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Supplementary Figure 1: Topology of Shiba bands of a ferromagnetic dilute impurity lattice. Chern num-

bers computed straightforwardly from Hamiltonian of Supplementary Equation (98) (with ξ = 10λF ) as a

function of spin-orbit coupling strength, for several values of lattice spacing (in units of Fermi wavelength

λF) of Shiba impurities. The ill quantization of some of the Chern numbers is due to errors in numerical

integrations. Note that the symbols here are dimensional to be consistent with the main text.



a b

Supplementary Figure 2: Gapless low energy spectrum of helimagnetic impurity lattices. Examples of

nodal superconductor band structures with (a) two Fermi points (see Supplementary Note 3 A), (b) four

Fermi points (see Supplementary Note 3 B).

Supplementary Figure 3: Examples of the Chern number phase diagrams with different helical patterns.

The color code corresponds to the Chern number C of the impurity bands.



a b

Supplementary Figure 4: Gapped low energy spectrum of helimagnetic impurity lattices: (a) low-energy

bulk bands and (b) dispersion relations for an open-boundary strip. Here, p/q = 1/3, ρx = 2π/3, µ = 5.5,

∆ = 0.9. The Chern number is −1 in this example.
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Supplementary Figure 5: Relaxation energy of different lattice configurations for different transition metal

adatoms. The configuration adopted in our simulations is highlighted.



Supplementary Figure 6: Details of the atomic configuration adopted in our simulations. This configuration

has a notable C3 symmetry.



Supplementary Figure 7: Fermi surfaces with four values of EF around 0. In the presence of a small

(0.01eV) s-wave superconducting pairing potential, the Chern number corresponding to the superconducting

phase withEF = 0.18 eV is 3, and the Chern numbers in the rest cases are all 1 (see main text Figure 4). The

color scale represents log ρ(EF, k) in arbitrary units, where ρ(EF, k) is the momentum-resolved density of

states at the Fermi energy.



Supplementary Note 1. Analysis of topological phases in the dense impurity limit

In the dense impurity limit (Λ = Λ∗), Hamiltonian of Equation (1) in the main text has a simple

form in momentum space

H =
∑
k

c†kHkck, ck = (ck,↑, ck,↓, c
†
k,↓,−c

†
k,↑)

T , (1)

Hk = {[2t(cos k1 + cos k2)− µ]σ0 + 2α(σ1 sin k2 − σ2 sin k1)} ⊗ τ3

+ Jσ3 ⊗ τ0 + ∆σ0 ⊗ τ1, (2)

where we have assumed the lattice constant a = 1, and the Pauli matrices σi and τi (i = 0, 1, 2, 3)

correspond to spin and particle-hole degrees of freedom, respectively. The spectrum ofHk is given

by

E(k) = ±
√
J2 + ∆2 + ε2

k + α2
k ± 2

√
J2(∆2 + ε2

k) + ε2
kα

2
k, (3)

where εk = 2t(cos k1 + cos k2)− µ and αk = 2α
√

sin2 k1 + sin2 k2.

If α = 0, degenerate zero eigenvalues of the above Hamiltonian occur where εk =

±
√
J2 −∆2, which generically appears as nodal lines in the momentum space (provided that

solutions exist). After turning on α 6= 0, the zero-energy solutions are in general removed ex-

cept if they occur where sin2 k1 + sin2 k2 = 0, that is, at the four inversion-symmetric momenta

[kij = (1 − i, 1 − j)π/2 with i, j = ±1]. We will show next that the occurrences of these

nodal points when the chemical potential µ is tuned with respect to the normal-state band structure

signify transitions between topologically distinct superconducting phases.

First we notice that for a zero-energy nodal point to occur at kij , the chemical potential must

satisfy

µ = µijλ := 2(i+ j)t+ λ
√
J2 −∆2, i, j, λ = ±1. (4)

Around each of these points the original Hamiltonian of Supplementary Equation (1) can be ex-

panded in the three-dimensional k-µ space in the form of a (two-component) Weyl Hamiltonian.

