1	Supplementary Information
2	A distinct sortase SrtB anchors and processes a streptococcal adhesin
3	AbpA with a novel structural property
4	Xiaobo Liang ^{a,1,2} , Bing Liu ^{b,1} , Fan Zhu ^{a,1} , Frank A. Scannapieco ^c , Elaine M
5	Haase ^c , Steve Matthews ^{b*} and Hui Wu ^{a*}
6	^a Departments of Pediatric Dentistry and Microbiology, University of Alabama
7	at Birmingham School of Dentistry, Birmingham, AL , USA; ^b Department of
8	Life Sciences, Imperial College London, London, UK; ^c Department of Oral
9	Biology, University at Buffalo, Buffalo, NY, USA
10	Key words: sortase, amylase binding protein A, LPXTG motif,
11	streptococcus
12	Running Title: New sortase and adhesin substrate system
13	
14	
15	
16	¹ These three authors contribute equally to the manuscript
17	² Present Address: Yunnan Institute of Food Safety, Kunming University of
18	Science and Technology, Kunming, Yunnan, China.
19	* To whom correspondence should be addressed. E-mail: <u>hwu@uab.edu or</u>
20	s.i.matthews@imperial.ac.uk

1 Methods

2 Bacterial strains, plasmids and growth conditions

The bacterial strains and plasmids used in this study are listed in SI Table 1. *Escherichia coli*, *S. parasanguinis* and *S. gordonii* strains were cultured in the
growth conditions described previously¹. For bacterial growth, 100 µg ml⁻¹
ampicillin, 50 µg ml⁻¹ kanamycin or 300 µg ml⁻¹ erythromycin were used in *E. coli*, 125 µg ml⁻¹ kanamycin or 5 µg ml⁻¹ erythromycin were used in *S. parasanguinis*, 1 mg ml⁻¹ kanamycin or 5 µg ml⁻¹ erythromycin were used in *S. gordonii*.

10 Molecular cloning techniques

E. coli plasmid DNA was isolated using the mini-prep DNA preparation kit 11 (Qiagen). The genomic DNA of S. parasanguinis and S. gordonii were 12 extracted using the Puregene DNA isolation kit (Gentra System). Polymerase 13 chain reaction (PCR) was performed with KOD hot start DNA polymerase 14 (Novagen), using the GeneAmp PCR system 9700 (PE Applied Biosystems). 15 Primers used for the amplification of DNA fragments are listed in SI Table 2. 16 Restriction enzymes and T4 DNA ligase (New England Biolabs) were used 17 according to the manufacturer's instructions. Competent E. coli cells were 18 prepared and transformed by standard techniques ². S. parasanguinis was 19 transformed by electroporation using a gene pulser (Bio-Rad Laboratories) as 20 described previously³. S. gordonii was transformed by natural transformation 21 method ⁴. 22

Construction of srtA and srtB mutants and complementation strains in S. parasanguinis

The allelic replacement strategy was used in *srtA* and *srtB* mutagenesis. *srtA* 1 and srtB and their flanking regains were amplified form S. parasanguinis 2 FW213 genomic DNA by PCR with primer pairs srtA-F1/srtA-R1 and srtB-3 F1/srtB-R1, respectively. PCR products were cloned into HindIII and Xhol 4 digested and end-blunted pSU217, yielding pBYL12 (containing srtA) and 5 pBYL11 (containing srtB) respectively. Inverse PCR with two primer pairs of 6 srtA-F2/srtA-R2 and srtB-F2/srtB-R2, in each of which the Bg/II and BamHI 7 enzyme sites were introduced. The resulting DNA fragments were digested 8 with Bg/II or BamHI and ligated with the BamHI digested erythromycin 9 resistance gene fragment to generated pBYL16 and pBYL17, respectively. 10 These plasmids were transformed into S. parasanguinis FW213 and the 11 erythromycin resistance transformants BYL32 and BYL31 were isolated, 12 confirmed by colony PCR and were used in the study. 13

The *srtB* complement strain was constructed using plasmid pDL276. Briefly, the full length *srtB* gene was amplified from *S. parasanguinis* using the primer pair srtB-F3/srtB-R3, in which *SacI* and *SphI* were introduced. The PCR product was digested with *SacI* and *SphI* and was inserted into same enzymes digested pDL276, yielding plasmid pBYL37. This plasmid was transformed into BYL31 and the colonies resistant to both kanamycin and erythromycin were confirmed and named as BYL37.

21 Construction of srtB mutant and complementation strains in S. gordonii

A 2202-bp PCR fragment of *srtB* was amplified from *S. gordonii* using the primer pair, srtB-F1g/srtB-R1g, and then cloned into the pGEM-T easy vector. The resulting construct was used as template, inverse PCR were performed with the primer pair srtB-F2g/srtB-R2g, in which *Hin*dIII site was introduced. The resulting PCR product was digested with *Hin*dIII and ligated in-frame with a same enzyme digested promoterless kanamycin resistance cassette *aphA3* to generate the plasmid pAL824. Through the inverse PCR, a 531-bp DNA

fragment which coding the 16-193 amino acids of SrtB protein was deleted.
This plasmid was used to transform *S. gordonii* and the kanamycin resistance
transformants were isolated, confirmed by PCR and sequence analyses and
was named as AL825.

The complement strain was constructed using pVPT-gfp vector. *srtB* gene was PCR amplified from the genomic DNA of *S. gordonii*, using the primer pair srtB-F3g/srtB-R3g with engineered *Sal*I and *Bam*HI restriction enzyme sites. The PCR product was digested with *Sal*I and *Bam*HI, and cloned into pVPTgfp ⁸ to generate pAL826. This plasmid was transformed into the *abpA* mutant AL825 to construct complemented strains AL827.

