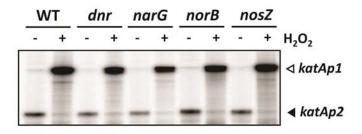
# Dual promoters of the major catalase (KatA) govern distinct survival strategies of *Pseudomonas aeruginosa*

In-Young Chung, Bi-o Kim, Hye-Jung Jang, and You-Hee Cho<sup>\*</sup>

Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 463-400, Korea

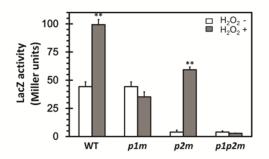
<sup>\*</sup> Corresponding author. Phone: 82-31-881-7165. E-mail: youhee@cha.ac.kr

Running Title: Dual promoters for dual roles of KatA Keywords: *Pseudomonas aeruginosa*, *katA*, H<sub>2</sub>O<sub>2</sub>, nitrogen oxides


## Table S1. Primers used in this study.

| Primer <sup>a</sup>       | Sequence (engineered enzyme site)                                  | Purpose                    |
|---------------------------|--------------------------------------------------------------------|----------------------------|
| Gene mutation and         | d S1 mapping                                                       |                            |
| anr-N1                    | 5'-GCGTCGC <u>GAATTC</u> GAGCCC-3' ( <i>Eco</i> RI)                | anr deletion               |
| anr-C1                    | 5'-GCCCAGCCCAGAAGCTTCCA -3' (HindIII)                              | anr deletion               |
| anr-UC                    | 5'-ACTGCTGGGCGGAGAACAGCGAATCCATGTCT-3'                             | anr deletion               |
| anr-DN                    | 5'-AGACATGGATTCGCTGTTCTCCGCCCAGCAGT-3'                             | anr deletion               |
| katA-N10                  | 5'-CCGAATAAGGCATCTGCTGC-3'                                         | katAp mutation/ S1 mapping |
| katA-S1C1                 | 5′-ACCACACGTC <u>CTGCAG</u> CAAC -3′ ( <i>Pst</i> l)               | katAp mutation/ S1 mapping |
| katAp1m-UC                | 5'-CAGGTTA <u>GGTACC</u> AATGACAGCCCTCCAACAATC-3' ( <i>Kpn</i> I)' | katAp1m mutation           |
| katAp1m-DN                | 5'- TGTCATT <u>GGTACC</u> TAACCTGCTTTTACGAAAAGC-3'(Kpnl)'          | katAp1m mutation           |
| katAp2m-UC                | 5'-AATCATCGGATCCGACCAGGGATTGGCGGAGGA-3' (BamHI)                    | katAp2m mutation           |
| katAp2m-DN                | 5'-CCTGGTC <u>GGATCC</u> GATGATTTCCGTGTAGCC-3' (BamHI)             | katAp2m mutation           |
| LacZ transcriptiona       | al fusion                                                          |                            |
| katA-N3                   | 5'-CGT <u>AGATCT</u> GGTTGATCGTC-3' ( <i>BgI</i> II)               | LacZ fusion                |
| pQF50-lacZ-C1             | 5'-CAGCAG <u>GATATC</u> CTGCACC-3' ( <i>Eco</i> RV)                | LacZ fusion                |
| katA-lacZ-UC <sup>b</sup> | 5'-TTAATACCCTCTAGCTAGAACGTGCTATGAAGCGAA-3'                         | LacZ fusion                |
| katA-lacZ-DN <sup>♭</sup> | 5'- <b>TTCGCTTCATAGCACGTT</b> CTAGCTAGAGGGTATTAA-3'                | LacZ fusion                |

a: N and C refer to the forward and reverse primers for each gene, respectively.


b: The *katA* promoter region is indicated (bold).

### Supplementary Information



#### Fig. S1. Transcription profiles of *katA* promoters in various mutants.

The transcription patterns were assessed by low-resolution S1 nuclease assay with  $H_2O_2$  treatments in some mutants for dissimilatory nitrate respiration grown in LB. Total RNA (50 µg) that had been prepared from the wild type (WT) and the mutant (*dnr, narG, norB,* and *nosZ*) cells with (+) or without (-) 1 mM  $H_2O_2$  treatment for 10 min at OD<sub>600</sub> of 0.5 were subjected to S1 nuclease assay. The two transcriptional start sites of the *katA* gene are indicated by open (*katAp1*) and closed (*katAp2*) arrows.



### Fig. S2. H<sub>2</sub>O<sub>2</sub>-induced transcription of the *katA* promoter fusions.

H<sub>2</sub>O<sub>2</sub>-induced *katA* promoter activities were determined in the wild type cells containing one of the promoter fusions (WT, *p1m*, *p2m* and *p1p2m*). The cells were grown in LB with 15 mM KNO<sub>3</sub> to the mid-logarithmic growth phase, and then treated with (filled bar) or without (empty bar) 1 mM H<sub>2</sub>O<sub>2</sub> for 10 min. The aliquots from the cells were subjected to β-galactosidase (LacZ) assay. The error bars represent the standard deviations from five independent experiments (two cultures per experiment). Statistical significance based on the Student's *t*-test is indicated (\*\*, *p* < 0.005).

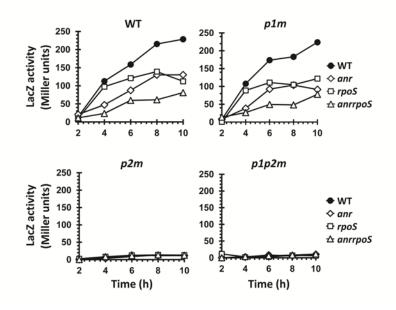



Fig. S3. Stationary phase-induced transcription of the *katA* promoter fusions.

The growth phase-dependent transcriptions of the *katA* promoter fusions were assessed using PA14 (•, WT) as well as in its isogenic *anr* and *rpoS* null mutants ( $\diamond$ , *anr*,  $\Box$ , *rpoS*;  $\triangle$ , *anr rpoS*), which harbor one of the *katA* promoter fusions (A, WT; B, *p1m*; C, *p2m*; D, *p1p2m*). The culture aliquots were harvested at every 2 h from 2 to 10 h post-inoculation, and then subjected to LacZ assay. The data represent the average of the means of three independent experiments (two cultures per experiment).