The topological difference between the two fully-gapped phases immediately above and below

µ = µi,j,λ is precisely given by the topological charge associated with the Weyl point, or, the sum

of the topological charges in the presence of multiple Weyl points at the same µ. Explicitly, to

linear order in the deviations (δk, δµ) from the nodal point (kij, µijλ), the original Hamiltonian of



Supplementary Equation (1) becomes

Heff
ijλ(δk, δµ) = −∆α

J
(j δk2σ̃1 − i δk1σ̃2) + λ

√
1− ∆2

J2
δµ σ̃3, (5)

where the Pauli matrices σ̃i act on a subspace defined by the two bands that are relevant at the

specific nodal point. This effective Hamiltonian is obviously of a Weyl form and the associated

topological charge (that is, the integrated Berry flux on a closed surface enclosing the Weyl point

in the k-µ space) is simply given by

nijλ = C
(+)
ijλ − C

(−)
ijλ = i× j × λ. (6)

Here, we have used the fact that the difference of the Chern numbers (C(±)
ijλ ) corresponding to the

fully-gapped 2D phases with µ immediately above (+) and below (−) µijλ, contributed by a single

Weyl point at (kij, µijλ), is equal to its topological charge

Supplementary Equation (6) allows us to infer the Chern numbers corresponding to all the

topologically distinct phases when µ is tuned across the normal-state band width. To be specific,

let us assume 2t >
√
J2 −∆2, so that the critical chemical potentials, defined in Supplementary

Equation (4), are in the order µ−−− < µ−−+ < (µ−+− = µ+−−) < (µ−++ = µ+−+) < µ++− <

µ+++. These six critical chemical potentials separate seven topologically distinct phases, with

the first (µ < µ−−−) and the last (µ > µ+++) ones topologically trivial (C = 0 by definition).

Thus, according to Supplementary Equation (6), the intermediate phases with increasing µ are

characterized sequentially by Chern numbers

C = −1, 0, +2, 0, −1. (7)

This sequence is confirmed by straightforward numerical calculations similar to what is shown in

Figure 2 of the main text.

Supplementary Note 2. Derivation of the effective Hamiltonian in the dilute impurity limit

We apply the strategy outlined in the Methods section to the Hamiltonian in equation (7) of the

main text in order to derive the effective theory in equation (10) of the main text. We start with the



BdG Hamiltonian

HBdG(k) =

 ξk ∆k

∆†k −ξk

 , (8)

ξk =
~2

2m∗
k2 − µ+ α(kxσy − kyσx) , (9)

∆k = ∆sσ0 + δp(kxσy − kyσx). (10)

First we make the Hamiltonian dimensionless by defining

kµ =
√

2m∗µ/~2, k̃ = k/kµ, (11)

lα = ~2/(2m∗α), α̃ = 1/(lαkµ), (12)

lp = ~2/(2m∗δp), ∆p = 1/(lpkµ), (13)

H̃ = H/µ, ∆̃s = ∆s/µ, (14)

and then omit the tildes, the bulk Hamiltonian becomes

HBdG(k) = τz ⊗ [(k2 − 1)σ0 + α(kxσy − kyσx)]

+τx ⊗ [∆sσ0 + ∆p(kxσy − kyσx)]. (15)

In this dimensionless Hamiltonian, energies are measured in units of µ (assumed to be large com-

pared with other energy scales), lengths (wave vectors) are measured in units of the Fermi wave-

length (wave vector).

Next we go to the basis where the normal state Hamiltonian is diagonalized

H̃BdG(k) = U(ϕk)
†HBdG(k)U(ϕk) (16)

= τz ⊗ [(k2 − 1)σ0 + αkσz] + τx ⊗ [∆sσ0 + ∆pkσz] (17)

= [E+(k)τz + ∆+(k)τx]⊕ [E−(k)τz + ∆−(k)τx], (18)

where

U(ϕk) = τ0 ⊗
1√
2

 1 −1

ieiϕk ieiϕk

 , (19)

E±(k) = k2 − 1± αk, (20)

∆±(k) = ∆s ±∆pk. (21)



According to the general formalism (see Methods section of the main text), we need to evaluate

G0(E, r) =

∫
dk G0(E,k)eik·r (22)