Cross-complementation of srtB mutation between *S. parasanguinis and S. gordonii*

To test if the SrtB from S. parasanguinis is functional in S. gordonii and vice 13 versa, two cross-complementation strains were constructed. The S. gordonii 14 *srtB* was amplified with the primer pair srtB-F4g/srtB-R4g and was cloned into 15 pDL276. The resulting plasmid (pAL828) was transformed into S. 16 parasanguinis mutant BYL31 to generate AL829. Similarly, S. 17 the parasanguinis srtB was amplified with the primer pair srtB-F4/srtB-R4 and was 18 cloned into pVPT-gfp. The resulting plasmid (pAL830) was transformed into S. 19 gordonii mutant AL825 to generate AL831. AL829 and AL831 were used in 20 amylase binding assays. 21

22 Functional study of SrtB of S. aureus and S. pneumoniae

For the in vivo studies, two srtB cross complementation strains were constructed. Briefly, srtB was amplified by PCR from *S. aureus* COL and *S. pneumoniae* Tigr4 genome respectively using the primer pairs of srtB-F1c/srtB-R1c and srtB-F1t/srtB-R1t. The PCR products were digested with *SphI/Eco*RI and ligated with pDL276. The resulting plasmids (pAL829 and

pAL831) were transformed into *S. parasanguinis srt*B mutant to generatetwo
cross-complementation strains, AL838 and AL839. The strains were used in
amylase binding assays.

For the in vitro studies, two recombinant SrtB proteins were expressed in *E. coli*. Primer pair of srtB-F2c/srtB-R2c and srtB-F2t/srtB-R2t was used in PCR to amplify srtB from *S. aureus* COL and *S. pneumoniae* Tigr4 genome respectively. The PCR product was digested with *Bam*HI/SacI and ligated with pET28a-sumo, and the resulting plasmids were transformed into *E.coli* BLR. Recombinant SrtB were expressed, purified and used in the enzymatic assay with the recombinant AbpA as a substrate.

Construction of abpA deletion mutants and site-directed mutants in S. *parasanguinis*

Using abpA-F3 as a forward primer, in combination with different reverse 13 primers, deletion and site-directed mutation alleles for the conserved C-14 terminal cell wall sorting signal motif of AbpA were generated by PCR 15 amplification. The primers used are listed in SI Table2. The PCR products 16 were digested with Sall and Kpnl, ligated with same enzymes digested pVPT-17 gfp, yielding the mutation plasmids. These plasmids were then transformed 18 19 into the *abpA* mutant strain AL821. The resulting strains were used in amylase binding assays. 20

21 **Preparation of polyclonal antibody against AbpA**

1.0 mg of the purified AbpA of *S. parasanguinis* was used to generate
polyclonal antisera in rabbit by Cocalico Biologicals, Inc (Reamstown, PA,
USA). The titer and the specificity of the antiserum to AbpA were tested by
ELISA and western blot analysis, respectively.

26 **Construction of AbpA-GFP swap strains in** *S. parasanguinis*

Using pAL822 as a template, we performed inverse PCR with a forward 1 primer abpA-F and three different abpA-R primers (abpA-R1, -R2 and -R3 2 designed for swap1, 2 and 3 constuct respectively), in which the SphI and 3 *Xhol* sites were introduced. At the same time *qfp* was amplified from pVPT-qfp 4 with the primer pair gfp-F/gfp-R which also contains SphI and XhoI sites. Both 5 PCR products were digested with Sphl and Xhol and ligated together to 6 produce plasmid pAL834 and its variants, in which the gfp gene was inserted 7 8 between the coding sequence of the N-terminal signal peptide and the Cterminal cell wall anchor motif of AbpA. These plasmids were transformed into 9 S. parasanguinis to obtain AbpA-GFP swap strains, Swap1, Swap2 and 10 Swap3. Another strain (SP-GFP) in which GFP was fused only with the N-11 terminal conserved domain of AbpA. This stain was constructed similarly and 12 used as a control. 13

14 In vitro enzyme activity assay of SrtB

Recombinant AbpA, AbpA-His or AbpA-Gfp and SrtB or SrtB-His were incubated together in 37°C for 1 h and then probed with anti-AbpA or anti-His to detect cleavage during the reaction. The resulting AbpA peptides were identified with Mass Spectrometric analyses and N-terminal amino acid sequencing (University of Texas Medical Branch Biomolecular Resource Facility).

21 SDS-PAGE and Western blot analysis

Protein samples were separated on 10% SDS-polyacrylamide gel and then stained with Coomassie blue staining R-250. For Western blot analysis, the separated proteins were transferred to nitrocellulose membranes. The membranes were blocked by 5% skimmed milk in PBS for 1 h prior to probing with AbpA and other antibodies diluted at 1:2000 in PBS with 0.1% Tween-20.
Horseradish peroxidase-conjugated anti-rabbit and ECL Western blot
detection reagents (GE Healthcare) were used to detect AbpA and other
proteins.

5 Figure Legends

- 6 Supplementary Figure S1. Conservation and uniqueness of AbpA. A.
- 7 Comparison of *abpA-srtB* gene locus among different oral streptococcal
- 8 species. **B.** Alignment of deduced protein sequence of AbpA homologs. The
- 9 N-terminal and C-terminal conserved motifs were marked by black rectangle.
- 10 Secondary structure is shown above the alignment; β -strands (β 1-3) are
- 11 colored as yellow arrows and the five helices (α 1-5) as red rectangles. **C.**
- 12 Schematic representation of typical CWSS and C terminus of AbpA. +,
- 13 positively charged tail.
- 14

Supplementary Figure S2. NMR titration of AbpA with amylase. **A**. ¹H-¹⁵N HSQC spectra of *S. parasanguinis* AbpA collected in the absence (left) and presence (middle - 0.5 molar ration and right - 1 molar ratio) of human αamylase. **B.** Amylase titration for mutant AbpA variants. ¹H-¹⁵N HSQC spectra of *S. parasanguinis* AbpA mutant proteins collected in the absence (black) and presence (red) of a 5-fold excess of human α-amylase. From left to right: KK37/38A, YY132/133A and VL117/118A.

