bp deletion in exon 2	Conditional excision exon 2 by <i>Cre</i> mediated homologous recombination	Spontaneous 1 bp deletion in exon 1	
Predicted Mutational Impact	Frameshift causing a premature stop codon 25 amino acids from start site	Premature stop codon	Frameshift causing a premature stop codon 27 amino acids from start site	
CIT Transcript	Predicted NMD	NMD	NMD	
Brain Size and Weight	Microcephalic and ~1/10 of the brain weight of an average newborn	Microcephalic 50% brain weight reduction	Microcephalic 50% brain size reduction	
Cerebral Cortex Abnormalities	Cortex shows cytological and organizational abnormalities. Six layer arrangement replaced by a molecular layer and two broad layers. Presence of multinucleated neurons.	40% reduction in cerebral cortex thickness. Disorganized lamination of 6- layer cortex. Presence of binucleated cells.	Neocortex displays a reduced number of neurons but normal lamination. Presence of binucleated neurons in neocortex.	
Cerebellar AbnormalitiesHypoplastic and dysplastic cerebellar cortex, and disrupted laminar architecture. Crowded laye of Purkinje cells with simpl dendritic arborizations. Binucleated Purkinje cells and granule cells.		70% cerebellum size reduction. Crowded layer of Purkinje cells with simple dendritic arborizations. Presence of binucleated cells.	Cerebellum displays a reduced number of neurons. Presence of binucleated neurons.	
Hippocampal AbnormalitiesSmall and disorganized Ammon's horns. Only a small remnant of dentate fascia.NoBinucleated granule cells.Small and disorganized ComparisonNo		Normal Ammon's horn cell density and lamination. Essentially absent dentate gyrus.	Dentate gyrus displays a reduced number of neurons. Presence of binucleated neurons.	
Additional Locations of Multinucleated Cells	Thalamus, striatum, pallidum, brain stem, spinal cord and PNS	Thalamus	Striatum, thalamus, midbrain, hindbrain, and spinal cord	
Other Phenotypic AbnormalitiesKidney and heart defects, facial dysmorphisms, and rotated lower limbs		Ataxia, seizures, and failure to thrive	Seizures and disrupted development of the retina	

NMD = Nonsense mediated decay, PNS = Peripheral Nervous System

 Table S3. Presence of binucleated neurons by neuroanatomic area.

Presence of binucleated neurons by anatomic area				
neocortex				
hippocampus (pyramidal and granule cells)				
thalamus				
striatum (large and s	mall cells)			
pallidum				
cerebellum	cerebellar cortex (Purkinje and granule cells)			
	dentate nucleus			
brain stem	midbrain tectum			
	oculomotor nuclei			
	pontine reticular formation			
	nuclei pontis			
	abducens nucleus			
	inferior olive			
	red nucleus			
spinal cord & PNS	anterior horn			
	autonomic ganglion			

PNS = Peripheral nervous system

Supplemental References

1. Gaildrat, P., Killian, A., Martins, A., Tournier, I., Frébourg, T., and Tosi, M. (2010). Use of splicing reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants. Methods Mol Biol 653, 249-257.

 Soukarieh, O., Gaildrat, P., Hamieh, M., Drouet, A., Baert-Desurmont, S., Frébourg, T., Tosi, M., and Martins, A. (2016). Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools. PLoS Genet 12, e1005756.

Di Cunto, F., Imarisio, S., Hirsch, E., Broccoli, V., Bulfone, A., Migheli, A., Atzori, C., Turco,
 E., Triolo, R., Dotto, G.P., et al. (2000). Defective neurogenesis in citron kinase knockout
 mice by altered cytokinesis and massive apoptosis. Neuron 28, 115-127.

4. Sarkisian, M.R., Li, W., Di Cunto, F., D'Mello, S.R., and LoTurco, J.J. (2002). Citronkinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the flathead mutant rat. J Neurosci 22, RC217.

5. Ackman, J.B., Ramos, R.L., Sarkisian, M.R., and Loturco, J.J. (2007). Citron kinase is required for postnatal neurogenesis in the hippocampus. Dev Neurosci 29, 113-123.