
Supporting Information

Overview of this document

The Supporting Information is organized as follows. First, in Sec. S1 we partially calculate the codimen-
sion one bifurcation diagram of the network by evaluating the equilibrium points on the primary branch.
This calculation is based on an asymptotic perturbative expansion of the neural equations, therefore it
provides a good description of the membrane potentials in the stationary regime only for sufficiently
large values of IE , where the branching-point bifurcations do not occur. Then, we divide the second
part of the Supporting Information in two main sections, devoted to the study of weak (Sec. S2) and
strong inhibition (Sec. S3) respectively. In both cases we present detailed analytical calculations of the
eigenvalues of the Jacobian matrix and of the codimension two bifurcation diagram for most of the local
bifurcations of the network. Since the perturbative expansion introduced in Sec. S1 cannot be extended
to derive the secondary branches of the equilibrium curve, a complete picture of the codimension one
bifurcation diagram cannot be derived analytically. For this reason in Sec. S4 we study the codimension
one bifurcation diagrams with numerical tools. As in the main text, all the results in the Supporting
Information are obtained using the parameter values shown in Table 1. To conclude, in Sec. S5 we study
how important parameters of the network such as its size N and the density of the synaptic connections
affect the branching-point bifurcations.

S1 Equilibrium points (codimension one bifurcation diagram)

In this section we study analytically the equilibrium points of the neural network. By inspecting the
top-right panel of Fig. 2 in the main text, it is apparent that some of the solutions of the system (6)

(or, equivalently, of the system (11) with µI,0 = . . . µI,NI−1
def
= µI , namely on the primary branch) occur

when at least one of the two nullclines is approximately constant in the phase space. For example, if we
call µE = f (µI) the explicit function obtained by solving the equation F (µE , µI) = 0, two stationary
solutions are obtained when f (·) is approximately constant in µI (see the vertical portions of the violet
curves in the top-right panel of Fig. 2 in the main text). In turn, this means that AI (µI) is approximately
constant in µI , namely the sigmoid function has saturated to 0 or νmax

I . Now we consider the case of
saturation to νmax

I (the case of saturation to zero will be considered briefly later in this section). In order
to find the solutions of the systems (6) or (11) on the vertical portion of f (·), we need an asymptotic
expansion of AI (µI) for µI → +∞. If we use the algebraic activation function:

Aα (V ) =
νmax
α

2

1 +
Λα
2

(
V − V Tα

)√
1 +

Λ2
α
4

(V − V Tα )2

 , (S1)

then we need an asymptotic expansion of:

x√
1 + x2

=
1√

1 + y2

(with x = ΛI
2

(
µI − V TI

)
and y = 1

x ), about the point y = 0+ (i.e. x = +∞). Since:
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1√
1 + y2

=

∞∑
n=0

(−1)n
(2n− 1)!!

(2n)!!
y2n = 1− 1

2
y2 +

1 · 3
2 · 4y

4 − 1 · 3 · 5
2 · 4 · 6y

6 + . . . ,

then, if we consider the expansion up to the first order, we can approximate AI (µI) as follows:

AI (µI) ≈
νmax
I

2

(
1 + 1− 1

2x2

)
= νmax

I

(
1− 1

4x2

)
.

In a similar way, we suppose that also µE could be expanded in an asymptotic series, namely:

µE =

∞∑
n=0

µ
(n)
E

x2n
.