=

∫ ∞
0

k dk

2π

∫ 2π

0

dϕk
2π

U(ϕk)[E − H̃BdG(k)]−1U(ϕk)
†eikr cos(ϕk−ϕr) (23)

= R(ϕr)

[∫ 2π

0

dϕ′k
2π

U(ϕ′k)Γ(E, r cosϕ′k)U(ϕ′k)
†
]
R(ϕr)

†, (24)

where

Γ(E, x) =

∫ ∞
0

k dk

2π
eikx[E − H̃BdG(k)]−1, (25)

R(ϕr) = τ0 ⊗

1 0

0 eiϕr

 . (26)

To evaluate Γ(E, x), we first perform the integral

Γb=±(E, x) =

∫ ∞
0

k dk

2π
eikx[E − Eb(k)τz −∆b(k)τx]

−1 (27)

' ρb

∫
dEb e

i[k
(b)
F +Eb/vF ]x E + Ebτz + ∆bτx

E2 − E2
b −∆2

b

, (28)

where vF = 2k0 (k0 ≡
√

1 + α2/4) is the Fermi velocity (the same for± bands), k(±)
F = k0∓α/2

is the Fermi wave vector for +/−-band, ρb = k
(b)
F /2πvF is the density of states for b-band at the

Fermi energy, and ∆b = ∆b(k
(b)
F ) is the pairing gap at the Fermi energy. Following Pientka et al.

[1], we have ∫
dEb e

iEbx/vF
1

E2
b + a2

=
π

a
e−a|x|/vF , (29)∫

dEb e
iEbx/vF

Eb
E2
b + a2

ω2
D

E2
b + ω2

D

=
iπω2

D

ω2
D − a2

sgn(x)(e−a|x|/vF − e−ωD|x|/vF ), (30)

where a =
√

∆2
b − E2 is a short-hand notation, and ωD is the Debye frequency which will be sent

to +∞ in the end. Then

Γb = γ0b + γ1bτx + γ3bτz, (31)

Γ = Γ+ ⊕ Γ− =


γ0+ + γ3+ 0 γ1+ 0

0 γ0− + γ3− 0 γ1−

γ1+ 0 γ0+ − γ3+ 0

0 γ1− 0 γ0− − γ3−

 , (32)



where

γ0b = −πρb
E√

∆2
b − E2

eik
(b)
F x−
√

∆2
b−E2|x|/vF , (33)

γ1b = −πρb
∆b√

∆2
b − E2

eik
(b)
F x−
√

∆2
b−E2|x|/vF , (34)

γ3b = −πρb
iω2

D

ω2
D + E2 −∆2

b

sgn(x)eik
(b)
F x(e−

√
∆2
b−E2|x|/vF − e−ωD|x|/vF ). (35)

Next we find

U(ϕk) ΓU(ϕk)
† =

1

2


A+ −ie−iϕkA− C+ −ie−iϕkC−

ieiϕkA− A+ ieiϕkC− C+

C+ −ie−iϕkC− B+ −ie−iϕkB−
ieiϕkC− C+ ieiϕkB− B+

 , (36)

where

A± = (γ0+ + γ3+)± (γ0− + γ3−), (37)

B± = (γ0+ − γ3+)± (γ0− − γ3−), (38)

C± = γ1+ ± γ1−. (39)

The integral Supplementary Equation (24) breaks down to the following basic one

Il(z) = il
∫ π/2

−π/2
dϕ ei(lϕ+z cosϕ) (l = 0,±1) (40)

= il
∫ π/2

−π/2
dϕ eilϕ

[
+∞∑

n=−∞

inJn(z)einϕ

]
(Jacobi-Anger expansion) (41)

=
+∞∑

n=−∞

il+nJn(z)

∫ π/2

−π/2
dϕ ei(l+n)ϕ (42)

= πJ−l(z) + 2i
+∞∑

m=−∞

J2m+1−l(z)

2m+ 1
, (43)

where Jn(z) is the the n-th order Bessel function of the first kind. Expressed in terms of Il(z), we



have ∫ 2π

0

dϕk
2π

ileilϕkγ0b(cosϕk) = −ρb
2

E√
∆2
b − E2

[
Il(zb) + (−1)lIl(−z∗b )

