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ABSTRACT Reports on retroviral primate trials rarely
publish any statistical analysis. Present statistical methodology
lacks appropriate tests for these trials and effectively discour-
ages quantitative assessment. This paper describes the theory
behind VACMAN, a user-friendly computer program that cal-
culates statistics for in vitro and in vivo infectivity data.
VACMAN’s analysis applies to many retroviral trials using i.v.
challenges and is valid whenever the viral dose-response curve
has a particular shape. Statistics from actual i.v. retroviral
trials illustrate some unappreciated principles of effective
animal use: dilutions other than 1:10 can improve titration
accuracy; infecting titration animals at the lowest doses pos-
sible can lower challenge doses; and finally, challenging test
animals in small trials with more virus than controls safeguards
against false successes, ‘‘reuses’’ animals, and strengthens
experimental conclusions. The theory presented also explains
the important concept of viral saturation, a phenomenon that
may cause in vitro and in vivo titrations to agree for some
retroviral strains and disagree for others.

1. Introduction

Vaccine development is an important therapeutic strategy
against the human immunodeficiency virus (HIV) (1, 2).
Because HIV productively infects only humans, chimpan-
zees, gibbon apes (3), and scid~hu mice (4), HIV vaccines are
usually tested in chimpanzees (3, 5-10). Similar retroviral
vaccines against the simian immunodeficiency virus are
tested in macaques (11-13).

Primate trials have two phases. In the titration phase,
aliquots of a frozen viral stock are thawed. The experimenter
administers various doses to animals and determines which
doses infect. After the titration is complete, treatments (or
pretreatments like vaccines) are evaluated in the test phase.
More virus is thawed, and test animals and their controls
receive a viral challenge. The challenge chosen should be
sufficient to ensure infection of any naive animal. On the
other hand, excessively generous challenges (3, 9, 11) may
overwhelm an otherwise resistant animal (12). Any challenge
chosen under these conflicting conditions will be called a
minimal challenge dose (MCD). MCD selection is crucial, for
a test often is considered successful when a MCD infects all
control but not all test animals.

Primate trials are strikingly small (3, 5-13). For example,
one titration phase used six chimpanzees (3); another used
seven macaques (11). Test phases have been even more
sparing. Conclusions have been drawn from as few as four
animals, corresponding to three different treatments with one
overall control (7).

No statistician could feel comfortable with such sparse
data. But the demands of animal care make primate experi-
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ments very laborious. Also, because the chimpanzee is an
endangered species, trials often reuse animals from hepatitis
experiments (3, 5-7, 9). In fact, the price of using a chim-
panzee has escalated so much (from $100 in the 1950s to
$25,000-$75,000 now) that any statistician protesting sparse
primate data will soon do so with extreme trepidation.

Consider an actual primate trial. First, Arthur et al. (3) used
tissue cultures to estimate the infectious dose 50% (IDsq) of
an HIV stock. (By definition one IDs, infects half its recip-
ients, and the IDs in tissue culture is called the TCIDs.)
Then, in the titration phase, four chimpanzees were given
different viral doses intravenously (i.v.): 4, 40, 400, and 4000
TCIDso. Only 4 TCIDsp did not infect. Next, in a secondary
titration, two more chimpanzees were given either 4 or 40
TCIDsp i.v. Both doses infected. Finally, after the viral
titration, Berman et al. (6) tested two separate vaccines,
gp120 and gpl60. Five chimpanzees, two for each vaccine
and one naive control, were challenged with 40 TCIDsy. The
control and the two gp160 chimpanzees were infected, but
not the two gp120 chimpanzees.

The titration and test phases of this trial together cost a
little less than a million dollars. But how confidently can HIV
researchers abandon gp160 in favor of a gp120 vaccine? Was
the challenge really sufficient, or could the two gp120 chim-
panzees have remained uninfected through chance alone?

Comparing the gp120 and control results directly with the
Fisher exact test (14) assigns an inappropriately small signif-
icance (p = 0.33) to the trial. Experimental confidence really
depends on estimating how often any chosen challenge dose
fails to infect a naive animal and so depends on the viral
dose-response curve, which graphs infection probability vs.
dose.