22

Strain or plasmid	Relevant characteristics	Reference		
		or source		
Strains				
E. coli				
Top10	F- $mcrA \Delta(mrr-hsdRMS-mcrBC)$	Invitrogen		
	φ80/acZΔM15 Δ/acX74 nupG recA1 araD139			
	Δ (ara-leu)7697 galE15 galK16 rpsL(Str ^r)			
	endA1 λ ⁻			
BLR(DE3)	F^- ompT hsdS $_{B}(r_{B}^- m_{B}^-)$ gal dcm (DE3)	Novagen		
	$\Delta(srl - recA)306$::Tn10 (Tet ^r).			
BL21(DE3)	huA2 [lon] ompT gal (λ DE3) [dcm]	NEB		
	$\Delta hsdS \lambda DE3 = \lambda sBamHlo \Delta EcoRI-B$			
	int::(lacl::PlacUV5::T7 gene1) i21 ∆nin5			
AL832	BLR(DE3) with pAL832 plasmid; Kan ^r	This study		
AL833	BLR(DE3) with pAL833 plasmid; Kan ^r	This study		
AL840	BL21(DE3) with pAL840 plasmid; Kan ^r	9		
AL841	BL21(DE3) with pAL841 plasmid; Kan ^r	This study		
AL842	BL21(DE3) with pAL842 plasmid; Kan ^r	This study		
AL843	BL21(DE3) with pAL843 plasmid; Kan ^r	This study		
AL844	BL21(DE3) with pAL844 plasmid; Kan ^r	This study		
AL845	BL21(DE3) with pAL845 plasmid; Kan ^r	This study		
AL846	BL21(DE3) with pAL846 plasmid; Kan ^r	This study		
S. parasanguinis				
FW213	S. parasanguinis parent strain	10		
AL821	FW213 abpA::aphA3; Kan ^r	This study		
AL823	FW213 <i>abpA::aphA3</i> ::pAL822; Kan ^r , Em ^r	This study		
BYL31	FW213 <i>srtB</i> :: <i>emr</i> ; Em ^r	This study		
BYL32	FW213 <i>srtA</i> :: <i>emr</i> ; Em ^r	This study		
BYL37	FW213 srtB::emr::pBYL37; Em ^r , Kan ^r	This study		
AL829	FW213 <i>srtB</i> :: <i>emr</i> ::pAL828; Em ^r , Kan ^r	This study		
AL835	FW213::pAL834; Em ^r	This study		
AL837	FW213::pAL836: Em ^r	This study		
AL838	FW213 <i>srtB</i> :: <i>emr</i> ::pAL829; Em ^r , Kan ^r	This study		
AL839	FW213 <i>srtB</i> :: <i>emr</i> ::pAL831; Em ^r , Kan ^r	This study		
S. gordonii				
Challis	S. gordonii parent strain	11		

Supplementary Table S1. Bacterial strains and plasmids used in this study.

AL825	Challis srtB:: aphA3; Kan ^r	This study
AL827	Challis srtB:: <i>aphA3</i> ::pAL826; Kan ^r , Em ^r	This study
AL831	Challis srtB:: <i>aphA3</i> ::pAL830; Kan ^r , Em ^r	This study
Plasmids		
pGEM-T	Commercial TA cloning vector	Promega
pVPT-gfp	E. coli & Streptococcus shuttle vector	8
pDL276	E. coli & Streptococcus shuttle vector	12
pET28a-sumo	E.coli expression vector with a SUMO tag	13
pSU21	E. coli cloning vector	7
pAL820	pGEM-abpA-aphA3	This study
pAL822	pVPT-abpA	This study
pBYL16	pSU21-srtA-emr	This study
pBYL17	pSU21-srtB-emr	This study
pBYL37	pDL276- <i>srtB</i>	This study
pAL824	pGEM-srtB(g) ^a -aphA3	This study
pAL826	pVPT-srtB(g)	This study
pAL828	pDL276- <i>srtB(g)</i>	This study
pAL829	pDL276- <i>srtB(c)</i>	This study
pAL830	pVPT- <i>srtB</i>	This study
pAL831	pDL276- <i>srtB(t)</i>	This study
pAL832	pET28a- <i>abpA</i>	This study
pAL833	pET28a-sumo- <i>srtB</i>	This study
pAL834	pVPT-abpA-gfp	This study
pAL840	pET28a-sumo- <i>abpA∆C10aa</i>	9
pAL841	pET28a-sumo- <i>abpA(24-138aa)</i>	This study
pAL842	pET28a-sumo- <i>abpA(139-207aa)</i>	This study
pAL843	pET28a-sumo- <i>abpA-KK37/38A</i>	This study
pAL844	pET28a-sumo-abpA-YY132/133A	This study
pAL845	pET28a-sumo- <i>abpA-VL117/118A</i>	This study
pAL846	pET28a- <i>srtB</i>	This study