In particular, here we consider only the first two terms of this expansion, since they are sufficient to
describe locally the equilibrium points of the primary branch with a good approximation. Therefore
AE (µE) can be written as follows:

AE (µE) ≈ AE

(
µ

(0)
E +

µ
(1)
E

x2

)
≈ AE

(
µ

(0)
E

)
+ A ′E

(
µ

(0)
E

) µ(1)
E

x2
,

where at the second step we have used a Taylor expansion. With these assumptions, the system (6) (or
equivalently (11) on the primary branch) becomes:


− 1
τE

(
µ

(0)
E +

µ
(1)
E
x2

)
+ NE−1

N−1
JEE

[
AE

(
µ

(0)
E

)
+ A ′E

(
µ

(0)
E

)
µ

(1)
E
x2

]
+ NI

N−1
JEIν

max
I

(
1− 1

4x2

)
+ IE = 0,

− 1
τI

(
2x
ΛI

+ V TI

)
+ NI−1

N−1
JIIν

max
I

(
1− 1

4x2

)
+ NE

N−1
JIE

[
AE

(
µ

(0)
E

)
+ A ′E

(
µ

(0)
E

)
µ

(1)
E
x2

]
+ II = 0.

(S2)

Now in the first equation of (S2), we compare all the coefficients with the same perturbative order 1
x2n ,

obtaining:

− 1

τE
µ

(0)
E +

NE − 1

N − 1
JEEAE

(
µ

(0)
E

)
+

NI
N − 1

JEIν
max
I + IE = 0 (S3)

for n = 0, and:
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− 1

τE
µ

(1)
E +

NE − 1

N − 1
JEEA ′E

(
µ

(0)
E

)
µ

(1)
E −

NI
N − 1

JEI
νmax
I

4
= 0 (S4)

for n = 1. Remembering that AE (µE) is given by (S1), Eq. (S3) can be transformed into a fourth-order
polynomial equation:

a
(
µ

(0)
E

)4

+ b
(
µ

(0)
E

)3

+ c
(
µ

(0)
E

)2

+ dµ
(0)
E + e = 0, (S5)

where:

a =
Λ2
E

4τ2
E

,

b =− Λ2
E

2τE

(
φ+

V TE
τE

)
,

c =
Λ2
E

4

[
φ

2
+

(
V TE
τE

)2

+
4

τE
V TE φ

]
+

1

τ2
E

− ξ,

d =− Λ2
E

2
φV TE

(
V TE
τE

+ φ

)
− 2

τE
φ+ 2ξV TE ,

(S6)

e =

(
ΛE
2
φV TE

)2

+ φ
2 − ξ

(
V TE

)2

,

φ =
NE − 1

N − 1
JEE

νmax
E

2
+

NI
N − 1

JEIν
max
I + IE ,

ξ =

(
NE − 1

N − 1
JEE

νmax
E ΛE

4

)2

.

The solutions of Eq. (S5) are:

[
µ

(0)
E

]
0,1

=− b

4a
− Z ± 1

2

√
−4Z

2 − 2p+
q

Z
,

(S7)[
µ

(0)
E

]
2,3

=− b

4a
+ Z ± 1

2

√
−4Z

2 − 2p− q

Z
,
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where:

p =
8ac− 3b

2

8a2 ,

q =
b
3 − 4abc+ 8a2d

8a3 ,

Z =
1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)
,

(S8)

Q =
3

√√√√∆1 +

√
∆

2
1 − 4∆

3
0

2
,

∆0 =c2 − 3bd+ 12ae,

∆1 =2c3 − 9bcd+ 27b
2
e+ 27ad

2 − 72ace.

Some solutions µ
(0)
E may be complex and must be discarded, since we want to describe stationary

membrane potentials which are real quantities. From Eq. (S4) we obtain:

µ
(1)
E =

NI
N−1

JEI
νmax
I
4

− 1
τE

+ NE−1
N−1

JEEA ′E

(
µ

(0)
E

) . (S9)

The second equation of (S2) contains a term proportional to x. For this reason it cannot be solved
as the first equation of (S2) (namely by comparing all the terms with the same order 1

x2n ), therefore we
need to solve it directly without further simplifications. We observe that it can be transformed into the
following third-order polynomial equation:

ãx3 + b̃x2 + c̃x+ d̃ = 0,

where:
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ã =
2

ΛIτI
,

b̃ =−
(
NI − 1

N − 1
JIIν

max
I +

NE
N − 1

JIEAE

(
µ

(0)
E

)
+ II −

V TI
τI

)
,

(S10)

c̃ =0,

d̃ =
NI − 1

N − 1
JII

νmax
I

4
− NE
N − 1

JIEA ′E
(
µ

(0)
E

)
µ

(1)
E .