The dose-response curve must be estimated from titration
data. Classical nonparametric methods like Spearman-
Kirber (15) are unsuitable because they estimate only one
point on the curve. Classical parametric methods like logit
(16) or probit (17) analysis and nonclassical Bayesian meth-
ods (18) like Dirichlet curve fitting (19, 20) do estimate the
entire curve but fit at least two arbitrary parameters. Typical
primate data sensibly determine at most one parameter (e.g.,
the IDsg), so their interpretation requires a single-parameter
theory.

Such a theory is feasible. Every titration has a smallest
infecting dose (SID). For example, after Arthur’s primary
titration, it is 40 TCIDso; after his secondary, it is 4 TCIDs.
Now, for the sake of argument, if the infection probability
were to switch from 0 to 1 over a dose factor of 20, challenging
with 20 times the SID would always infect—with progres-
sively steeper dose-response curves allowing progressively
smaller MCDs. Since five trials chose MCDs between 10 and
30 times the SID in the corresponding titration (6, 7, 10, 12,
13), many virologists (perhaps unconsciously) agree approx-

Abbreviations: HIV, human immunodeficiency virus; MCD, mini-
mal challenge dose; MCDgy, minimal challenge dose 99%; SID,
smallest infecting dose; TCIDso, tissue culture 50% infectious dose.
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imately on a standard shape for the dose-response curvé of
i.v. retroviral challenges.

Mathematics can quantify the standard shape explicitly.
Examine the following assumptions:

ASSUMPTION 1. Interchangeability of animals. Consider
any single infectious particle in a viral dose. The particle’s
chance of infecting is the same in all naive animals.

ASSUMPTION 2. Independence of infectious particles. In-
fectious particles in a viral dose act independently of one
another in producing infection.

Let D be the IDso, and d be any viral dose. Given the
assumptions, a standard mathematical derivation (21) shows
that the probability of not infecting a naive animal is

q(d\D) =27 4/P, (1]

Hence doses d = D, 2D, 3D, . . . fail to infect with proba-
bilities 1/2,1/4, 1/8, . . ..

Fig. 1 is the dose-response curve from Eq. 1. Since Fig. 1
would be remarkably useful even if its predictions erred by a
dose factor of 2, the assumptions above should be regarded
as approximations, not exactitudes.

In a trial monitoring for HIV infection after i.v. challenge,
the assumptions areé plausible as approximations, even before
the data in section 3 are examined. In well-mixed fluids,
infection rates depend only on average concentrations [e.g.,
of viral targets or blockers (22)], so if an i.v. challenge with
HIV initially infects in a well-mixed compartment (e.g., blood
and/or lymph) and if average concentrations in this compart-
ment are similar in all naive animals, animal interchangeabil-
ity is credible.

The independence assumption is also credible, since in
vitro experiments (23, 24) suggest that HIV particles do not
cooperate when infecting cells. Because HIV escapes im-
mune surveillance as a dormant DNA provirus and also
replicates in bursts (25), HIV particles in a viral dose have no
obvious need to cooperate in producing detectable infection.

Fig. 1is not specifically limited toi.v. retroviral challenges,
but its assumptions should be reexamined if trial conditions
change. In vaginal HIV challenge, for example, variability
due to lesions, diseases, or hormonal cycles may cause
significant animal variations. Also, in i.v. challenge with a
virus not infecting blood cells, anatomical and physiological
variations may affect viral delivery to a target compartment
(e.g., the liver or central nervous system). In general, inter-
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F1G. 1. Plot of viral infection probability vs. log dose. The doses
are in IDso units. This dose~response curve, derived from Eq. 1, plots
the infection probability [1 — g(d]D)] vs. log(d|D), where D is the
IDso, and d is the viral dose.
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changeability is suspect when animal variations affect the
accessibility or susceptibility of viral targets.

