
 

Supplementary Figures: 

 
Supplementary Figure 1. Supplementary task description relating to Figure 1. Illustration of the 

training schedule prior to fMRI scanning. Subjects were trained on the day before fMRI scanning and 

on the day of scanning, immediately preceding the experiment. The full training session (only 

performed on the preceding day) comprised three parts. (a) Familiarization with default patch (10 

trials). In each trial, alternatingly, subjects experienced a stable default patch (red) and length-matched 

experimental patch (blue). Dots represent reward events of a given reward magnitude and the vertical 

line represents the cued transition to the other patch. After both patches (i.e. after time step 30), 

subjects were asked to indicate which environment had contained more rewards (i.e. had the overall 

higher reward rate). (b) In part two, subjects experienced three patches. They were told that a patch's 

payoff changed monotonically and that this becomes apparent when paying attention to both the reward 

magnitudes and reward delays of reward events. Subjects pressed through each patch three times with 

varying instructions. The instructions were to pay attention to 1) the change in reward magnitudes 

(ignoring delays) 2) the change of reward delays (ignoring reward magnitudes) and 3) the change in 

both magnitudes and delay. This part contained no decision. The reward sequence displayed in (b) was 

taken from an increasing reward rate curve (note the increasing payoff of the reward magnitude to 

reward delay ratio: the reward magnitudes increase and/or the delays between rewards decrease). (c) In 

the third part, subjects were asked to do a training version of the experimental task including leave-stay 

decisions (18 trials). Notably, they had the chance to experience the experimental patch (blue) or the 

default patch (red – this was only presented after the LSD when participants opted for the default 

option) and they were given performance feedback after each trial. The vertical line represents the time 

of the LSD and dots in the grey area represent reward events from the experimental patch (blue) and 

the default patch (red). Subjects experienced only one or the other on any given trial. For performance 

feedback, subjects were told how many bonus points they had earned or missed depending on their 

choice (see Experimental Procedures). Bonus points were proportional to the overall payoff of the 

chosen compared to the unchosen patch after LSD. Hence, a positive number indicated a correct choice 

(earned points) and a negative number an incorrect choice (points missed). This step allowed subjects 

to discern which aspects of the reward environment were predictive of correct choices. The reward 

sequence displayed was taken from a slightly decreasing reward curve (note the decreasing payoff of 

the reward magnitude to reward delay ratio: the reward magnitudes decrease and/or the delays between 

rewards increase). (a,b,c) In sum, the training session gave subjects the opportunity to memorize the 



 

stable default patch, to grasp the structure of the reward environments and to learn how to make correct 

decisions. On the day of scanning, a shorter training session took place to refresh the experimental 

instructions. In the fMRI scanner, subjects had no opportunity to learn from direct choice feedback and 

66% of trials were truncated after the leave-stay decision, discouraging changes in choice strategy 

during the fMRI session.   



 

 
Supplementary Figure 2. Supplementary behavioral results relating to Figure 2. (a) Correlation 

matrix of parameterizations of reward history used in two GLMS (fMRI GLM1 and fMRI GLM4). The  

regressors used in our two GLMs summarize reward history in complementary ways. Note that the 

parametric regressors within each GLM (lastRR and avgRR in fMRI GLM1 and the five time bins in 

fMRI GLM4) share less than 25% of their variance. (b) The two GLM analysis approaches are, 

however, complementary and so there are relationships between them. An illustration of the relation 

between the time bin GLM (GLM4) and the lastRR/avgRR GLM  (GLM1) is provided. Each data point 

represents shared variance (r
2
) between a reward rate in the time bin-based GLM and lastRR and 

avgRR, respectively (squared correlation coefficients from panel a, lower left part). Note that the 

underlying correlation coefficients are positive in all cases (see panel a). LastRR shares more variance 

with more recent time bins compared to earlier ones while, by contrast, avgRR is increasingly 

correlated with earlier time points. However, the change is gradual, reflecting the continuous structure 

of the reward rate curves. This illustrates that the positive effect of lastRR on choice predicts 

increasingly positive beta weights for recent time bins, while the negative beta weight of avgRR 

(Figure 2b) predicts decreasingly negative beta weights for early time bins. Graphically speaking, the 

continuously increasing beta weights of recent time bins in Figure 2a can be interpreted as a 

superposition of a positively weighted lastRR correlation profile and a negatively weighed avgRR 

correlation profile. Compare also with Figure 1b that shows that reward rate curves differ more early in 

a patch as a function of their trajectory compared to later. This asymmetry makes it easier to dissociate 

lastRR from avgRR in behavioral and neural analyses, because it reduces their correlation. (c) 

Complementary GLM to Figure 2b. We used a GLM with lastRR and lastRR-avgRR as regressors. 