]
, (44)∫ 2π

0

dϕk
2π

ileilϕkγ1b(cosϕk) = −ρb
2

∆b√
∆2
b − E2

[
Il(zb) + (−1)lIl(−z∗b )

]
, (45)∫ 2π

0

dϕk
2π

ileilϕkγ3b(cosϕk) (46)

= −ρb
2

iω2
D

ω2
D + E2 −∆2

b

[
Il(zb)− (−1)lIl(−z∗b )− Il(z′b) + (−1)lIl(−z′b

∗
)
]
, (47)

zb ≡ k
(b)
F r + i

√
∆2
b − E2r/vF , z′b ≡ k

(b)
F r + iωDr/vF . (48)

First we look at the limit r → 0, such that zb, z′b → 0. In this case

I0(z = 0) = π, I±1(z = 0) = ±2i. (49)

We find

G0(E, r → 0) = R(ϕr)(Ã τ0 ⊗ σ0 + C̃ τx ⊗ σ0)R(ϕr)
† (50)

= Ã τ0 ⊗ σ0 + C̃ τx ⊗ σ0, (51)

Ã ≡ 1

2

∫ 2π

0

dϕk
2π

(γ0+ + γ0−)
∣∣∣
r→0

= (−π
2

)
∑
b

ρbE√
∆2
b − E2

, (52)

C̃ ≡ 1

2

∫ 2π

0

dϕk
2π

(γ1+ + γ1−)
∣∣∣
r→0

= (−π
2

)
∑
b

ρb∆b√
∆2
b − E2

. (53)

For r > 0, we assume Re(z) � |Im(z)| and Re(z) � |n2 − 1/4| (note that Re(z) = ±kF r,

and Im(z) =
√

∆2
b − E2r/vF or ωDr/vF in our integrals), by using the asymptotic form

Jn(z) ≈
√

2

πz
cos(z − nπ/2− π/4), (54)

we obtain

Il(z|Re(z) > 0) ≈ πJ−l(z) + 2i

√
2

πz

+∞∑
m=−∞

cos[z − (2m+ 1− l)π/2− π/4]

2m+ 1
(55)

= πJ−l(z) + 2i

√
2

πz
sin(z + lπ/2− π/4)

+∞∑
m=−∞

(−1)m

2m+ 1
(56)

=

√
2π

z
ei(z−π/4+lπ/2) = il

√
2π

z
ei(z−π/4) , (57)

Il(z|Re(z) < 0) = [I−l(−z∗)]∗ ≈ il

[√
2π

−z∗
ei(−z

∗−π/4)

]∗
. (58)



Therefore (assuming ωD → +∞ after the integral)

G0(E, r) =
1

2
R(ϕr)

Ã+ − iÃ−σy C̃+ − iC̃−σy
C̃+ − iC̃−σy B̃+ − iB̃−σy

R(ϕr)
†, (59)

where

Ã+ ≡
∫ 2π

0

dϕk
2π

A+ (60)

≈ −(
E√

∆2
+ − E2

c+F+ +
E√

∆2
− − E2

c−F−) + (s+F+ + s−F−), (61)

Ã− ≡
∫ 2π

0

dϕk
2π

ieiϕkA− (62)

≈ (
E√

∆2
+ − E2

s+F+ −
E√

∆2
− − E2

s−F−) + (c+F+ − c−F−), (63)

B̃+ ≡
∫ 2π

0

dϕk
2π

B+ (64)

≈ −(
E√

∆2
+ − E2

c+F+ +
E√

∆2
− − E2

c−F−)− (s+F+ + s−F−), (65)

B̃− ≡
∫ 2π

0

dϕk
2π

ieiϕkB− (66)

≈ (
E√

∆2
+ − E2

s+F+ −
E√

∆2
− − E2

s−F−)− (c+F+ − c−F−), (67)

C̃+ ≡
∫ 2π

0

dϕk
2π

C+ (68)

≈ − ∆+√
∆2

+ − E2
c+F+ +

∆−√
∆2
− − E2

c−F−, (69)

C̃− ≡
∫ 2π

0

dϕk
2π

ieiϕkC− (70)