Its solutions are:

xk = − 1

3ã

(
b̃+ ukQ̃+

∆̃0

ukQ̃

)
(S11)

for k = 0, 1, 2, where:

u0 = 1, u1 = −1+ι
√

3
2

, u2 = −1−ι
√

3
2

,

Q̃ =
3

√√√√ ∆̃1 +

√
∆̃2

1 − 4∆̃3
0

2
,

∆̃0 =b̃2,

∆̃1 =2b̃3 + 27ã2d̃,

and ι =
√
−1. According to the De Moivre’s formula, for every uk there are different solutions of the

square and cube roots that define Q̃. Different combinations of µ
(0)
E , uk and De Moivre’s solutions provide

equivalent results for x. Therefore after removing all the redundant and complex solutions, we obtain
only 3 or 5 possible formulas for Q̃, depending on the strength of II .

We start by analyzing the case with weak inhibitory current, e.g. II = −10. If we choose for example
u2, we get 5 solutions:

Q̃green = 1
2

3

√ ∣∣∣∣∆̃1+
√

∆̃2
1−4∆̃3

0

∣∣∣∣
2

(
1− ι

√
3
)
, µ

(0)
E =

[
µ

(0)
E

]
2
, ∆̃2

1 − 4∆̃3
0 ≥ 0,

Q̃yellow, blue =

√
∆̃0 (cosϑ− ι sinϑ) , µ

(0)
E =

[
µ

(0)
E

]
3,0

Q̃red, cyan =

√
∆̃0 (cosϑ+ ι sinϑ) , µ

(0)
E =

[
µ

(0)
E

]
0,3

 ∆̃0 ≥ 0, ϑ =
1

3
atan2

(√
4∆̃3

0 − ∆̃2
1, ∆̃1

)
, 4∆̃3

0 − ∆̃2
1 ≥ 0,
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where the colors refer to those of the top panels in S1 Fig. Thus from Eq. (S11) we obtain:

xgreen = − 1
3ã

b̃− 3

√ ∣∣∣∆̃1+
√

∆̃2
1−4∆̃3

0

∣∣∣
2

− b̃2

3

√ ∣∣∣∣∆̃1+
√

∆̃2
1−4∆̃3

0

∣∣∣∣
2

 , µ
(0)
E =

[
µ

(0)
E

]
2
,

xyellow, blue = − b̃
3ã

(
1 +
√

3 sinϑ+ cosϑ
)
, µ

(0)
E =

[
µ

(0)
E

]
3,0

, (S12)

xred, cyan = − b̃
3ã

(
1−
√

3 sinϑ+ cosϑ
)
, µ

(0)
E =

[
µ

(0)
E

]
0,3

.

Finally, by replacing Eqs. (S7) + (S9) + (S12) into µE = µ
(0)
E +

µ
(1)
E

x2 and µI = 2x
ΛI

+ V TI , we obtain the
stationary solutions of the membrane potentials in the two populations, as shown in the top panels of
S1 Fig. In this figure we observe a good agreement between the analytical formulas and the numerical
solutions provided by Cl MatCont, on all the portions of the curve, with the exception of most of the
cyan colored one, and also the green and yellow curves close to point A.