Subjects (blue) were influenced by both lastRR (t19=6.64; p=2*10
-6

) and its relation to earlier reward 

rates (lastRR-avgRR: t19=6.23; p=5*10
-6

). RL-simple (green) predicted correctly that choices would be 

guided by lastRR (t19=7.03; p=1.1*10
-6

). However, it failed to reflect that subjects tended to stay when 

reward environments had become better over time (negative effect of lastRR-avgRR; t19=-3.65; 

p=0.0017). (d) Supplementary description of Figure 2c. We sorted all patches by their lastRR-avgRR 

and then fitted a softmax function to assess whether subjects’ stay rates were positively influenced by 

the reward rate trend. Comparing the inverse temperature of the softmax functions between subjects' 

actual stay rate (blue) and RL-predicted stay rate (green), we found that subjects modulated their 

choice behavior significantly more according to lastRR-avgRR than a simple RL model predicts 

(t19=7.3; p=6*10
-7

). Overlaid are binned choice probabilities that were calculated in five continuous 

bins of 18 trials, sorted by lastRR-avgRR. For actual choices, the choice probabilities reflect choice 

frequency, for RL-predicted choices, the choice probabilities reflect p(stay) from equation 3 of the 

Methods section describing the RL model.  (**, p<10
-5

; *, p<0.005, one-sample t-tests (panel c) and 

paired t-tests (panel d) ; error bars and shaded error bars are s. e. m. between subjects).  



 

 
Supplementary Figure 3. Supplementary RL results relating to Figure 3. (a) Negative log 

likelihoods (left) and Bayesian information criterion (BIC) scores (right) of fitted models shown for all 

subjects. Smaller values indicate better model fit. (b) Supplementary model comparison including the 

three main models from Figure 3 (RL-simple, RL-simple+lastPE and RL-avgRR) and four modified 

versions of RL-avgRR (see Supplementary Note 1 for a description). The group sums of the Bayesian 

information criterion (BIC) are shown for each model sorted by BIC value. Smaller values indicate 

better model fit. In the modified RL-avgRR models (white bars with orange borders), we changed a 

single aspect of RL-avgRR to evaluate how this change affected the model dynamics. We found that all 

RL-avgRR models explained behavior in a robustly better manner than the two reference models (RL-

simple and RL-simple+lastPE). This demonstrates that neither of the modified aspects in isolation is 

crucial for RL-avgRR to work in our experiment and suggests that the RL-avgRR's goodness of fit is 

indeed related to the model's core feature of calculating expected prediction errors (see main text). (c) 

Correlations of decision variables across models shown in panel b. Correlations are averaged over 

subjects using the unsigned correlation coefficients. As expected from the model comparison, the 

choice computations performed by all versions of the RL-avgRR model are highly similar (all 

correlations above 0.929) but distinct from the two reference models.   



 

 
 

Supplementary Figure 4. Supplementary RL results relating to Figure 3. This figure explains a 

particular feature of RL-avgRR: the fact that a simple value estimate is not included in its decision 

variable. The decision variable instead consists only of PEexpected at the time of choice. While we show 

that a memory of previous PEs can be used to decide according to reward trends of the environment, 

PEs are also influenced by the absolute reward levels in a trial. Hence, it is not necessary to use a 

simple value estimate in the decision variable in addition. This can be explained in terms of the 

learning process in a trial, where information about absolute reward levels is initially reflected by the 

reward trend estimate (a) or, in a complementary way, in reference to the precise pattern of the 

outcome weights used by RL-avgRR (b). A critical feature for both explanations is the time horizon 

over which rewards are experienced. Due to the relatively small learning rates (median of 0.183) there 

is no need to add a simple value estimate to the model’s decision variable. (c). (a) This figure shows 

the development of PEexpected over time separated by both reward trend (increasing/decreasing) and 

optimal choice at decision point (stay/leave; the optimal choice in a trial is defined as the one that leads 

objectively to more rewards on the current trial). Note that rewards are presented intermittently in our 

experiment. This explains sudden increases or decreases in the temporal evolution of PEexpected, 

particularly during the last two time steps (a reward is always presented on the last time step and is 

never presented on the second to last time step, see Methods.  We did this to ensure that recent 

information about reward rates was available at the decision point in a similar manner in both 

increasing and decreasing environments in which it was optimal to stay in which it was optimal to 

leave. If this had not been then done then whether reward was delivered at the last time step or not 

could have contaminated our model estimate). For this, the important feature of this plot is the general 

development of the decision variable (i.e. PEexpected), rather than interpreting each time step separately. 