¹ ^ag means this gene comes from *S. gordoni* CH1, c means this gene comes

2 from *S. aureus* Col, t means this gene comes from *S. pneumonia Tigr4*

Primer	Sequence ^b
abpA-F1	GGGCACGTAAGTTAGCTGAGTT
abpA-R1	TGAATCAGGGATTTGACGAAGATAAAGGT
abpA-F2	CCT <u>GAATTC</u> CAAATACAGGTGCTGCTGCAGCAAATACTGCAAGAGCTG
abpA-R2	CTC <u>GAATTC</u> GTTGACAAAGACGGTAAAACAG
abpA-F3	ATC <u>GTCGAC</u> ATGAAAAAAGTTTTATTATCATCAGTAGC
abpA-R3	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGTTTTTGGA
abpA-F4	GCA <u>CCATGG</u> CTATGAAAAAAGTTTTATTATCATCAGTAG
abpA-R4	ATA <u>CTCGAG</u> TTTAACTGCGCTTGTT
abpA-del1	CAT <u>GGTACC</u> AAATTAACCAGCTTTAGCATCAGCC
abpA-del2	CAT <u>GGTACC</u> AAATTAAGCTTTACCAGCTTTAGC
abpA-del3	CAT <u>GGTACC</u> AAATTAGCTTGTTTTTGGAAGAGC
abpA-L/N	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGTTTTTGGATTAGCTTTACCAG
abpA-L/R	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGTTTTTGGACGAGCTTTACCAG
abpA-P/A	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGTTTTAGCAAGAGCTTTACCAG
abpA-P/D	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGTTTCATCAAGAGCTTTACCAG
abpA-K/E	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGTTTCTGGAAGAGCTTTACCAG
abpA-K/L	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGTTAGTGGAAGAGCTTTACCAG
abpA-T/A	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGCTTCTGGAAGAGCTTTACCAG
abpA-T/S	CAT <u>GGTACC</u> AAATTATTTAACTGCGCTTGATTTTGGAAGAGCTTTACCAG
abpA-S/W	CAT <u>GGTACC</u> AAATTATTTAACTGCCCATGTTTTTGGAAGAGCTTTAC
abpA-S/G	CAT <u>GGTACC</u> AAATTATTTAACTGCCCCTGTTTTTGGAAGAGCTTTAC
abpA-S/R	CAT <u>GGTACC</u> AAATTATTTAACTGCCCTTGTTTTTGGAAGAGCTTTAC
abpA-K37/38A F	CTGCTGCATCACGCCATGAAACATATGCCGCTTGGATCAATTGGTTAGATGCACTTG
abpA-K37/38A R	CAAGTGCATCTAACCAATTGATCCAAGCGGCATATGTTTCATGGCGTGATGCAGCAG
abpA-H56AF	CTTCTTTGATTTCTGCTTCAGCAGCTGCTACTTGAGTGTTAGCTT
abpA-H56AR	AAGCTAACACTCAAGTAGCAGCTGCTGAAGCAGAAATCAAAGAAG
abpA-Y114A F	ATTTTTGTTGAAGAACTTGGATGGCACGGTTGCGAACTGTGTTGTATG
abpA-Y114A R	CATACAACACAGTTCGCAACCGTGCCATCCAAGTTCTTCAACAAAAAT
abpA-VL117/118AA F	GCAGCTTCAATGTATTTTGTTGAGCAGCTTGGATGTAACGGTTGCGAACTG
abpA-VL117/118AAR	CAGTTCGCAACCGTTACATCCAAGCTGCTCAACAAAAATACATTGAAGCTGC
abpA-Y132/133AF	TTAGCTTCTACAGCTGTTTCATCGGCGGCGTTACCTTGAGCTTTAGCAGCTTC
abpA-Y132/133AR	GAAGCTGCTAAAGCTCAAGGTAACGCCGCCGATGAAACAGCTGTAGAAGCTAA
abpA-V138A F	CATTTGTACGGTTAGCTTCTGCAGCTGTTTCATCGTAGTAG
abpA-V138A R	CTACTACGATGAAACAGCTGCAGAAGCTAACCGTACAAATG
AbpA-138aaR	ATGC <u>CTCGAG</u> TACAGCTGTTTCATCGTAGTAG
AbpA-24aaF	ATGC <u>GGATCC</u> CAAGGTGAAAACCCAAGTG

1 Supplementary Table S2. Primers used in this study

AbpA-139aaF	ATGC <u>GGATCC</u> GAAGCTAACCGTACAAATGAA
abpA-207aaR	GACAC <u>CTCGAG</u> TTATTTAACTGCGCTTG
srtA-F1	GTCAAACGGACCAATGTAG
srtA-R1	CGTACATAATTTCCTCCTCAC
srtB-F1	GCACCTGTATTTGCACAAGG
srtB-R1	CTTCGTTTGCCCATCTTCG
srtA-F2	TGGGGGAGATCTATCTTCTAGCACAGCT
srtA-R2	TTTCTCAGC <u>AGATCT</u> CATTTCATTGAT
srtB-F2	CTCGAC <u>GGATCC</u> CGTCATCAATGCCC
srtB-R2	GCAACGATGTTGAGGATCCTATTGCGTAAAC
srtB-F3	TTT <u>GAGCTC</u> TAATTAGCTCGAAACGAATATCA
srtB-R3	TTA <u>GCATGC</u> ATTTCCTACAAATACTAGACATA
srtB-F4	ATAC <u>GTCGAC</u> ATGAAAAGAGCTGAGA
srtB-R4	CTAA <u>GGATCC</u> TTGTTGACCACGTGTT
srtB-F5	ATC <u>GGATCC</u> ATGAAAAGAGCTGAGA
srtB-R5	AAT <u>CTCGAG</u> TTATTATTGTTGACCA
srtB-F1g c	AGTTTTATTGTCAAGCGTG
srtA-R1g	ATAAACAATCCAGCGC
srtB-F2g	ATC <u>GGATCC</u> TCTTATTTGGAGCCTT
srtB-R2g	CAT <u>GGATCC</u> ATGGGCTTGGTTATTG
srtB-F3g	ACC <u>GTCGAC</u> ATGAGTCAAAATGCTA
srtB-R3g	TCAGG <u>GGATCC</u> CTATCTAGTAGGAGTATAT
srtB-F4g	AGT <u>GCATGC</u> GATGAGTCAAAATGCTA
srtB-R4g	TCT <u>GAATTC</u> CTATCTAGTAGGAGTA
srtB -F1c	ATT <u>GCATGC</u> AGATGAGAATGAAGCGATTTTT
srtB-R1c	ACT <u>GAATTC</u> CTAACTTACCTTAATTATTTTTG
srtB -F2c	AGT <u>GGATCC</u> ATGAGAATGAAGCGATTTTT
srtB-R2c	GAT <u>GAGCTC</u> TTATTAACTTACCTTAATTATTTTTG
srtB-F1t	ATT <u>GCATGC</u> AGATGGCGGTAATGGCGTATCC
srtB-R1t	ACT <u>GAATTC</u> CTACTGTTGTCCATCCTCCACCT
srtB-F2t	AGT <u>GGATCC</u> ATGGCGGTAATGGCGTATCC
srtB-R2t	GAT <u>GAGCTC</u> TTATTACTGTTGTCCATCCTCCACCT

^a Restriction sites are underlined.