Also, different trial endpoints reflect different viral pro-
cesses. Consider, for example, a virus that causes disease
only if many particles from an i.v. challenge infect cells. If a
trial uses disease to detect infection, it is examining the
outcome of a cooperative viral process. By contrast, retro-
viral trials usually seek sterilizing immunity [i.e., the absence
of even a single successful cellular infection (6, 7, 10, 12, 13)],
so the viral processes they examine are probably not coop-
erative. This paper’s statistics assume (as stated precisely
above) that infectious particles behave independently and
usually require a trial endpoint that corresponds to cellular
infection, not disease.

Hence each new application requires that the assumptions
be reexamined.

The next section explains the statistical theory and is
important but not essential to the rest of the paper. Section
3 exemplifies practical analysis with Arthur’s titration (3),
Berman’s gpl20-gpl60 test (6), and some in vitro data.
Section 4 describes the practical use of the VACMAN com-
puter program. Finally, the Discussion examines the impli-
cations for primate retroviral trials.

2. Theory

Virologists starting a titration usually do 1:10 dilutions (3,
11-13). Hence in the chosen dose range and before collecting
data, virologists judge all IDsy values to be about equally
probable on a logarithmic scale. In the terminology of
Bayesian statistics, their ‘‘prior probability’’ for X = log;oD
is roughly uniform (26).

A logarithmic scale, x = log;od, therefore, is convenient.
Rewriting Eq. 1 gives

q(xjx) =271, 21

The hypothesis in all subsequent equations implicitly as-
sumes Eq. 2.

The data r = {r; of n; animals infected at a viral dose d;, i
=1, ..., N}change an experimenter’s judgment about X.
The ‘“‘posterior probability’’ p(X|r) is the probability after
collecting the data r that a particular X is the log;oIDso. Given
a uniform prior probability for X, Bayes Theorem (27) yields

L
pXir) < p(rlX) = ,Dl (:’)[1 = a1 [q(xX)1*7", 3]

where p(r]X) is the probability of the data r, given the true
logiolDsp equals X.

There are two trivial cases: all animals are infected (7; = n;)
and all animals are uninfected (r; = 0). In other cases, p(X]r)
has a unique maximum, and choosing an appropriate constant
of proportionality in Eq. 3 makes p(X]r) a proper probability
distribution. The rest of the paper will assume this choice has
been made.

In the limit of large data, the mode of p(X|r) enjoys all the
advantages accruing to a maximum likelihood estimator,
including asymptotic normality and efficiency (28). More
importantly for primate trials, p(X|r) also extrapolates from
the data r to give the posterior probability that a dose fails to
infect:

oo

qxlr) = f q(x{X)p(X|r)dX. (41

Eq. 4 can, therefore, help to select the challenge.

Consider now a trial with titration data r and test data s.
Assume for the moment that the viral titration conforms to
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Eq. 2 and consider the null hypothesis Hy, that the conditions
producing the titration and test data are the same. The
experimenter wishes to find arguments against Hy.

Two types of arguments are feasible. The first treats r and
s symmetrically. Let X, equal log;oIDso for the titration
animals; let X equal log;oIDso for the test animals. Under Hy,
X, = X,. Data r generate a posterior distribution for X,; data
s generate a posterior distribution for X;. The posterior
distribution for X; — X, can be calculated, so Bayesian
procedures based on X; — X, = log;oIDso ratio can decide on
H,.

Such a procedure is flawed, however, when s contains no
infections (e.g., the gp120 test data in the Introduction). The
posterior distribution for X;, and therefore for X; — X/, is then
improper toward positive infinity. Without an artificial ‘‘fix,”’
any procedure based on X; — X, will always conclude that the
treatment succeeded. For extremely small challenges, this
conclusion is clearly fallacious.

A different argument accounts for the challenge correctly,
however. It acknowledges the logical asymmetry between r
and s by viewing the titration animals as a ‘‘standard popu-
lation.”” It then examines the test animals, whose status is
uncertain, for conformity to this standard.

Under Hy, the predictive distribution of s given r is (29).