The figure shows how early in a trial (left hand side), PEexpected is high or low as a function of the type 



 

of reward environment (increasing or decreasing), but later on as a function of the optimal choice (stay 

or leave; right hand side). In detail, early in a trial, PEexpected reflects learning about the average reward 

levels of the environments, which are initially higher in decreasing patches. In other words, PEexpected is 

high at first in decreasing patches as these are initially experienced as increasing as the agent first 

gathers experience of the environments. Vice versa, the increasing patches are experienced as 

decreasing relative to subjects' initial expectations. Expressed in terms of simple prediction errors, this 

means that early in a trial positive simple PEs predominate in the decreasing environments; the model 

learns that the current rewards are better than what is expected on average. This is how the model's 

PEexpected initially captures the absolute reward levels of the environment. From that point on, additional 

rewards modify PEexpected in the direction of the reward rate trend (approximately the last eight time 

steps). Therefore, PEexpected decreases more in patches that are more strongly decreasing (and leave is 

the optimal choice) compared to patches that decrease but not to such a strong degree (stay still 

optimal). In contrast, PEexpected increases more strongly for patches with a stronger increase in reward 

rates (and stay is optimal) compared to patches were reward rates increase, but not sufficiently enough 

(and leave is optimal). In summary, RL-avgRR scales initially with absolute reward levels in a patch in 

terms of their positive or negative deviation from a longer time average reward rate (i.e. their initial 

trend). This estimate is then modified by the later increase or decrease of the reward rates in the patch, 

i.e. reward trends at decision point (increasing/decreasing). Therefore, the model's PEexpected is related 

to both the reward rate trend as well as the absolute reward levels in our experiment. Moreover, there 

are a few things to note in this figure. First, subjects are naive with respect to the environment when 

they enter it. If this had not been the case and subjects did not have to learn initially about the reward 

levels in increasing and decreasing patches, then the early PEs could not be used to approximate 

absolute reward levels. However, as long as the starting value of the model reflects a relatively constant 

feature of the past reward history (i.e. is not initialized as the first reward rate of the specific patch), 

relative preferences based on developing trends and higher and lower absolute reward levels can be 

reconstructed in terms of the relative deviation from that initial constant. This is also why different 

starting values lead to similar model fit (see Supplementary Fig.3b). Second, note that as learning about 

the environments proceeds, all prediction error estimates (PEexpected) decrease. This effect is 

superimposed on the other effects described before (initial clustering of PEexpected by 

increasing/decreasing, then by stay/leave). Third, the fact that rewards are presented intermittently in 

our experiment (as well as in most probabilistic learning tasks) leads to relatively low learning rates for 

RL-avgRR (median 0.183), reflecting integration over many time steps to get a stable value estimate. 

(b) A complementary explanation of why PEs also contain information about what we called absolute 

reward levels is related to the precise pattern of outcome weights used by RL-avgRR in our experiment 

(orange line in left panel; from PEexpected as in Fig.3e). We illustrate this for trials of our experiment in 

which decisions have to be made against the reward rate trend, as those could not be made correctly 

without information about absolute reward levels. We show the average reward rates of reward events 

binned by recency (median split in recent past and longer-term past relative to choice) for trials in 

which it was optimal to leave although they were increasing (yellow) and in which it was optimal to 

stay although they were decreasing (dark blue) (left panel). Optimality was defined as the choice that 

led to objectively more rewards on the current trial, as in panel (a). For these two trial types, decisions 

had to be made based on experienced reward levels and against the reward trends. That the model 

could do this is clearly reflected by the higher decision variable of RL-avgRR (i.e. PEexpected) for 

decreasing/stay compared to increasing/leave trials (right panel; see also Fig.2d). A complementary 

explanation to above is to illustrate the outcome weights directly. For this we need to look more closely 

at the model's positive (orange line, right hand side) and negative weights (orange line, left side) of 

recent and past outcomes, respectively. These weights are not balanced (i.e. they do not sum up to 

zero) but instead positive weights are stronger than negative weights within the time frame of 

approximately 16 time steps of each trial. Hence, there is a stronger positive than negative weighting 

(the relation is approximately 4:2.5 for positive compared to negative weights for the function shown in 

this figure). This distribution of weights is caused by an interaction between the time horizon studied 

and a relatively low learning rate. The stronger positive influence of recent compared to the negative 

influence of longer-term past rewards enables the model to differentiate between environments with 

varying absolute reward levels. In other words, even though there was a negative contrast effect that 

higher levels of past rewards exerted on the valuation of recent rewards, this contextualization was not 

complete (see panel c for a case where the contextualization is complete and an additional simple value 

estimate is needed to guide choices). The following numeric example gives an illustration how the 

imbalanced weight set can be used to differentiate between high and low reward environments in the 

absence of a reward trend. Imagine a stable environment where one reward was delivered in the 

negative past time window and one reward was delivered within the positive time window (for instance 