- 4
- 5

^b g stands for *S. gordoni* CH1, c for *S. aureus* COL, t for *S. pneumoniae*

³ Tigr4

Supplementary Table S3.

Summary of mutagenesis at the C-terminal domain of AbpA.

Mutations	Sequences	Description	Amylase binding
WT	KAGKALPKTSAVK		+
Del1(205-207)	KAGKALPKTS		-
Del2(200-207)	KAGKA		-
Del3(195-207)	-		-
200L/N	KAGKA <u>N</u> PKTSAVK	Hydrophobic/uncharged	-
200L/R	KAGKA <u>R</u> PKTSAVK	Hydrophobic/Hydrophilic	-
201P/A	KAGKAL <u>A</u> KTSAVK	Hydrophobic/Hydrophobic	-
201P/D	KAGKAL <u>D</u> KTSAVK	Hydrophobic/Hydrophilic	-
202K/E	KAGKALP <u>E</u> TSAVK	Hydrophilic/Hydrophilic	+
202K/L	KAGKALP <u>L</u> TSAVK	Hydrophilic/Hydrophobic	-
203T/A	KAGKALPK <u>A</u> SAVK	Uncharged/Hydrophobic	-
203T/S	KAGKALPK <u>S</u> SAVK	Uncharged/Uncharged	-
204S/W	KAGKALPKT <u>W</u> AVK	Uncharged/Hydrophobic	+
204S/G	KAGKALPKT <u>G</u> AVK	Uncharged/Hydrophobic	+
204S/R	Kagkalpkt <u>r</u> avk	Uncharged/Hydrophilic	+

1 **References**

2

- Wu, H., Zeng, M. & Fives-Taylor, P. The glycan moieties and the N-terminal
 polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct
 roles in the biofilm development of Streptococcus parasanguinis. *Infect Immun*75, 2181-2188 (2007).
- J. Sambrook, E.F. Fritsch & T. Maniatis. *Molecular cloning: a laboratory manual*. Vol. 2 (Cold Spring Harbor Laboratory Press, 1989).
- 9 3 Fenno, J. C., Shaikh, A. & Fives-Taylor, P. Characterization of allelic
 10 replacement in Streptococcus parasanguis: transformation and homologous
 11 recombination in a 'nontransformable' streptococcus. *Gene* 130, 81-90 (1993).
- Petersen, F. C. & Scheie, A. A. Natural transformation of oral streptococci.
 Methods Mol Biol 666, 167-180 (2010).
- Kremer, B. H. *et al.* Characterization of the sat operon in Streptococcus
 mutans: evidence for a role of Ffh in acid tolerance. *Journal of bacteriology* **183**, 2543-2552, doi:10.1128/jb.183.8.2543-2552.2001 (2001).
- Zhou, M., Fives-Taylor, P. & Wu, H. The utility of affinity-tags for detection
 of a streptococcal protein from a variety of streptococcal species. *Journal of microbiological methods* 72, 249-256, doi:10.1016/j.mimet.2007.12.002
 (2008).
- 7 Bartolome, B., Jubete, Y., Martinez, E. & de la Cruz, F. Construction and
 properties of a family of pACYC184-derived cloning vectors compatible with
 pBR322 and its derivatives. *Gene* 102, 75-78 (1991).
- Zhou, M., Fives-Taylor, P. & Wu, H. The utility of affinity-tags for detection
 of a streptococcal protein from a variety of streptococcal species. *J Microbiol Methods* 72, 249-256 (2008).
- Liu, B., Zhu, F., Wu, H. & Matthews, S. NMR assignment of the amylasebinding protein A from Streptococcus parasanguinis. *Biomolecular NMR assignments* 9, 173-175, doi:10.1007/s12104-014-9568-9 (2015).
- Cole, R. M., Calandra, G. B., Huff, E. & Nugent, K. M. Attributes of potential
 utility in differentiating among "group H" streptococci or Streptococcus
 sanguis. *J Dent Res* 55, A142-153 (1976).
- Rogers, J. D. *et al.* Identification and analysis of a gene (abpA) encoding a
 major amylase-binding protein in Streptococcus gordonii. *Microbiology* 144
 (Pt 5), 1223-1233 (1998).
- Dunny, G. M., Lee, L. N. & LeBlanc, D. J. Improved electroporation and
 cloning vector system for gram-positive bacteria. *Appl Environ Microbiol* 57, 1194-1201 (1991).
- Zhu, F. *et al.* Structural and functional analysis of a new subfamily of
 glycosyltransferases required for glycosylation of serine-rich streptococcal
 adhesins. *The Journal of biological chemistry* 286, 27048-27057,
 doi:10.1074/jbc.M110.208629 (2011).