©

plslr) = f p(sX)p(X|r)dX. (51

Define the P value of test data s to be
P= r). 6
p(tlr)Es:p(SIr) p(tl ) 161

Given r as a standard, Eq. 6 quantifies how much one expects
aresult that is at least as unlikely as s. Hence, in analogy with
accepted methods in classical statistics, Eq. 6 can decide on
treatment efficacy.

Similarly, when s is a second titration, Eq. 6 can decide on
the consistency of s with a ‘‘standard’’ titration r. Testing the
IDs ratio (defined above) is usually computationally more
practical, however, because Eq. 6 may have many terms,
each corresponding to an alternative outcome of the second
titration s.

Eq. 6 can also test the internal consistency of a titration r.
Replace s in Eq. 6 by the data in r at any single dose d and
delete that observation from r. A small P value in Eq. 6 then
suggests that either the conditions producing the data at dose
d were anomalous with respect to the rest of r (reject Hy) or
the model implicit in Eq. 2 is wrong. This outlier test is like
at test of externally Studentized residuals in linear regression
(30) that evaluates the fit of individual data points to a model.

Finally, Bayesian methods can help refine viral titrations.
Sometimes a primary titration is followed by a secondary
titration (3) to give extra information and lower the challenge
ensuring infection. The standard deviation of p(X|r) is a
measure of the information in the titration data r. Let the plan
s’ for the secondary titration be {n;’ animals will be given a
viral dose d/, i = 1, . .., N'}. For each data set s corre-
sponding to a possible outcome of the plan s’, the standard
deviation of p(X]r, s) measures the information in r plus s. The
rms standard deviation (weighted by the probabilities of the
outcomes s) provides a figure of merit for the plan s’.

Theoretically, the rms standard deviation can be optimized
as a function of the doses d;’, but the computation is usually
prohibitively long. Experimenters always select doses at
convenient dilutions anyway, so comparing the rms standard
deviation of specific plans is preferable.

Proc. Natl. Acad. Sci. USA 89 (1992) 7583
3. Practice

The first part of this section analyzes Arthur’s titration (3) by
finding the IDs, distribution, determining MCDs, and plan-
ning the secondary titration. It also analyzes Berman’s
gp120-gpl60 test (6). The final part shows how to test
whether a titration conforms to the dose-response curve in
Fig. 1.

Fig. 2 shows likelihoods for Arthur’s titration data (3). The
primary titration used doses of 4 TCIDs (not infecting) and
40, 400, and 4000 TCIDs, (all infecting). The corresponding
likelihood gives a 95% Bayesian confidence interval (or
“‘credible interval’’) of IDsy, values between 1.3 and 170
TCIDso. The secondary titration used doses of 4 and 40
TCIDs, (both infecting), revising the confidence interval to
IDs, values between 0.87 and 26 TCIDs,.

The confidence intervals allow disconcertingly large IDso
values because infections do not delimit the IDsq as sharply
as noninfections. For example, infecting with 0.25 IDs is
more likely than not infecting with 4 IDso (from Eq. 1: 1 —
27035 = (0,159 > 0.063 = 274). Hence, an IDs is more likely
to be 4 times an infecting dose than 0.25 times a noninfecting
dose.

Consequently, if a sparse primary titration already con-
tains an uninfected animal, any secondary titration attempt-
ing to delimit the IDso further should infect as many animals
as possible, at the lowest doses possible.

The standard deviation of the IDsy, measures how well a
titration or titration plan delimits the IDs,. For example,
Arthur planned a secondary titration using doses of 4 and 40
TCIDsp. The VACMAN program computed the rms standard
deviation for Arthur’s plan (weighted over the plan’s four
possible outcomes) as 0.401. Both animals actually became
infected, the most favorable outcome, yielding a lower stan-
dard deviation of 0.382.