 

think of the yellow bars in the plot having both a reward rate of 1). Imagine also the positive and 

negative part of the orange line were just two values, a positive one and a negative one, summarizing 

the overall weight during that recent and longer-term past time period (for instance -2.5 and 4, as is 

actually the ratio for the orange line). PEexpected could then be calculated as the (negative) sum of the 

past rewards times the negative past weight (-2.5) plus the recent rewards times the positive recent 

weight (4). In this case, PEexpected of RL-avgRR would be 1*(-2.5) +1*4=1.5. In an environment with a 

higher stable reward rate (for instance the dark blue one), e.g. two rewards per time window, PEexpected 

would be 2*(-2.5) +2*4=3. Consequently, PEexpected and thus the decision variable is higher (3 

compared to 1.5) for the environment with the higher stable reward rates (dark blue). Note that in this 

example the resulting estimates are positive, just as it was predominantly the case in our experiment 

(positive values in right panel), reflecting the imbalance of stronger positive compared to negative 

outcome weights. This example illustrates how PEexpected is able to differentiate between stable 

environments with varying absolute reward rates. In other words, the imbalance of positive and 

negative weights means that the RL-avgRR decision variable contains not only information about the 

later reward trend but also the non-changing part of the reward environment, as this components has 

not been completely balanced out.  In other words, given the learning rate and the number of time 

points over which people experienced the environment, the outcome experienced early and late in the 

environment were not balanced in regard to the beta weights. (c) For completeness, we also want to 

outline example cases where it is likely to be important to include an additional simple value estimate 

in the decision variable to capture absolute reward levels. These are likely to be ones where learning of 

the environment occurs over a very long time period (longer than in our experiment). To illustrate this, 

we show the outcome weights used by RL-avgRR's PEexpected expanded over a longer time period (same 

function as shown in Fig.3e, but longer time frame). Here, the negative tail of the function (orange) on 

the left hand side converges over 30 time steps. In this case, all outcome weights sum up to zero. In 

other words, positive recent and negative past weights cancel each other out. This means that PEexpected 

in a completely stable environment would be zero, any decrease in reward rate recently would mean a 

negative PEexpected and any recent increases would mean a positive PEexpected. In such a setting, PEexpected 

would only reflect the change in reward rates and not absolute reward levels. Note that even in this 

setting RL-avgRR would still be perfectly able to perform the computation that is the emphasis of this 

manuscript; it would use a longer-term memory of PEs to estimate reward trends i.e. recent changes in 

the reward environment. Only a simple RL value estimate (which RL-avgRR computes anyways to 

estimate the PEs) would have to be included in the decision variable to capture differences in absolute 

reward levels. Therefore, in contexts with very stable environments longer than participants learning 

horizon or when the initial reward level is known to subjects preceding a trial, the inclusion of a simple 

RL's value estimate could allow a model to capture both trend and absolute reward level information. 

However, in our experiment PEexpected alone, without a simple value estimate, was sufficient to 

dissociate between environments with rich and poor but relatively stable reward rates (see panel a,b) as 

such reward levels had only recently been learned themselves.  
 

  



 

 
Supplementary Figure 5. Supplementary fMRI results relating to Figure 4a,b,c,d. (a) Neural 

effects of task difficulty were separable from effects of recent and past reward estimates. We calculated 

a trial-by trial measure of task difficulty
1
 using choice predictions from one of our behavioral GLMs 

(Methods). Task difficulty did not correlate in a systematic way with lastRR-avgRR, the key parameter 

in our whole brain analyses that led us to identify dACC activity (top). The same was true for its 

correlations with the components lastRR and avgRR (bottom). (b) We calculated fMRI GLM1 

(Methods) as a time course analysis time-locked to LSD and computed the effect of lastRR-avgRR in 

dACC (blue line). We repeated this GLM and included task difficulty as additional regressor 

(supplementary fMRI GLM1). Overall, the parametric modulators of the constant time-locked to the 

LSD in this GLM comprised lastRR, avgRR, logRT and task difficulty. The lastRR-avgRR effect after 

including task difficulty (red line) showed a slight, but not significant increase in peak effect size 

relative to the lastRR-avgRR effect from fMRI GLM1. 

  



 

 
Supplementary Figure 6. Supplementary fMRI results relating to Figure 4e,f. (a,b) Result of time 

bin analysis of frontal operculum (FO) and ventral striatum. The analysis is analogous to the one 

presented in Fig.4e for dACC, where dACC showed a gradual transition from positive to negative 

effect sizes as reward rates became more distant in time. The same was true for FO but not the ventral 

striatum. To quantify similarity between the three areas, we calculated a 3 (ROI) x 5 (time bin) 

ANOVA and found a significant effect of time bin (F2,47=8.39; p=3.3*10
-4

) and an interaction effect 

(F8,152=3.68; p=0.001) suggesting differing temporal gradients of neural response to reward rates 