Now we compute the coordinates of the points A, B, C, D that define the ranges of the 5 colored
portions of the primary branch. The most interesting ones are the points A, C since there the system
undergoes a saddle-node bifurcation (LP for short). At point A, the zeroth-order approximation is very

precise (i.e. µE (A) ≈ µ
(0)
E (A)) since µI (A) � 1. Thus we can use this approximation to find the

coordinates of this bifurcation point. If we derive Eq. (S3) with respect to µ
(0)
E , we obtain:

dIE

dµ
(0)
E

=
1

τE
− NE − 1

N − 1
JEEA ′E

(
µ

(0)
E

)
, (S13)

where, according to Eq. (S1):

A ′α (V ) =
νmax
α Λα

4

1√[
1 +

Λ2
α
4

(V − V Tα )2
]3 . (S14)

Since dIE
dµ

(0)
E

= 0 at point A, we obtain:

µ
(0)
E (A) = V TE +

2

ΛE

√√√√ 3

√(
NE − 1

N − 1
JEE

νmax
E ΛE

4
τE

)2

− 1. (S15)

We discard the solution with the −√ , because it is quantitatively different from the numerical value of

µE (A) provided by Cl MatCont (its meaning will be clarified later in this section). Now, if we replace
Eq. (S15) into Eq. (S3), we get:
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IE (A) =
1

τE
µ

(0)
E (A)− NE − 1

N − 1
JEEAE

(
µ

(0)
E (A)

)
− NI
N − 1

JEIν
max
I . (S16)

From Eq. (S13) we see that the first-order correction does not work around A, because the right-hand

side of this formula is equal to zero in A. This term is also the denominator of µ
(1)
E (see Eq. (S9)),

which explains why in A the first-order correction cannot be applied. Nevertheless, here the zeroth-order
approximation (S15) + (S16) is in very good agreement with the numerical calculation of the equilibrium
point (the reason will be clarified in SubSec. S2.2.1).

To conclude, from the second equation of (6) or (11), we get:

− 1

τI
µI (A) +

NI − 1

N − 1
JIIAI (µI (A)) +

NE
N − 1

JIEAE

(
µ

(0)
E (A)

)
+ II = 0. (S17)

Since µI (A)� 1 and therefore AI (µI (A)) ≈ νmax
I , we obtain:

µI (A) ≈ τI
(
NI − 1

N − 1
JIIν

max
I +

NE
N − 1

JIEAE

(
µ

(0)
E (A)

)
+ II

)
.

A more precise way to calculate µI (A) is to solve directly Eq. (S17), which can be transformed into the
following fourth-order polynomial equation:

ăµ4
I (A) + b̆µ3

I (A) + c̆µ2
I (A) + d̆µI (A) + ĕ = 0, (S18)

where:
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ă =
Λ2
I

4τ2
I

,

b̆ =− Λ2
I

2τI

(
φ̆+

V TI
τI

)
,

c̆ =
Λ2
I

4

[
φ̆2 +

(
V TI
τI

)2

+
4

τI
V TI φ̆

]
+

1

τ2
I

− ξ̆,

d̆ =− Λ2
I

2
φ̆V TI

(
V TI
τI

+ φ̆

)
− 2

τI
φ̆+ 2ξ̆V TI ,

ĕ =

(
ΛI
2
φ̆V TI

)2

+ φ̆2 − ξ̆
(
V TI

)2

,

φ̆ =
NI − 1

N − 1
JII

νmax
I

2
+

NE
N − 1

JIEAE

(
µ

(0)
E (A)

)
+ II ,

ξ̆ =

(
NI − 1

N − 1
JII

νmax
I ΛI

4

)2

.

The solutions of Eq. (S18) are:

[µI (A)]0,1 =− b̆

4ă
− Z̆ ± 1

2

√
−4Z̆2 − 2p̆+

q̆

Z̆
,

[µI (A)]2,3 =− b̆

4ă
+ Z̆ ± 1

2

√
−4Z̆2 − 2p̆− q̆

Z̆
,

where Z̆, p̆, q̆ are defined similarly to Eq. (S8). It is easy to check that the solution that represents

the membrane potential in A is [µI (A)]3 = − b̆
4ă + Z̆ − 1

2

√
−4Z̆2 − 2p̆− q̆

Z̆
, because [µI (A)]0,1,2 are

quantitatively different from the numerical value of µI (A) provided by Cl MatCont.
Things are more complicated for the point C. In this case we need to use the whole theory with the

first-order correction, because the zeroth-order approximation is not sufficient to describe this bifurcation
point. Since C is the connection point between the blue and red portions of the primary branch (see
S1 Fig, top), it can be defined through the relation xred = xblue. Thus, from Eq. (S12) we see that this

relation is equivalent to ϑ = 0, namely 4∆̃3
0− ∆̃2

1 = 0. From the expressions of ∆̃0 and ∆̃1 we obtain that

this equation can be rewritten as 27ã2d̃
(

4b̃3 + 27ã2d̃
)