≈ ∆+√
∆2

+ − E2
s+F+ −

∆−√
∆2
− − E2

s−F−, (71)

with

cb ≡ cos[k
(b)
F r − π/4], sb ≡ sin[k

(b)
F r − π/4], (72)

Fb ≡
√

2πρb e
−
√

∆2
b−E2r/vF√

k
(b)
F r

=

√
k

(b)
F

e−
√

∆2
b−E2r/vF

√
2πrvF

. (73)

Now we assume ∆+ = ∆− = ∆, focusing on pure singlet superconductivity, and ignore



O(E2/∆2) terms (the deep-dilute-Shiba-state approximation). Then

G0(E, r) ≈ E

∆
τ0 ⊗ α̃(r) + τx ⊗ α̃(r) + τz ⊗ β̃(r), (74)

α̃(r) = −1

2
(c+F+ + c−F−)− i

2
(s+F+ − s−F−)(σy cosϕr − σx sinϕr), (75)

β̃(r) =
1

2
(s+F+ + s−F−)− i

2
(c+F+ − c−F−)(σy cosϕr − σx sinϕr), (76)

Fb ≈
√
k

(b)
F

e−r/ξ√
2πrvF

(ξ ≡ vF/∆). (77)

For an FM Shiba lattice, assume the magnetization is along ẑ, we have [cf. equation (18) from

the main text], ∑
r′

G0(E, r − r′)(−Jσz ⊗ τ0)ψ(r′) = ψ(r), (78)

or,

E

∆

∑
r′

M1(r − r′)ψ(r′) =
∑
r′

M0(r − r′)ψ(r′), (79)

M1(δr = 0) =

(
1

2
πJ
∑
b

ρb

)
τ0 ⊗ σz, (80)

M1(δr 6= 0) =

(
1

2
J

)
τ0 ⊗ [c̃+σz − s̃−(σx cosϕr + σy sinϕr)], (81)

M0(δr = 0) = 1−

(
1

2
πJ
∑
b

ρb

)
τx ⊗ σz, (82)

M0(δr 6= 0) =

(
1

2
J

){
−τx ⊗ [c̃+σz − s̃−(σx cosϕr + σy sinϕr)]

+ τz ⊗ [s̃+σz + c̃−(σx cosϕr + σy sinϕr)]
}
, (83)

where

ρ± ≡ k
(±)
F /2πvF , (84)

c̃± ≡ c+F+ ± c−F− =
e−r/ξ√
2πrvF

{√
k

(+)
F cos[k

(+)
F r − π/4]±

√
k

(−)
F cos[k

(−)
F r − π/4]

}
, (85)

s̃± ≡ s+F+ ± s−F− =
e−r/ξ√
2πrvF

{√
k

(+)
F sin[k

(+)
F r − π/4]±

√
k

(−)
F sin[k

(−)
F r − π/4]

}
. (86)

In the limit where the Shiba impurities are ultimately dilute, Supplementary Equation (79)



becomes

E

∆
ψ(r) =

(
1

η
τ0 ⊗ σz − τx ⊗ σ0

)
ψ(r), (87)

η ≡ 1

2
πJ
∑
b

ρb =
J

2vF

√
1 +

α2

4
. (88)

Since we have already assumed the deep Shiba state limit, where η ∼ 1, we find the two low

energy states

E± = ±∆

(
1

η
− 1

)
, ψ+ =

1√
2


1

0

1

0

 , ψ− =
1√
2


0

1

0

−1

 . (89)

Projected into the subspace spanned by these two states, Supplementary Equation (79) becomes

E

∆

∑
r′

M̃1(r − r′)ψ̃(r′) =
∑
r′

M̃0(r − r′)ψ̃(r′), (90)

M̃1(δr = 0) = ησ̃z, (91)

M̃1(δr 6= 0) = (
1

2
J)c̃+σ̃z, (92)

M̃0(δr = 0) = (1− η)σ̃0, (93)

M̃0(δr 6= 0) = (
1

2
J)
[
−c̃+σ̃0 + c̃−(σ̃x cosϕr + σ̃y sinϕr)

]
, (94)

where

M̃i ≡ (ψ+, ψ−)†Mi(ψ+, ψ−) (i = 0, 1), (95)