(additional analysis of another ventrostriatal ROI also failed to identify monotonic changes in effects of 

the sort seen in ACC and FO). (c) Illustration of the analysis shown in Fig.4f. We used a linear 

regression to fit a line through each subject's behavioral beta weights shown in Fig.2a and through the 

neural beta weights reflecting the influence of the five time bins on neural activity. So each line was 

fitted on five data points. We did this separately for each ROI (dACC from Fig.4e shown here as an 

example). We used the slope of the fitted lines as indices of behavioral and neural gradients, 

respectively. Fig.4f showed that there was a correlation between behavioral gradient and dACC 

gradient across subjects. This was not the case for FO or the ventral striatum. (d) Control analysis for 

the correlation between dACC signal and behavior shown in Figure 4f.  The correlation between 

temporal gradients of beta weights in dACC and in behavior remained significant, when both gradients 



 

are calculated based on the last four instead of the last five reward rate bins (r=0.49; p=0.027; the latter 

analysis was done in Figure 4f). Visual inspection of the neural beta weights for all reward bins in 

Figure 4e and panels (a.b) of this supplementary figure may suggest that the difference between 

cortical areas and the ventral striatum only relates to the earliest time bin LSD-13-15. To show that the 

significant correlation between neural and behavioral gradient in dACC (Figure 4f) is not only 

dependent on this earliest time bin, we repeated the analysis shown in Figure 4f, but removed the 

earliest time bin from the calculation of the neural and behavioral temporal gradient.  The correlation 

remained significant. (e) In another control analysis, we recalculated the time bin GLM for dACC 

shown in Figure 4e (shown again here on the left), but included in addition a regressor controlling for 

choices subjects made (supplementary fMRI GLM2). This binary choice regressor contained "1" for 

stay and "-1" for leave choices. The right panel shows the neural signals of the five time bins when 

including such a regressor. Visual inspection shows only minimal change between both GLMs. 

Accordingly, in a 2 (GLM) x 5 (Time bin) ANOVA, we found differences in neural response to the 

time bins (main effect time bin: F4,76=4.6; p=0.002) but no difference between both GLMs (main effect 

GLM: F1,19=2.18; p=0.156) and no interaction effect (F4,76=1.12; p=0.318). 

  



 

 

 
 

Supplementary Figure 7. Supplementary fMRI results relating to Figure 5. (a) Supplementary 

fMRI GLM3. We constructed a GLM using the same constant regressors (i.e. the regressors indicating 

occurrence of key trial events such as LSD time) as in fMRI 1,2 and 3. However, for this GLM, the 

parametric regressors time-locked to the LSD comprised only logRT and the decision variable (DV) of 

the RL-avgRR model, which was the value estimate of the higher-order part of RL-avgRR model at the 

time of the LSD (PEexpected (LSD)). We identified a DV signal in an extended cluster in the cingulate 

cortex, comprising more posterior regions similar to the results in Figure 5a and also more anterior 

ACC regions similar to the results in Figure 4a. In addition, the DV was reflected in the BOLD 

response in the right dorsolateral prefrontal cortex (Supplementary Table 2). (b) For further analysis in 

Figure 5 and Figure 6, we used the expected prediction error one time point before choice 

(PEexpected(LSD-1), abbreviated as just " PEexpected" in the main text and in this figure. Here, we show 

correlations of PEexpected with choice and task difficulty for all subjects. Choice was coded as "1" and "-

1" for stay and leave trials respectively, and task difficulty was calculated as in supplementary Figure 5 

(Methods). (c) Supplementary fMRI GLM 4, complementary to ROI analyses to Figure 5c. Using the 

same ROIs as in Figure 5c, we recalculated fMRI GLM 2 (shown in Fig.5), using task difficulty as an 

additional parametric regressor. Not unexpectedly for a brain region that computes choice variables, 

task difficulty had a significant effect in dACC (t19=2.74; p=0.013) but not in the other two regions 

(postACC: t19=2.02; p=0.058; vmPFC: t19=-0.62; p=0.54). However, the PEexpected and choice signals in 

dACC remained significant and even exhibited very small increases in effect sizes (t19=2.68; p=0.015 

and t19=2.49; p=0.022, respectively). Note that the PEexpected effect in post-dACC and the choice effect 

in vmPFC were both significant in the initial whole brain analysis that was used to first identify the 

ROIs but here, to avoid double-dipping, the PEexpected effect in post-dACC and the choice effect in 

vmPFC, are only shown for illustration and were not further tested for significance (it is for this reason 

that we did not add asterisks for the pale grey bar for post-dACC and the dark grey bar for vmPFC).  