= 0. It is possible to prove that d̃ 6= 0 at point C,

therefore the final equation that describes this bifurcation point is:

4b̃3 + 27ã2d̃ = 0. (S19)

8



However, Eq. (S19) cannot be solved exactly, therefore we use it (together with Eqs. (S9) + (S10)) to

calculate numerically µ
(0)
E (C), which in turn allows us to get µ

(1)
E (C) from Eq. (S9). Moreover, from

the condition ϑ = 0 we know that x = − 2b̃
3ã (see Eq. (S12)), and finally we calculate µE (C) through

µE = µ
(0)
E +

µ
(1)
E

x2 , µI (C) from µI = 2x
ΛI

+ V TI , and IE (C) by means of Eq. (S3), similarly to point A (see
Eq. (S16)).

Now we consider the point B. Since this is the connection point between the yellow and blue portions
of the primary branch, it has to satisfy the condition xyellow = xblue, thus from Eq. (S12) we get that

this is equivalent to
[
µ

(0)
E

]
3

=
[
µ

(0)
E

]
0
. The last condition is satisfied at the inflection point of the curve

µ
(0)
E = µ

(0)
E (IE), therefore the point B can be calculated from the equation d2IE

d
[
µ

(0)
E

]2 = 0. Now, from

Eq. (S13) we get:

d2IE

d
[
µ

(0)
E

]2 = −NE − 1

N − 1
JEEA ′′E

(
µ

(0)
E

)
. (S20)

Since:

A ′′α (V ) = −3νmax
α Λ3

α

16

V − V Tα√[
1 +

Λ2
α
4

(V − V Tα )2
]5 , (S21)

we conclude that µ
(0)
E (B) = V TE , or in other terms

[
µ

(0)
E

]
3

=
[
µ

(0)
E

]
0

= V TE in B. Similarly to point

C, we can use µ
(0)
E (B) to calculate µ

(1)
E (B) and x (we can use xyellow or equivalently xblue), from

which we get µE (B), µI (B) and IE (B). The same idea can be applied to calculate the coordinates

of the point D, since again xred = xcyan when
[
µ

(0)
E

]
0

=
[
µ

(0)
E

]
3
. The only difference with point B is

that now the variable x must be calculated through the formula of xred or that of xcyan. We also get

IE (D) = IE (B) = 1
τE
V TE −

NE−1
N−1 JEE

νmax
E

2 − NI
N−1JEIν

max
I , which is in agreement with S1 Fig.

On the other side, when II is sufficiently large and negative, e.g. II = −30, the term ∆̃2
1 − 4∆̃3

0 can
be zero on the yellow and cyan portions for some IE < IE (B). At this point ϑ = 0, therefore according
to Eq. (S12), we get xyellow = xcyan, or in other terms the two portions meet each other. In this way
the point C is formed by the yellow and cyan portions, while the blue and red ones disappear from the
primary branch (see S1 Fig, bottom).