ψ̃ and σ̃ (tildes will be omitted hereafter) are wavefunctions and Pauli matrices under the basis

(ψ+, ψ−). Fourier transforming Supplementary Equation (90) we obtain

Heff(q)ψ(q) =
E

∆
ψ(q), (96)

Heff(q) ≡

[∑
r

e−iq·rM̃1(r)

]−1 [∑
r

e−iq·rM̃0(r)

]
. (97)



Or,

Heff(q) = [η + d0(q)]−1 {[1− η − d0(q)]σz + d1(q)σx + d2(q)σy} , (98)

d0(q) ≡
(

1

2
J

)∑
r 6=0

e−iq·r c̃+(r), (99)

d1(q) ≡ −
(
i

2
J

)∑
r 6=0

e−iq·r c̃−(r) sinϕr, (100)

d2(q) ≡
(
i

2
J

)∑
r 6=0

e−iq·r c̃−(r) cosϕr. (101)

Note that d1 and d2 are defined with slight differences in the main text in order to make a compact

expression.

We can further construct a Majorana basis by using the fact that ψ+ and ψ− are particle-hole

images of each other:

ψ
(M)
1 =

1√
2

(ψ+ + ψ−) =
1

2


1

1

1

−1

 , ψ
(M)
2 =

i√
2

(ψ+ − ψ−) =
i

2


1

−1

1

1

 . (102)

Under this Majorana basis, the effective Hamiltonian is given by

H
(M)
eff (q) = − [η + d0(q)]−1 {[1− η − d0(q)]σy + d2(q)σx − d1(q)σz} . (103)

Clearly, when q is one of the inversion symmetric momenta [ISMs, namely, (0, 0), (0, π), (π, 0),

or (π, π)], e−iq·r = eiq·r, therefore d1(q) = d2(q) = 0; the Pfaffian function is given by

P (q ∈ ISMs) = 1− 1

η + d0(q)
(104)

' d0(q) (η ' 1). (105)

Now return to the effective Hamiltonian of Supplementary Equation (98). If spin-orbit coupling

is absent, then ∀q : d1(q) = d2(q) = 0. This immediately implies that if there is any sign change

in P (q) among the ISMs, the system is gapless with line nodes. Rashba spin-orbit coupling

potentially lifts these degeneracies. The sign of the Pfaffian formula (105), multiplied over bothC4

symmetric momenta is equal to the parity of the Chern number. We have evaluated the expression

numerically, with the result given in the main text.



In addition we have evaluated the Chern numbers through numerical integrations by using

Hamiltonian of Supplementary Equation (98) straightforwardly. Some representative results are

shown in Supplementary Figure 1. We confirm the existence of high Chern numbers associated

with this effective Hamiltonian, which complements the phase diagram in terms of the parity of

the Chern numbers presented in Figure 3 of the main text.

Supplementary Note 3. Two-dimensional Shiba lattice with helical magnetic order

In this section we focus on a different type of magnetic order: we assume a two-dimensional

helical pattern for the magnetic moments. For simplicity we neglect the detailed spatial structure

of the Shiba states (which is crucial in the previous section) and investigate the following tight-

binding Hamiltonian

H =
∑
n

{
c†n(Bn · σ − µ)cn + [∆nc

T
n (iσy)cn + h.c.] +

∑
δ=±1x,±1y

tnδ c
†
ncn+δ

}
, (106)

where n is a 2D index for the tight-binding sites, cn = (cn↑, cn↓)
T is the vector of electron annihi-

lation operators at site n,Bn stands for the local magnetic moment coupled to the superconductor

electron spin, ∆n stands for the local pairing potential, and tnδ stands for spin-independent nearest-

neighbor hoppings.

By changing to a rotating basis gn = U †ncn with Un defined by

U †n(Bn · σ)Un = Bnσz, U †nUn = σ0, DetUn = 1, (107)

the above Hamiltonian becomes

H̃ =
∑
n

{
g†n(Bnσz − µ)gn + [∆ng

T
n (iσy)gn + h.c.] +

∑
δ=±1x,±1y

tnδ g
†
nΩnδgn+δ

}
, (108)

where

Ωnδ = U †nUn+δ, Det Ωnδ = 1. (109)

To further simplify the problem, we set Bn = B, ∆n = ∆∗n = ∆, tn1x = t∗n1x = tx, tn1y = t∗n1y =

ty for all n.