								α	1	α2	α3		α4	
	(1)	1	10	20	30	40	50 **	60	70	80	90	100	110	120
S. parasanguinis FW213 AbpA	(1)		MKKVLLSSVA	ALAVFAAAAP	FAQGENP-	SASNQ	LIQKKYV	SWRDAADEA	ANTOVAAHEA	AEIKEETLROPO	VVAAQQALDKA	NAIVGHDH	EQAVKRAQEI	OYNTAY
S.parasanguinis ATCC15912 AbpA	(1)		MKKVLLSSVA	ALAVFAAAAP	FAQGENP-	SASNQ	LIQKKYV:	SWRDAADEA	ANTOVAAHEA	AEIKEETLROPO	VVAAQQALDKA	NAIVGHDH	EQAVKRAQEI	OYNTAY
S. gordonii CH1 AbpA	(1)		MKKVLLSSVV	ALTL FAAAAP	FSADEAT-	DAARN	-NDGAYYLQ	TOFTNADK	NEYLAQHD	GEIRAEAAADPA	VVAAKAALDAV	ÆGGS	-HNYGEVKAZ	AYEAAH
S. sanguinis SK36 AbpA	(1)		MKKVLLSSAV	ALSL FAAAAP	FAEGTASI	WVNDIDNNEVP-	QGSTDSE	SNKVMDEL	AYRDAQSAI	LDQQVAEAKKAI	VGK		SAVA	EDOAG
S. salivarius SK126 AbpA	(1)		MKKVLLT SAA	VLAVFASSAAU	FANDGNV-	HTGNL				PNP	TEATGGDFFT	INEGG		LJ
S. australis ATCC700641 AbpA	(1)	MKKGDK	TMKKVLLSSVA	ALAVFAAAAP	FAQGENP-	NASNQ	LIQKKYV:	SERDVADEA	ANAQVAAHD?	AEIRAEVATOPS	SVVAAQATLNAA	KDYTGHDH	DVKLARAQEI	DFDRVY
S. cristatus ATCC51100 AbpA	(1)		MKKVVLSSVV	ALSL FAVAAPA	FAENPIN-	GGANTPGAY	DSREAYENO	TEFVNGRKA	ANEYV GGHQI	DNVDAIASQDPA	VVEAKKALDAV	ÆGGS	-HLYGEKKAZ	AYESAI
S. infantis SK1302 AbpA	(1)		MKKVLLASVA	ALAVESAAAP	FAQGENP-	ASSNQ	LIQKKYV:	SERDIADO	YAYVEAHP	EDIAAAVEKEPS	VIAARAELAKA	QAIVGHTH	EKAVATAKAN	ILDEVI
5. peroris ATOC700780 AbpA	(1)		MKKVLLSSVA	ALAVFTAAAP	FADNTGQ-	HNSAD				DN 7	TSLTGADVFTG	DEYG		L1
5. vestibularis F0396 AbpA	(1)		-MKKVLLT SAA	VLAVFAAGTO	FAQGENP-	KNSNQ	LTQKSYV	SWADAAAEA	ANAQV DAHSA	ADIAAEAQNDPI	WKAAANALAQA	QDTVGHNH	ESDVAAAQSF	KYDEAI

	α4			α5	β1	β2	β3				
(121)	121 130 **	140 *	150 160	170	180	190	200	210	220	230	240
S. parasanguinis FW213 AbpA (104)	NEAYNTVRNRYIQVLQC	KYIE AAKAQGNY	YDETAVEANRTN	EQRIADDIKAO	TGKDVTVTKDE	NGNYVVKDER	GNVVATVDKDGK	TVK	ADAKAGKA-	L	PKTSAVK
S.parasanguinis ATCC15912 AbpA (104)	NEAYNTVRNRYIQVLQC	KYIE AAKAQGNY	YDETAVEANRTN	EQRIADBIKAQ	TGKDVTVTKDE	NGNYVVKDER	GNVVATVDKDGK	TVK2	ADAKAGKA-	I	PKTSAVK
S. gordonii CH1 AbpA (100)	NNAFNAVRNKYVQQFQA	TYNNATEQECKT	YIQGET PEQANARY	LKRVGAANN-Q	NPAAEDKG	ATTPA SKEEA	KKSEAAAKNAG-			-KAAGKAL	PKTSAVK
S. sanguinis SK36 AbpA (89)	NKVLVIGEGESAN	ADOPSVAPSTTD	PSTPAYSAAPYSTA	SSSVPT FPAPS	QSSAASSSAVG	KKKAKKSENR	AKKAPEAKEENK		ENE	ENSEEKSL	PKTSAVK
S. salivarius SK126 AbpA (54)	QAAKDGLNNVDADSTKO	KFEDAGEHIEPK	RBANG	III	KDEFVVTDKAN	AN-KDAKEEA	KAVKAAEKKA P-		A	AKAEAKAL	PNTAAVK
S. australis ATCC700641 AbpA (111)	NEAYNTVRNRYIQVLQC	KYRE AAQRQGNY	WN-BPT GVEDNKPN	PTRIAE DIKAQ	TGKDVTVTTDE	KGNVVVKDER	GNVIGTVDKNGN	LVK	ADAKA	E	PKTSAVK
S. cristatus ATCC51100 AbpA (105)	NDARNAVRNAKIKE SQI	TYNT ADKKQGS Y	YILNET PEQKNRRY	EEEHGVKNNQA	GDKATDKAGDK	GTTPA SKEEA	AMTESKAGKAGK		-DAKAGQ	-KAAGKAL	PKTSAVK
S. infantis SK1302 AbpA (104)	ADATNSQRNRAIQYLQE	TYRNAAKAQGNY	WN-DPTGVEDNKPN	PTRIAE DOANO	TGTAASANQTG	-TAASADQAA	ADQAATKPEDGK	PGAADQAKKA	ADAAAKKAG	AKEAKKAL	PKTHAAK
S. peroris ATCC700780 AbpA (54)	QYGKDGLNNVDAESTKE	KFKAAGETVEPK	LBENG	KAI	PGEFVVKDAPK	ADAKDAKADV	KADKKADAKDAK	K	AA	AAAGQKAL	PKTSAVK
S. vestibularis F0396 AbpA (104)	SNATNAVRNKYIQKFQQ	TYVDAAKAEGRY	YNESGVEANRTN	DORIEDBLIAN	-GKKAANDK AE	AKTAPSKED	KKAQTSAEKVKK	AEAKSKAAK	ENKAGSKAE	AKTL	PNTAAVK