The VACMAN program also evaluated several other plans.
The lowest rms standard deviation among them was 0.378 for
a plan using 16 and 32 TCIDso, doses that are relatively low
but still likely to infect. Doses between 1:10 dilutions often
improve the effectiveness of secondary titrations.
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Fi1G.2. Likelihood vs. log IDsg for titration data from Arthur (3).
The accompanying text gives the titration data. The IDsg values are
in TCIDsg units and the curves are Eq. 3 normalized with maximum
ordinate 1. The likelihood is proportional to the probability that the
corresponding dose is the IDsp. The curve on the right gives the
distribution p(X|r) for the primary titration data, with a most likely
IDso value of 12 TCIDs. After the secondary titration, it shifts to the
curve on the left, with a most likely IDso value of 4.0 TCIDso. The
curves are skewed right but eventually approach a Gaussian curve as
data accumulate.
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The main aim of a titration is not, however, to delimit the
IDsq but to ensure the infection of naive animals at the lowest
challenges possible. Fortunately, infecting titration animals
not only delimits the IDsq but also lowers challenges as well.
For example, define the MCDy from Eq. 4 as the MCD
infecting with probability 1 — g(x|r) = 0.99. After Arthur’s
primary titration, the MCDgy computed is 622 TCIDso; after
his secondary, it is 89 TCIDs,. By infecting two extra
animals, Arthur’s secondary titration profoundly lowered the
MCDyy.

Statistics should aid, and not replace, experimental judg-
ment, however. Animal interchangeability is a useful approx-
imation, but animal IDsy values do vary. Thawed HIV-1
(HXB3) is labile and can undergo a 2-fold loss of infectivity
in an hour (24); dilution error can also be a factor of 2. The
statistics do not include these extrinsic errors. Many practical
decisions require an experimenter to estimate extrinsic ex-
perimental error.

For example, after Arthur’s primary titration, the posterior
IDso distribution has a mean * SD of 1.15 * 0.55 in log;o
TCIDs,. If Arthur had believed the extrinsic error to be +0.60
in log,o, his secondary titration would have had little point. If
another experimenter believed the extrinsic error to be +0.30
in logyo (a factor of 2), doubling computed MCDs would
provide a conservative strategy for ensuring infection of
controls.

Analysis of the gp120-gp160 trial (6) is next and adheres to
three principles. (/) Random chances of success increase
when a trial tests N > 1 treatments. If p is the P value of a
treatment, the usual test at significance level a, p < a, should
be made stricter and replaced with Bonferroni’s inequality
(31), Np = a. Because both gp120 and gp160 were tested, N
= 2, so that any P value p really has significance 2p. (ii)
Extrinsic error may make the actual challenge smaller than
the presumed 40 TCIDs,. Since personal estimates of the
extrinsic error differ, three ‘‘adjusted’’ challenges of 40
TCIDsp, 20 TCIDsp, and 10 TCIDs are analyzed. (iii) His-
torical controls provide collateral titration information, but
trials failing to infect a control are probably underreported.
Hence, only the single simultaneous gp120-gp160 control is
added to Arthur’s titration data. The titration dose attributed
to the simultaneous control is always the adjusted challenge
under analysis.

The P values computed for infecting zero of two gpl120
chimpanzees at adjusted challenges of 40 TCIDso, 20 TCIDs,
and 10 TCIDs, are 0.008, 0.027, and 0.073, corresponding to
significances of 0.016, 0.054, and 0.146, respectively. Hence
if an experimenter believed that viral lability and other
extrinsic errors had reduced the actual challenge from 40
TCIDs, to, e.g., 20 TCIDsy, the trial significance would be
0.054. Interpretation at significance level 0.05 is, therefore,
sensitive to an experimenter’s estimate of extrinsic error.

A control safeguards against lost viral infectivity (7), and
its infection supposedly demonstrates that actual challenges
were sufficient. If lost infectivity reduced the control’s actual
challenge to 1 IDsy, however, a false treatment success
(infecting the control, but not infecting at least one of the four
test animals) had probability 0.47. If, however, test animals
had been challenged at double the control’s dose, the same
lost infectivity gives a lower probability of false success.
Trials using only one or two control animals should always
consider doubled test challenges (or more).

The rest of this section shows when not to use this paper’s
statistics. The statistics are valid, however, whenever Fig. 1
approximates the shape of dose-response curve.