  



 

Main models: 

 

RL-simple 

Parameter α β valueDEF 

Median (SE) 0.471 (0.059) 40.909 (6.239) 0.087 (0.008) 

 

RL-simple+lastPE 

Parameter α PEweight β valueDEF 

Median (SE) 0.493  

(0.071) 

-0.308  

(0.072) 

57.960 

(48528.45) 

0.047  

(0.009) 

 

RL-avgRR 

Parameter α α-lastPE β valueDEF 

Median (SE) 0.183  

(0.016) 

0.134  

(0.012) 

240.46  

(20.89) 

0.015  

(0.002) 

 RL-avgRR (fitted on all subjects)  

Parameter α α-lastPE β valueDEF 

value 0.184 0.163 161,14 0.017 

 

Supplementary models: 

 

RL-avgRR-no- α-lastPE 

Parameter α β valueDEF 

Median (SE) 0.173  

(0.014) 

174 .643 

(19.023) 

0.020  

(0.001) 

 

RL-avgRR-2Alphas 

Parameter α-part1 α-part2 α-lastPE  β valueDEF 

Median (SE) 0.173 

(0.037) 

0.185  

(0.048) 

0.131 

(0.021) 

266.867 

(31.398) 

0.016 

(0.003) 

 

RL-avgRR-valuepart1 

Parameter α weight- 

valuepart1 

α-lastPE β valueDEF 

Median (SE) 0.192 

(0.017) 

-0.030  

(0.122) 

0.139 

(0.030) 

236.565 

(35.711) 

0.017 

(0.010) 

 

RL-avgRR-freestart 

Parameter α α-lastPE β valueDEF start- PEexpected 

Median (SE) 0.184 

(0.016) 

0.137 

 (0.013) 

238.384 

(20.987) 

0.015 

(0.002) 

0.0233  

(0.225) 

Supplementary Table 1. Supplementary RL results relating to Figure 3. Summary of parameter 

estimates of RL models. (SE is standard error). Note in particular the smaller parameter values for 

valueDEF for versions of RL-avgRR compared to versions of RL-simple. The reason for this is that 

while RL-simple computes standard value estimates reflecting a recency-weighted average of the 



 

reward environment, the estimates computed by RL-avgRR reflect a contrast measure of recent and 

past reward rates (for a visualization of this fact, compare the weights of past rewards for these models 

in Fig.3c and Fig.3e). As such, they are the sum of positively and negatively weighted past rewards, 

resulting in numeric values closer to zero.  



 

 

Supplementary Table 2. Supplementary fMRI results relating to Figure 4,5 and 6. Peak 

coordinates of significant clusters in fMRI contrasts (|z|>2,3, p<0.05, cluster corrected). 

 

 

Contrast 

 

 

Region  Peak 

Coordinates x/y/z 

(in mm MNI 

space) 

Z-Value 

last-avgRR 

(fMRI GLM 1) 

 

Dorsal anterior cingulate cortex 

(dACC; RCZa) 

6 38 28 3.93 

Right frontal operculum (FO) 34 26 -2 3.08 

Right ventral striatum 10 10 -4 3.49 

Choice 

(fMRI GLM2) 

ventromedial prefrontal cortex 

(vmPFC) 

-2 50 -2 3.19 

PEexpected(LSD-1) 

(fMRI GLM2) 

 

posterior dorsal anterior 

cingulate cortex (post-dACC; 

RCZa) 

2 20 38 3.82 

right inferior frontal sulcus (IFS) 38 28 22 3.82 

right inferior parietal lobule 56 -38 44 3.63 

right Thalamus 8 -10 8 3.52 

PEexpected(LSD-1) 

(fMRI GLM3) 

right inferior frontal gyrus 44 10 24 3.68 

Dorsal anterior cingulate cortex 

 (RCZa) 

-4 22 40 4.25 

right ventral striatum 8 6 0 3.65 

right frontal operculum 30 22 -4 3.66 

left frontal operculum -32 18 -6 3.49 

PEexpected(LSD) 

(supplementary 

fMRI GLM3) 

Right inferior frontal junction 

(IFJ) 

52 10 26 3.52 

anterior rostral cingulate zone 

(aRCZ) 

-6 24 40 3.46 



 

Supplementary Note 1 (related to Supplementary Fig.3). Supplementary 

reinforcement learning models were constructed based on RL-avgRR. Results relating 

to these models are presented in Supplementary Fig.3. Rationale and features of the 

modified models were the following (see also Supplementary table 1 for median 

parameter weights of main and supplementary models): 

 RL-avgRR-no-α-lastPE: This model is identical to RL-avgRR, but does not use a 

separate learning rate for the last PE*. Hence, it has one less free parameter than 

RL-avgRR. One reason why the separate learning rate of RL-avgRR improves 

model fit slightly might be that the last time step before decision (the time step to 

which the additional learning rate relates) is always rewarded in our experiment. 

This was done to control for reward recency at the time of choice. However, for 

all other time steps in a trial reward events occurred much more sparsely. 

 RL-avgRR-2Alphas: This model is identical to RL-avgRR, but separate learning 

rates were fitted to RL-avgRRpart1 (α-part1) and RL-avgRRpart2 (α-part2). Note 

that, as in RL-avgRR, there was an additional learning rate for the last PE* of RL-

avgRRpart2 (i.e. PE*(LSD-1)) but not for the last PE of RL-avgRRpart1. Note also 

that the parameter weights for the two alphas were very similar (median weights 

of 0.173 and 0.185) explaining why the use of separate learning rates did not 

further improve model fit. 