In general we observe that the divergence of the perturbative expansion on the cyan portion of the
primary branch around point A prevents the use of our approximation for studying the secondary branches
that emanate from the branching points. This is due to the fact that these branches generally extend to
IE < IE (A) (see Figs. 8 and 9 in the main text), where the perturbative approximation cannot be used
anymore, because the membrane potential µI is not large enough to saturate the activation function.
We also observe that, according to the numerical analysis performed in the main text, for IE � IE (A)
we can have other LP bifurcations. As we said at the beginning of this section, the term AI (µI) in
Eqs. (6) or (11) saturates to 0 or νmax

I . Up to now we have considered the case AI (µI) ≈ νmax
I , while

the remaining LP bifurcations are obtained when the activation function saturates to zero. In this case
we need to use the following asymptotic expansion for µI → −∞:

9



AI (µI) ≈
νmax
I

4x2
. (S22)

We do not show the explicit calculation of the equilibrium points, which is left to the interested readers.
Our approximation can be further improved if we consider higher-order corrections in the perturbative

expansion. At the second order we get µE = µ
(0)
E +

µ
(1)
E

x2 +
µ

(2)
E

x4 , which means that when AI (µI) saturates for
example to νmax

I , we need to use the asymptotic expansion A (µI) ≈ νmax
I

(
1− 1

4x2 + 3
16x4

)
for µI → +∞.

In this case, the variable x satisfies a fifth-order polynomial equation, which can be solved analytically
in terms of complicated Jacobi theta functions [1]. However also in this case the formulas of µE,I diverge

for IE → IE (A), due to explosion of both the terms µ
(1)
E and µ

(2)
E . This justifies the use of the first-order

approximation developed in this section, by virtue of its lower complexity.

S2 Weak-inhibition regime

In this section we perform an analytical study of the bifurcations in the weak-inhibition regime. In more
detail, in SubSec. S2.1 we find the analytical formulas of the eigenvalues of the neural network, which
will be used to derive its analytical codimension two bifurcation diagram, as shown in SubSec. S2.2.

S2.1 Eigenvalues

As we reported in the main text, for weak inhibition (i.e. ψ < 1) the membrane potentials are always
homogeneous in each population, therefore it is easy to verify that in this case the Jacobian matrix J of
the network at the equilibrium points is:

J =
[

JEE JEI

JIE JII

]
, Jαβ =


− 1
τα

IdNα + Jαα
N−1

A ′α (µα) (INα − IdNα) , for α = β,

Jαβ
N−1

A ′β (µβ) INα,Nβ , for α 6= β,

(S23)

where µα are the solutions of Eq. (6) in the main text, INα,Nβ is the Nα ×Nβ all-ones matrix (with

INα
def
= INα,Nα), and IdNα is the Nα ×Nα identity matrix. The characteristic equation of the network is

det (J − λIdN ) = 0, where λ are the eigenvalues of the Jacobian matrix. In other terms, the equation
that we need to solve to calculate the eigenvalues is:

det
([

JEE − λIdNE JEI

JIE JII − λIdNI

])
= 0. (S24)

We can evaluate this determinant by means of the following formulas for block matrices:

det
([

A B
C D

])
=

det (A) det
(
D− CA−1B

)
, if det (A) 6= 0,

det (D) det
(
A−BD−1C

)
, if det (D) 6= 0,

(S25)
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where in our case A = JEE − λIdNE , B = JEI , C = JIE , D = JII − λIdNI .
We start by calculating the eigenvalues λi of J such that det (JII − λiIdNI ) 6= 0 for some values of

the index i. In other words, we find the eigenvalues of J which are not also eigenvalues of JII , if they
exist. Therefore we have to assume that λi 6= λIIj for j = 0, . . . , NI − 1, where λIIj are the eigenvalues of
the circulant matrix JII :

λII0 =− 1

τI
+
NI − 1

N − 1
JIIA

′
I (µI) ,

λIIj = −
[

1
τI

+ JII
N−1

A ′I (µI)
]
, j = 1, . . . , NI − 1.

