## **Supplementary Information**



Supplementary Figure 1. Impact of MABr treatment on the photoluminescence (PL) properties of MAPbI<sub>3</sub> thin film. (a) Steady-state PL and (b) time-resolved PL spectra of MAPbI<sub>3</sub> films with and without MABr treatment. These transients follow bi-exponential decay. The weighted average of lifetime increases approximately from about 5 ns for MAPbI<sub>3</sub> to 9 ns for MABr-treated perovskite film.



Supplementary Figure 2. Grain-size distribution. Perovskite films (a) without and with (b) 8, (c) 4, and (d) 2 mg mL<sup>-1</sup> MABr solution treatment.



Supplementary Figure 3. Top-view SEM images of perovskite thin films. (a) As-prepared MAPbI<sub>3</sub> thin films and those treated with (b) IPA solvent and (c) 1 mg mL<sup>-1</sup> MABr, (d) 2 mg mL<sup>-1</sup> MABr, (e) 2.8 mg mL<sup>-1</sup> MAI, and (f) 1.2 mg mL<sup>-1</sup> MACl solutions, respectively. Scale bars, 1  $\mu$ m.



Supplementary Figure 4. Current density-voltage (J-V) curves with both forward and reverse scans for the "champion" cell. For the reverse scan, the device shows a power conversion efficiency (*PCE*) of 19.12%, with short-circuit current density ( $J_{sc}$ ) of 21.60 mA/cm<sup>2</sup>, open-circuit voltage ( $V_{oc}$ ) of 1.12 V, and fill factor (*FF*) of 0.793. For the forward scan, the device shows a *PCE* of 16.43%, with  $J_{sc}$  of 21.61 mA/cm<sup>2</sup>,  $V_{oc}$  of 1.097 V, and *FF* of 0.693.



Supplementary Figure 5. MABr concentration effect on the stabilized photocurrent density and power conversion efficiency biased near the maximum power point. Perovskite thin films are (a) MAPbI<sub>3</sub> and those treated with (b) 1, (c) 2, (d) 4, and (e) 8 mg mL<sup>-1</sup> MABr solutions.



**Supplementary Figure 6. X-ray photoelectron spectroscopy (XPS) core-level spectra.** Plots of XPS spectra of I 3d, N 1s, C 1s, Pb 4f, and Br 3d levels for MAPbI<sub>3</sub> thin films and those treated with low (2 mg mL<sup>-1</sup>) and high (8 mg mL<sup>-1</sup>) concentration MABr solutions. Despite an increase in the bromine content with increased concentration of the MABr solution, no further changes is observed in film stoichiometry upon MABr post-treatment. Moreover, the absence of core-level shifts indicates that no significant change in the Fermi level position occurs with Ostwald ripening.



**Supplementary Figure 7. Schematic illustration.** Procedure and mechanism for the MABr selective Ostwald ripening process for the perovskite crystal growth.



Supplementary Figure 8. Top-view SEM images of perovskite thin films. (a) As-prepared MAPbI<sub>3</sub> and those treated with 2 mg mL<sup>-1</sup> MABr solution (b) before and (c) after annealing treatment. Scale bars, 1  $\mu$ m.



Supplementary Figure 9. Ultraviolet-visible absorption spectra. Perovskite thin films were subjected to dipping treatment in 2 mg mL<sup>-1</sup> MABr solution for various durations.



Supplementary Figure 10. Top-view scanning electron microscopy images of perovskite thin films. MAPbI<sub>3</sub> thin films were dipped in 2 mg mL<sup>-1</sup> MABr solution for (a) 20 s and (b) 5 min. Scale bars, 1  $\mu$ m.



Supplementary Figure 11. J–V curves with both forward and reverse scans for the "champion" cell with MAI treatment. For the reverse scan, the device shows a *PCE* of 17.11%, with  $J_{sc}$  of 21.05 mA/cm<sup>2</sup>,  $V_{oc}$  of 1.084 V, and *FF* of 0.749. For the forward scan, the device shows a *PCE* of 13.93%, with  $J_{sc}$  of 21.18 mA/cm<sup>2</sup>,  $V_{oc}$  of 1.071 V, and *FF* of 0.614.



Supplementary Figure 12. *J*–*V* curves with both forward and reverse scans for PSCs with various treatments. The perovskite films were treated with (a) 2 mg mL<sup>-1</sup> MABr, (b) 2.8 mg mL<sup>-1</sup> MAI, (c) 1.2 mg mL<sup>-1</sup> MACl solutions, and (d) IPA solvent, respectively.

| Treatment solution              | J <sub>sc</sub><br>(mA cm <sup>-2</sup> ) | V <sub>oc</sub><br>(V) | FF<br>(%)         | PCE<br>(%)       |
|---------------------------------|-------------------------------------------|------------------------|-------------------|------------------|
| 2 mg mL <sup>-1</sup><br>MABr   | $21.86 \pm 0.12$                          | $1.120 \pm 0.010$      | $0.754 \pm 0.020$ | $18.50 \pm 0.39$ |
| 2.8 mg mL <sup>-1</sup><br>MAI  | 21.35 ± 0.19                              | $1.071 \pm 0.006$      | $0.748 \pm 0.006$ | $17.11 \pm 0.21$ |
| 1.2 mg mL <sup>-1</sup><br>MACl | $21.52 \pm 0.14$                          | $1.061 \pm 0.009$      | $0.696 \pm 0.017$ | $15.89 \pm 0.41$ |
| IPA                             | $20.62 \pm 0.43$                          | $1.067 \pm 0.009$      | $0.728 \pm 0.031$ | $16.03 \pm 1.08$ |

**Supplementary Table 1. Photovoltaic parameters for perovskite solar cells with various treatments.** Standard deviations from 8–12 cells for each type of devices are given.