If primatologists disagree with computed MCDs, the true
dose-response curve probably deviates from Fig. 1. Consider
the MCDgy values above. The SID of Arthur’s primary
titration is 40 TCIDso, giving 622 TCIDsy = MCDgg = 15 SID.
The secondary SID is 4 TCIDsy, giving 89 TCIDsy = MCDgo
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= 22 SID. Hence the MCDgy values are between 10 and 30
SID, agreeing with the MCDs selected in i.v. retroviral trials
(see Introduction). Larger trial MCDs would have indicated
a dose-response curve conspicuously flatter than Fig. 1,
making the analysis in this paper inapplicable.

The outlier P values that the VACMAN program computes
from titration data also detect deviations from the dose-
response curve in Fig. 1. Deviations are probable if any
outlier P value is significant in Bonferroni’s inequality (ex-
amples are given below). Outlier P values computed from
published i.v. retroviral titrations (3, 11-13) are all 1.00,
however, confirming that these titrations are completely
consistent with the dose-response curve in Fig. 1.

Because in vivo titrations are consistent with Fig. 1, the final
part of the section uses in vitro data and compares the outlier
test to the classical tests (32, 33) of deviation from Fig. 1.

Stevens (33) gives 2 data sets demonstrating what he
politely terms ‘‘faulty technique.’’ Both data sets use 1:10
dilutions, with five wells at each dilution. Results will always
be presented as the number of infected wells at increasing
viral doses. The first data set has two anomalous infected
wells: 0,0,0,0,2,0,0,3,5,5,5, 5. The outlier test correctly
singles out the anomalous 2 wells with a P value of <0.0001.
The P value for the 3 well is 0.16 and all other P values are
1.00. The second data set has anomalous sterile wells: 0, 0,
0,2,4,5,5,5,1,4, 5, 5. The P value for the initial three 0
wells and the final two 5 wells is 1.00, for the 1 well is 0.004,
and for the other counts is <0.0001. The anomalous nonin-
fections, the 1 and the second 4 wells, delimit the IDso more
sharply than any infection. Hence IDso distributions peak
near them, causing infected wells at lower doses to appear
anomalous. Eliminating the 1 and the 4 wells from the data
removes all anomalous P values. The patterns presented are
typical of anomalous wells, and the outlier test accords well
with Stevens’ test.

Armitage (32) gives two data sets, the first with a wide
transition from sterility to infection, typical of IDsg variation
from well to well. Both of Armitage’s data sets use 1:2
dilutions, with 40 wells at each dilution. Outlier P values in
parentheses accompany each of the N = 9 observations in the
first set: 4(0.02), 5(0.07), 8(0.07), 10(0.45), 19(0.16), 25(0.78),
32(0.43), 35(0.0008), and 40(1.00). The IDs, distributions peak
near the 25, causing the P value pattern. By using Bonfer-
roni’s inequality (31) (defined in the analysis of the gp120-
gpl60 trial above) with N = 9 to test the outlier P values, p
= 0.0008 is significant at level Np = 0.0072, so the test detects
the wide transition. Armitage’s second data set conforms to
Fig. 1: 2, 4, 8, 10, 19, 25, 33, 39, 40. The outlier test accords
with Armitage’s test: all outlier P values exceed 0.15.

Hence, the outlier test agrees well with classical tests of
deviation.

4. The VACMAN Computer Program

This section describes how to use VACMAN, the program that
computes this paper’s statistics. VACMAN’s use has two
prerequisites: (i) as approximations, the assumptions above
Eq. 1 should not be unreasonable and (ii) the titration data
should be screened for anomalies with VACMAN’s outlier test
(see examples in section 3). An absence of significant outlier
P values supports animal interchangeability or equivalently
assay reproducibility (see VACMAN’s interchangeability as-
sumption, given in the Introduction).