Classic CWSS

C terminus of AbpA

С

	(1)	1	10	20	30	40	50	60	70	80	90	100	110	120
S. aureus SrtA	(1)		MKK	WINRLMIIAG	VLILVAAYL	FAKPHIDNYL	HDKDK-D	EKIEQYDKNV	KEQASKDN	KQQAKPQ IPKDP	SKVAGYIEI	PDADIKEPVYP	GPATPEQ	INRGVS
S. aureus SrtB	(1)		MRMK	RFLTIVQILLV	VIIIIFGYK	IVOTYIEDKO	ERAN	YEKLOOKFON	LMSKHQAH	VRPOFES LEKIN	KDIVGWIKL	SGISLNYPVLQ	GKTNHDY	INLDFE
S. parasanguinis FW213 SrtB	(1)	MNEMK	RAEKKASNK	LVGIMIALAAV	VVIVAGFIF	FNPFGGGKSS	STAKKTTS-	-TSSTKQAAKYE	PSQEEKDY	LKNRFAQLTAV	PETIGYVYA	PGTELDEPVVQ	TTONE TY	INKTED
S. parasanguinis ATOC15912 SrtB	(1)	MK	RAEKKASNK	LVGIMIALAAV	/VVIVAGFIF	FNPFGGGKSS	STAKKTTS-	-TSSTKQAAKYE	PSQEEKDY	LKNRFAQLTAV	PETIGYVYA	PGTELDEPVVQ	TTENE TY	INKTED
S. gordonii CH1 SrtB	(1)	-MSQNAK	ROTKKA PNK	NLKLFGALLGI	IIVVAVAAAM	LIFNPFKSAP	KSNTTASTS	OVTKSSTKNTY	PSKEEKE Y	LAKRFADLKAIN	SEALAYVYA	PGTKLDEPVVQ	TKENSTY	LOKTFE
G. haemolysans ATCC 10379f SrtB	(1)		MK	KVENEKKIESI	ILLLAIALVI	SAVEVAGCED	DKGTS SNT-	SSKATY1	VSKEEKDY	LSKRESE LSKT	NE TVAYVYA	PGTQLDEPVVQ	TNENE TY	LOKTFE
S. infantis SK1302 SrtB	(1)	MREEKMS	RRSTTKKSP	ITKIIASIVAN	AIVALGGEF	IYKSFLAPSG	DKLNDA	KVTQEAPKQTY I	ASQEEKE Y	LANKFKGLLAT	SETVGYVYI	PGTQLDEPVVQ	TTENATY	LDKRFD
S. peroris ATOC700780 SrtB	(1)	MREKMMS	EHSRIKKSP	IGKIIASILTH	FVVIVFGGFF	VYNSFLAPKS	DKQNNVTDV	KVAQEAPKQTYI	VSAEEKE Y	LANKFKGLLAT	SETVGYVYI	PGTQLDEPVVQ	TTENATY	LOKTFE
S. salivarius SK126 SrtB	(1)	MS	NHNRKSTGS	RKKLIAGISAI	LVIAALA-IF	LGFQFMSPTA	SSSNGVK	SVLTTKKANTYK	VSDEEKAY	LKNKFDGLEAT	PDTIAYVYA	PGTKLDEPVVQ	TTENSTY	LOKTED
S. vestibularis F0396 SrtB	(1)	MG	SHNRKSTGS	LKKLIVGISAI	LVIAALA-IF	LGFQYMSPKA	SSSNGVK	SALTTKKASTYK	ISDEEKSY	LKNKFDGLTAT	PDAIAYIYA	PGTQLDEPVVQ	TKENSTY	LOKTFE
S. australis ATCC700641 SrtB	(1)	MK	RAEKKASNK	LTGIMLALAAN	VVIVAGFIF	FNPFGGGKSS	HTAKKTTS-	-TSSTKQVAKYE	PSQEEKE Y	LANRFAQLISVA	PEALAYVYA	PGTELDEPVVQ	TGENATY	DKTFD
S. cristatus ATOCS1100 SrtB	(1)	MR	RRRQKRQQK	NWKIFGGLGAI	LEVAILAGIE	LLQQVNSSN-	SAAK	SSTSQLGKVTYT	PSKEEKE Y	LINRENGLKAIN	PE TVAYVYA	PGTELDEPVVQ	TGENSTY	LOKTFE
S. sanguinis SK36 SrtB	(1)	MQE	KDRSQASNK	KQLFVVGICLI	LIVLVIFSV	FYAFRSSASG	SKLRVSHPS	RIET SSSSASS-	-SQTEKDY	LAERFAKLKSVA	SETIGYVYA	PGTQLDEPVVQ	TKENE TY	LKTFE
	(174)	121	120	140	150	160	170	180	190	20.0	21.0	220	220	240
5	(121)					/				1				
S. aureus SitA	(103)	FAEE		NESLDDONISI	AGHIFIDR-	-PNYQ TNLK	AAKKG	SMVYFKVGNETE	KYKMISIR	DAKALDAEATDE	GQ			KGKD
S. aureus SrtB	(102)	REHR-RK	GSIEMDERN	ELKILNHNTII	YGHHVG	-DNIMEDVLE	DYLKQSFYE	KHKIIEFUNKYG	RYOLOVES	AYKITIKUNYI	TO FENDODY	QQFLDETKRKS	-VINSDVI	NVIVKD
S. parasanguinis FW213 SrtB	(117)	GGNEPLM	GIVENDIUN	KKDFSDRLTWI	FGHARGSKV.	ADHRMENDVN	FARGDAED	DHALAALELADE	KYYYEAMC.	LVIVPEDTAFY	TSFTDDKDF.	TIQLERVIEDG	QIKNPNI	KIKASD
5. parasanguinis ATOCIS912 Site	(114)	GGNEPLM	GIVENDIUN	KKDESDRLIWI	FGHARGSKV.	ADHRMENDVN	FIRGDIED	DHALAATELADH	KYYYEAMC.	LVIVPEDIAFYE	ATSFIDDKDF.	TIQLEREVIEDG	OIKNDNI	KIKASU
S. gordonii CHI SrtB	(120)	GGNEPYM	GIVENDIUN	KKDFSDRLTWI	FGHARGSKV.	ADNRMENDVN	FADNOFFED	DHKYVVVETPER	REYYEAMG.	LVIVPEETAFY	TS FDGUKUF.	TDQLKSIYEAS	RIKNKDI	IVKASU
G. naemolysans ATCC 10379F Srb	(101)	GGHVPYL	GIVENDMUN	KKDEHDRLIWI	FGHARGSKV	GEHRMENDVN	TATEROFINE	KHKEVVIETPER	KIYYEAAF.	LIIVPEIISEYE	ALD FENDEDF	LNULINVKKDA	AIKNDSW	TRGND
S. Infantis SK1302 SrtB	(118)	GVNEPLM	GAVENDALIN	KKDFSDRLTWI	FGHARGSKV	PDHRMEKDVN	YFSROEYFD	CHPYVVIETPER	KYYYEAVA	MIIVPEETAFY	TS FOODADE	EKQLNIIYDTA	EVKKPNV	KVSAKU
S. peroris ATCC/00/80 Site	(121)	GVHQPLM	GIVENDALN	KKDFSDRLTWI	FGHARGSKV	PDHRMEKDVN	TESSOUTE	KHPIVVIETPER	KIYIEALA	VVIVPETTAFY	TS FADUADE	ERQLIAIYDEA	KVKKPNV	KVSPKU
S. salivarius SK126 SrtB	(113)	GGNVPYL	GIVENDIUN	KKDFSDRLTWI	FGHARGSKV.	ADSRMENDVN	IYYSDQSFFD	KHKYVVIETPOP	KYYYEALA	MVIVPEDTAFY	TSPESUKUP	KQQLDIIYDQA	SVKNKDL	KVNASU
S. Vestibularis F0396 SrtB	(113)	GGNEPLE	GIVENDMEN	KKDFSDRLTWI	FGHARGSOV.	EDHRMENDVN	YYSDQSFFD	NHKYVVIETPOR	KYYYEALA	MVIVPEDTAFY	TSFKDDKDFI	KEQLDIIYNTA	DAKNEDT	KVSASD
S. australis ATCC/00641 SrtB	(114)	GGNEPLM	GIVENDIUN	KKDESDRLTWI	FGHARGSKV.	EDHRMENDVN	FYENGEYEN	OHDAAATELDEB	KYYYEAMG.	LVIVPETTAFY	TSESDUEEF.	TSQLENIYEAA	RIKNPNI	KINASU
S. Cristatus AICUSII00 SrtB	(110)	GGNEPYL	GIVENDIEN	KKDESDRLTWI	FGHARGSOV	GDHRMENDVN	YYDKQEYLD	KHKYVVIETPER	KLYYEVMG.	LVIVPEE TAFY	STK EDDDKDEI	ETQLKNIYEAA	RIKDÖKT	KIKASD
5. sanguinis 5K36 SrtB	(115)	GKOEPYM	GAVENDKON	HKUFSERLTWI	HGHARGSRA	GEHRMENDVN	YYDRODYFD	KHRYVVIETPER	KYYYQAMG.	LVIVPEETAFY	TE FRODEDF:	TIQLENIYEAA	RIKDPEM	KIKASD
	(241)	241	250	260	270		289							
S. aureus SrtA	(177)	KQLTLI	TODDYNEKT	GVWEKRKIFV	ATEVK									
S aurous SrtB	(216)	WINTE C	TOPDAVCET	TUDTIANAUT	TVUC									