We also assume a certain periodical pattern for the magnetic moments B̂n. One simplest,

nevertheless quite general, choice is to let

Ω(nx,0),δ=1x = Ωx = exp[i(ρx/2)r̂x · σ], (110)

Ω(nx,ny),δ=1y = Ωy = exp[i(ρy/2)r̂y · σ], (111)



for all nx and ny. Here ρx,y stand for rotation angles between neighboring sites and r̂x,y stand for

rotation axes. The rest of the Ω-matrices are hereby determined by a closed-path formula:

Ω(nx,ny),δ=1x = Ω(ny)
x = Ω−nyy ΩxΩ

ny
y = exp[i(ρx/2)Ω−nyy (r̂x · σ)Ωny

y ]. (112)

If Ωx and Ωy do not commute and ρy = 2πp/q [which implies Ωq
y = (−1)p] with p and q relatively

prime integers, then Ω
(ny)
x = Ω

(ny mod q)
x ; each unit cell consists of q sites. The Bloch Hamiltonian

in the Nambu basis is given by

Hk = g†k

h(B,k) ∆

∆ −h(−B,k)

 gk, (113)

g†k = (g†0,k↑, g
†
0,k↓, . . . , g

†
q−1,k↑, g

†
q−1,k↓, g0,−k↓,−g0,−k↑, . . . , gq−1,−k↓,−gq−1,−k↑), (114)

h(B,k) =


h0(B, kx) τ(ky) 0 τ(ky)

†

τ(ky)
† h1(B, kx) τ(ky) 0

0
. . . . . . . . .

τ(ky) 0 τ(ky)
† hq−1(B, kx)

 , (115)

hny(B, kx) = Bσz − µ+ tx(Ω
(ny)
x eikx + h.c.), (116)

τ(ky) = tyΩye
iky/q. (117)

The above model is similar, but in general not equivalent, to a model with constant Bn and

spin-orbit coupling, such as the following one:

hSO(B,k) =
~2k2

2m
− µ+Bσz + kx(αx · σ) + ky(αy · σ), (118)

where αx and αy are real-valued vectors. To see this, we write the Hamiltonian of Supplementary

Equation (118) on a lattice. The hopping terms have the form

〈n|hSO|n+ 1l=x,y〉 = t+
1

2i
αl · σ. (119)

If we define

tl=x,y =
√
t2 + |αl/2|2, Ωl=x,y = (t+

1

2i
αl · σ)/tl, (120)

where Ωl=x,y are unitary and Det Ωl = 1, this Hamiltonian formally resembles Hamiltonian of

Supplementary Equation (108) except that, importantly, the Ω’s such defined do not necessarily

satisfy a closed-path equation as Supplementary Equation (112).



A. Commuting helix rotations

Obviously, Ωx and Ωy commute when r̂x = r̂y = r̂. In this case

h(B,k) = Bσz − µ+ tx(Ωxe
ikx + h.c.) + ty(Ωye

iky + h.c.). (121)

Obviously we can rotate the basis again such that r̂ = (sin θ, 0, cos θ). Then

h(B,k) =

B − v −m −u

−u −(B − v)−m

 , (122)

m = µ− 2tx cos
ρx
2

cos kx − 2ty cos
ρy
2

cos ky, (123)

u = (2tx sin
ρx
2

sin kx + 2ty sin
ρy
2

sin ky) sin θ, (124)

v = (2tx sin
ρx
2

sin kx + 2ty sin
ρy
2

sin ky) cos θ. (125)

Let us assume θ = π/2, the spectrum of the Nambu Hamiltonian is given by

E = ±
√
B2 + ∆2 +m2 + u2 ± 2

√
B2∆2 +B2m2 +m2u2. (126)

The conditions for E = 0 are

2tx sin
ρx
2

sin kx + 2ty sin
ρy
2

sin ky = 0, (127)

µ = 2tx cos
ρx
2

cos kx + 2ty cos
ρy
2

cos ky ±
√
B2 −∆2. (128)

Considering B � max(∆, t) and µ > 0, the spectrum is clearly gapped when |µ−
√
B2 −∆2| >

2tx| cos ρx
2
| + 2ty| cos ρy

2
|; otherwise the spectrum is gapless with two Fermi points ±(kx0, ky0)

[see e.g. Supplementary Figure 2(a)] that merge when the equal sign is taken.