Significant outlier P values invalidate VACMAN’s analysis,
unless experimental judgment can justify discarding the cor-
responding anomalous data. Certain patterns of significance
(discussed at the end of section 3) suggest conspicuous
variations between wells or animals, in which case reducing
assay variability should be considered.
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With sparse in vivo data, VACMAN computes the following:
an estimate and a standard deviation for log;oIDso; an rms
standard deviation, which ranks by merit secondary titrations
designed to refine an IDso; the noninfection probability at
different viral doses, which permits MCD estimation; and test
P values, which decide whether a treatment was efficacious.

With abundant in vitro data, the distribution of log;oIDsp
approaches normal, and vAcCMAN and Fisher’s dilution
method (34) produce similar values for the mean and standard
deviation. To detect IDsq shifts between two data sets, both
sets must be screened for outliers. If no outlier P values are
significant, VACMAN can give the mean and standard devia-
tion of logioIDso ratio, which is approximately normally
distributed.

5. Discussion

Without statistical interpretation of animal trials, HIV re-
search could be giving disproportionate credence to marginal
data. The resulting misdirection will be costly in time, effort,
and money.

This paper presents statistics specifically designed for
analyzing sparse primate infection data. The statistics are
also useful for in vitro data (see section 4 and the end of
section 3). I am distributing free a user-friendly computer
program, VACMAN, that calculates the statistics. When re-
questing VACMAN 2.0, the current version, please specify
your machine type, Macintosh or IBM. VACMAN requires a
math coprocessor under Macintosh or Windows under IBM.

VACMAN'’s statistics are valid whenever the viral dose-
response curve has a shape like Fig. 1. By the arguments
presented in the Introduction and the data analyzed in section
3, Fig. 1is clearly applicable to many, if not all, i.v. retroviral
trials. Fig. 1 does not, however, include the effect of exper-
imental errors like dilution or viral lability. Because errors
influence the actual challenge administered, several different
‘‘adjusted’’ challenges should always be analyzed to appraise
the sensitivity of conclusions to errors (cf., gp120—gp160 P
values in section 3). Given this caveat, however, the statistics
in this paper provide minimum standards for designing and
analyzing retroviral trials using i.v. challenges.

By clarifying the consequences of experimental design (see
section 3), the statistics also elucidate the principles of
effective animal use. The rms standard deviation shows that
in titrations, dilutions other than 1:10 can improve the
accuracy of IDsy estimates. Computed MCDy values dem-
onstrate that infecting titration animals at the lowest doses
possible can lower challenges.

The statistics also demonstrate the benefits of challenging
test animals with more virus than controls (data not shown).
In small trials incremental losses in viral infectivity can
seriously affect conclusions (cf., gp120-gp160 P values in
section 3). A doubled test challenge safeguards a trial with
only one or two controls against false successes, ‘‘reuses’’
animals, and strengthens experimental conclusions.

Finally, the hypotheses after Eq. 1 postulate that in i.v.
challenge trials, retroviral particles initially infect in a well-
mixed compartment (e.g., blood and/or lymph), where only
average concentrations influence each particle’s chances of
infecting. Matching test-tube assays to i.v. animal trials
would then require in vitro concentrations to mimic blood and
lymph mixed in some unknown ratio.

Some viral strains will be more sensitive to errors in the
mixture ratio than others. At very low target-cell concentra-
tions, target availability limits infection. Virions are ‘‘unsat-
urated’’ (22), and the number of infections is proportional to
target-cell concentration (24). At higher target-cell concen-
trations, however, so many virions infect that increasing
target concentration has little effect, and the virions are then
‘“‘saturated.’’ Different viral strains saturate at different tar-

Proc. Natl. Acad. Sci. USA 89 (1992) 7585

get concentrations (23). Hence when in vitro target concen-
trations mimic the wrong mixture ratio, in vitro and in vivo
titrations agree only for saturated retroviral strains, the ones
insensitive to changes in target concentrations. Changing in
vitro target concentrations may improve titration agreement
for unsaturated retroviral strains as well, enhancing the
possibilities for mimicking in vivo trials in vitro.

Scott Layne first pointed out the statistical omissions in primate
trials to me. Jonathan Kans, Warren Gish, and other staff at the
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