5. adieds 5104 (177)	KOLI HODDINEKIGVWERKTI VALEVK
S. aureus SrtB (216)	KIMTL STCEDAY SETTKRIVVVAKIIKVS
S. parasanguinis FW213 SrtB (237)	KYLVLSTCREEDETIRANLYLRQIPDSEMKDFVAKHADQLKYVATRGQQ
S. parasanguinis ATOC15912 SrtB (234)	KYLVLSTCREEDETIRANLYLRQIPDSEMKDFVAKHADQLKYVATRGQQ
S. gordonii CH1 SrtB (240)	KYLVLSTCREEDETIR SNLYLRQIPD SEMS DFLAKHG SELTYTP TR
G. haemolysans ATOC 10379f SrtB (221)	KYLVLSTCREEDETIRSNLYLRQIPDNEMNDFLAKHKDELKYVATR
5. infantis 5K1302 SrtB (238)	KYLVLSTCREEDDTIRANLYLRQIPDSEMSDFVKQHGESLQYKPTRE
S. peroris ATCC700780 SrtB (241)	KYMVL STOLEEDDTIR TNLYLRQIPD SEMT DFVKQHGEELQYKP TR
S. salivarius SK126 SrtB (233)	KYLVLSTCREEDETIRANLYLRQIPDSEMSDFVAKHGKDLEYTPTR
S. vestibularis F0396 SrtB (233)	KYLVLSTCREEDATIRANLYLRQIPDSEMTDFVAKHGKDLEYKPTR
S. australis ATCC700641 SrtB (234)	KYLVLSTCREEDETIR SNLYLRQIPD SEMKDFLAKHGDQLNYVATRGQE
S. cristatus ATOCS1100 SrtB (230)	KYVVLSTCREEDETIR SNLYLRQIPD SELQDFLAKHGNELTYKATRE
S. sanguinis SK36 SrtB (235)	RYLVLSTCREEDDTIRSNLYLRQIPDSELEDFLDKHGKELTYTPTR