 RL-avgRR-valuepart1: This model is identical to RL-avgRR, but the value 

estimate of RL-avgRRpart1 at the time of choice (value(LSD)) is also included in 

the decision variable of the model, weighted by an additional free parameter 

weight-valuepart1 (Decision variable = PEexpected(LSD) + weight-

valuepart1×value(LSD)). The rationale for the model is related to one feature of 

RL-avgRR that might seem counterintuitive — that the decision variable of RL-

avgRR PEexpected, reflects an expected prediction error, and that it does not include 

an additional non-contextual estimate of the reward environment. Adding such a 

non-contextual estimate can be done in a very simple way by including the simple 

value estimate from RL-avgRRpart1 at the time of choice in the decision variable, 

which is exactly what was done in this modified model. However, in our 

experiment this addition to the model did not improve the model fit further in 

terms of BIC, although a slight decrease of negative log likelihood in the model 

fitting was observed. This demonstrates that in the context of our study RL-

avgRR's PEexpected contains sufficient information to reflect both instantaneous 

reward and reward rate trend. However, to enable the model to be sensitive to 

absolute reward levels under more stable circumstances, it could include the 

additional simple value estimate (see Supplementary Fig.4).  

 RL-avgRR-freestart: This more exploratory model is identical to RL-avgRR, 

except that it uses an additional free parameter (start- PEexpected) as starting value 

of PEexpected on every trial. As the prediction errors were calculated at the 

beginning of a trial in reference to the initial value one could imagine that this 

value affects the model fit. Thus, we made a variant of RL-avgRR, which finds 

the optimal starting value for each subject. However, this did not improve the fit. 



 

In fact, it would be surprising if it had improved the fit, as the important aspect of 

the model was to differentiate between different environments, for instance ones 

that had initially high reward rates or initially low reward rates. This is further 

corroborated by the high correlation of the decision variable that is calculated with 

this model and with the original RL-avgRR (mean correlation of decision 

variables is 0.9916, see panel c in Supplementary Fig.3).  



 

Supplementary Methods 

 

Imaging data acquisition and preprocessing. Brain data were collected on a 3 Tesla 

Siemens Verio MRI scanner equipped with a 32 channel head coil. T1-weighted 

structural images were acquired using TR=3s, TE=4.75ms, TI = 1100ms, 1x1x1mm 

voxel size, 256x176x224 grid. Functional images were acquired using a Deichmann 

echo-planar imaging (EPI) sequence 
2
 with TR=3s, TE=30 ms, 3x3x3mm voxel size, 

87° flip angle, 15° slice angle and z-shimming to reduce signal distortions and 

dropout in medial orbitofrontal brain areas. 

 

Brain data were analyzed using FMRIB's Software Library (FSL) 
3
. FMRI data 

preprocessing for univariate analyses comprised spatial (Gaussian with full-width half 

maximum of 5 mm) and temporal filtering (3 dB cut-off at 100 s), motion correction 

using FSL’s MCFLIRT and manual removal of noise components after visual 

inspection using FSL MELODIC. In a two-step procedure, preprocessed images were 

nonlinearly registered to Montreal Neurological Institute (MNI) space via subjects' 

structural images.  

 

FMRI whole-brain analyses. FSL FEAT 
3
 was used for first level analyses. The 

fMRI time course was pre-whitened with FSL FILM to account for temporal 

autocorrelations. Motion regressors derived from MCFLIRT were included as 

nuisance regressors. Temporal derivatives of the regressors of interest were included 

and the model was temporally filtered before it was applied to the data. Group results 

on the second level were calculated with FSL FLAME 1 using outlier de-weighting 

and a cluster-forming threshold of z>2.3 and p<0.05. The only exception from this is 

presented in Fig.6b for illustration. 

 

We ran three fMRI designs; one based on the objective history of reward rates 

experienced at time of choice and the one derived from our RL-avgRR model. Both 

designs modeled button presses as stick functions of no interest. The first (fMRI 

GLM1; Fig.4a) contained a constant regressor time-locked to the leave-stay decision. 

This constant captured the duration of the last reward event (800ms) and the 

subsequent choice phase (2,000ms). We used lastRR, avgRR and the logarithm of the 

reaction times (logRT) as parametric modulators of the constant regressor. Based on 

the parameter estimates of lastRR and avgRR, we created the contrast lastRR-avgRR. 