B. Non-commuting helix rotations

Now we consider the case when Ωx and Ωy do not commute. The most important feature of

the band structure is that the subbands created by the multiple sites of a unit cell are not gapped.

To see this, let us look at the Hamiltonian of Supplementary Equation (113) at kx = 0 or π, where

eikx = ±1, and

Ω(m)
x eikx + h.c. = ±(Ω(m)

x + h.c.) = ±2 cos(ρx/2). (129)



This implies that hm(B, kx) has no dependence on m at kx = 0 or π; the unit cell is essentially of

a single site. Explicitly, the Hamiltonian becomes

Hkx=0,π(ky) =

q−1∑
m=0

g̃†mky

h̃m(B, ky) ∆

∆ −h̃m(−B, ky)

 g̃mky , (130)

g̃†mk = (g̃†m,k↑, g̃
†
m,k↓, g̃m,−k↓,−g̃m,−k↑), g̃m,kσ =

q−1∑
m′=0

1
√
q
e−i

2πmm′
q gm′,kσ, (131)

h̃m(B, ky) = Bσz − µ± 2tx cos(ρx/2) + τ(2πm+ ky) + τ(2πm+ ky)
†. (132)

The crossings of the subbands do not necessarily occur at ky = 0 or π unless there is an inversion

symmetry. One example is that if Ωy = exp[i(ρy/2)(σx cosϕy + σy sinϕy)], then σzΩyσz = Ω†y,

and σzh̃m(B, ky)σz = h̃q−m(B,−ky). In other words, if the rotation axis r̂y lies in the x-y plane,

then the crossings of the subbands occur at ky = 0 or π.

As a special case, we set ρy = π, r̂y = (1, 0, 0), r̂x = (cosϕx, sinϕx, 0). In this case, each unit

cell consists of two sites, Ωy = iσx, Ω−1
y ΩxΩy = ΩT

x , and (we also set tx = ty = t)

h(B,k) =

Bσz − µ+ t(Ωxe
ikx + h.c.) −2tσx sin ky/2

−2tσx sin ky/2 Bσz − µ+ t(ΩT
x e

ikx + h.c.)

 . (133)

The spectrum of this Hamiltonian can be solved to be

E = ±
√
B2 + ∆2 +m2

k + d2
k± ± 2

√
B2∆2 +B2m2

k +m2
kd

2
k±, (134)

mk = µ− 2t cos
ρx
2

cos kx, (135)

dk± = 2t(sin
ρx
2

sin kx ± sin
ky
2

). (136)

The conditions for E = 0 are

sin
ρx
2

sin kx ± sin
ky
2

= 0, (137)

µ = 2t cos
ρx
2

cos kx ±
√
B2 −∆2. (138)

Considering B � max(∆, t) and µ > 0, the spectrum is gapped only when µ > |2t cos ρx
2
| +

√
B2 −∆2 or µ < −|2t cos ρx

2
| +
√
B2 −∆2. When |µ −

√
B2 −∆2| < |2t cos ρx

2
|, there are

always four Fermi points [see e.g. Supplementary Figure 2(b)].

With more general helical patterns, full superconducting gaps can be opened with nontrivial

topological properties described by Chern numbers [2]. The Chern number, as well as the spectrum



for an open-boundary sample, can be computed numerically. Unless otherwise stated, we set

B = 5, tx = ty = 1, r̂y = (1, 0, 0) and r̂x = (0,−1, 0) in our computations. We shown in

Supplementary Figure 3 several examples of the phase diagrams in terms of the Chern numbers

with different helical patterns. In Supplementary Figure 4 we show in addition an example of bulk

and edge spectrum for a fixed combination of µ and ∆.
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