We used this design to identify brain regions sensitive to the reward rate trend. fMRI 

GLM2 (Fig.5a,b) was built identically, except for the parametric modulators of the 

LSD regressor. They comprised PEexpected(LSD-1) (abbreviated in the main text as just 

"PEexpected"), which is the expected prediction error, calculated with RL-avgRR, at the 

last time step before LSD. The only difference to the DV, i.e. to the expected 

prediction error at the time of the LSD (PEexpected(LSD); see equation 11) is that it had 

not yet been updated by the PE* of the last time step. In addition, it contained a binary 

choice regressor coding trials in which subjects decided to stay in a patch as "1" and 

trials in which they decided to leave as "-1", and logRT. Correlations between 



 

PEexpected(LSD-1) and choice are shown in supplementary Figure 7b for all subjects. 

fMRI GLM3 (Fig.6) was also identical to the previous GLMs with the exception of 

the parametric regressors used. Again, we used PEexpected(LSD-1) and logRT. In 

addition we included the value estimate at the time of the last reward delivery and the 

magnitude of the last reward: value(LSD-1) and outcome(LSD-1). We calculated a 

standard prediction error on the contrast level by subtracting the value from the 

outcome regressor (Fig.6b). Note that for this GLM, RL-avgRR was fitted on the 

whole group instead of single subjects individually. Although individual fits resulted 

in a set of regressors that were sufficiently decorrelated for the majority of subjects, 

this was not the case for all of them. In these and all subsequent region of interest 

(ROI) analyses, parametric and binary regressors were normalized. Additional fMRI 

analyses reported in the supplements are described in detail in the supplemental figure 

legends. 

 

FMRI ROI analyses. ROIs had a radius of three voxels and were centered on peak 

voxels of significant clusters from fMRI GLM1 and fMRI GLM2 (Supplementary 

Table 2). To guarantee statistical independence of ROI selection and ROI analyses, 

we used a leave-one-out procedure to identify ROI peak voxels for the analyses of 

main effects for areas identified in fMRI GLM 1 (Fig.4b,e,5c,6a; Supplementary 

Fig.5b,6a,b,e,7c). For this, we conducted group level analyses, leaving one subject out 

at a time. From the results of the remaining 19 subjects, we extracted local maxima of 

the relevant clusters and centered the ROIs for the left out subject on the local 

maxima. We repeated this for all 20 subjects. Therefore, the ROI selection was 

statistically independent from the data of the subject that was subsequently analyzed 

in the ROI. For fMRI GLM2, no leave-one-out procedure was necessary because we 

did not test signals for significance in those ROIs that were related to the defining 

contrast. Note that correlation analyses were still conducted on the ROI centered on 

the peak of the whole group because those analyses are not affected by this potential 

problem. 

 

For ROI time course analyses, we extracted the pre-processed BOLD time courses 

from each ROI, averaged over all voxels of each volume. The time courses were 

normalized (per session, as for subsequent analyses), oversampled by a factor of 20 

(using cubic spline interpolation, as for subsequent analyses) and, in a trial wise 

manner, aligned at the time of LSDs. We then applied a GLM to each time point and 

computed one beta weight per time point, which resulted in a time course of beta 

weights for each regressor. We used two features of these beta weight time courses 

within an analysis window of four to thirteen seconds after LSD onset to investigate 

their relation to individual variance in behavior. First, to compute the slope of the beta 

weight time course signal, we identified the subject specific absolute (positive or 

negative) peak of the beta weight time course within the analysis window and fitted a 

straight line on the time course from the time of LSD onset to the time of the absolute 

peak. Second, we averaged the time courses across subjects and identified the 

absolute beta weight group peak within the analysis window. We then took each 



 

subject’s beta weight at that time point and examined its relation to behavior. FMRI 

GLM1 was calculated as a ROI time course analysis and resulting neural signals were 

correlated with lastRR and avgRR beta weights from behavioral GLM2 (Fig.2b). 

fMRI GLM2 and fMRI GLM3, too, was calculated as a time course analysis and 

group peak signals were identified for significance testing (see below). Lastly, fMRI 

GLM4 was analogous to behavioral GLM1; it employed the reward rates in five 

discrete time bins relative to the leave-stay decision as well as logRT as parametric 

regressors (Fig.4e,f). Group peak signals from this time course analysis are shown in 

Figure 4e and supplementary Figure 6a,b,e. Correlations with behavior were 

calculated using behavioural GLM1. 

 

We performed significance testing on time course analyses using a leave-one-out 

procedure on the group peak signal (Fig.5c,6a, Supplementary Fig.7c) to avoid 

potential temporal selection biases. For every subject, we calculated the time course 

of the group mean beta weights of the relevant regressor based on the remaining 19 

subjects. We then identified the (positive or negative) group peak of the regressor of 

interest within the analysis window of four to thirteen seconds from LSD onset. Then, 

we took the beta weight of the remaining subject at the time of the group peak. We 

repeated this for all subjects. Therefore, the resulting 20 "peak" beta weights were 

selected independently from the time course of the subject analyzed. We assessed 

significance using t-tests on the resulting beta weights. 
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