By using the second formula in Eq. (S25), we get that Eq. (S24) implies:

det
(
A−BD−1C

)
= 0. (S26)

Now, since D is a circulant matrix:

D = d0IdNI + d1 (INI − IdNI ) , d0 = − 1

τI
− λi, d1 =

JII
N − 1

A ′I (µI) ,

then D−1 is also circulant:

D−1 = m0IdNI + m1 (INI − IdNI ) , m0 =
1− d1(NI−1)

d1−d0

d0 + d1 (NI − 1)
, m1 = m0 +

1

d1 − d0
,

where the denominators in m0,1 cannot be equal to zero due to the hypothesis λi 6= λIIj . Now, due to

the properties of the circulant matrices, A−BD−1C is circulant as well:

A−BD−1C = n0IdNE + n1 (INE − IdNE ) ,

n0 = a0 − r, n1 = a1 − r, r = NIb0c0 [m0 + (NI − 1)m1] ,

a0 = − 1

τE
− λi, a1 =

JEE
N − 1

A ′E (µE) , b0 =
JEI
N − 1

A ′I (µI) , c0 =
JIE
N − 1

A ′E (µE) .

Its determinant is:
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det
(
A−BD−1C

)
=

NE−1∏
j=0

(
n0 + n1

NE−1∑
k=1

e
2πjk
NE

ι

)
=

NE−1∏
j=0

[
n0 + n1

(
1− e2πjι

1− e
2πj
NE

ι
− 1

)]

= [n0 + n1 (NE − 1)] (n0 − n1)NE−1 .

Therefore the characteristic equation (S26) gives:

n0 + n1 (NE − 1) = 0 and/or n0 − n1 = 0. (S27)

Now we start to analyze the first equation of (S27). From it we obtain:

a0 − r + (a1 − r) (NE − 1) = 0,

and therefore, by substituting the expressions of a0.1 and r:

− λi −X

(
NI

1− U
λi+V

−λi + Z +
NI − 1

λi + V

)
+ Y = 0, (S28)

where:

X =
NENI

(N − 1)2 JEIJIEA ′E (µE) A ′I (µI) , Y = − 1

τE
+
NE − 1

N − 1
JEEA ′E (µE) ,

(S29)

Z = − 1

τI
+
NI − 1

N − 1
JIIA

′
I (µI) , U =

NI − 1

N − 1
JIIA

′
I (µI) , V =

1

τI
+

JII
N − 1

A ′I (µI) .

Now, since:

NI
1− U

λi+V

−λi + Z +
NI − 1

λi + V =
1

−λi + Z ,

Eq. (S28) can be rewritten as the following polynomial equation:

λ2
i − (Y + Z)λi + (YZ − X ) = 0, (S30)
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whose solutions are:

λR0,1 =
Y + Z ±

√
(Y + Z)2 − 4 (YZ − X )

2
.

According to the sign of the discriminant ∆ = (Y + Z)
2− 4 (YZ − X ) = (Y − Z)

2
+ 4X , the eigenvalues

λR0,1 can be real and distinct (∆ > 0), real and identical (∆ = 0), or complex-conjugate (∆ < 0).
Now we consider the second equation of (S27). From it we obtain a0 = a1 and therefore:

λi = −
[

1
τE

+ JEE
N−1

A ′E (µE)
]
, i = 2, . . . , NE .

Therefore we have obtained NE−1 identical and real eigenvalues, that for simplicity we call λE . However
we observe that up to now we have obtained only NE + 1 eigenvalues (considering also λR0,1), thus some
are missing.

To get the remaining eigenvalues, we can repeat the procedure above, but this time we need to
calculate the eigenvalues λi of J such that det (JEE − λiIdNE ) 6= 0. In this case, by using the first
formula in Eq. (S25), we obtain again Eq. (S30), and also the following set of real eigenvalues:

λi = −
[

1
τI

+ JII
N−1

A ′I (µI)
]
, i = NE + 1, . . . , N − 1 ,

that we call simply λI .
To sum up, we have obtained that the Jacobian matrix J at the equilibrium points has the following

set of eigenvalues:

λR0,1 =
Y + Z ±

√
(Y − Z)2 + 4X
2

, λE = −
[

1

τE
+

JEE
N − 1

A ′E (µE)

]
, λI = −

[
1

τI
+

JII
N − 1

A ′I (µI)

]
, (S31)

where λR0,1 have algebraic multiplicity 1 for ∆ 6= 0 or 2 for ∆ = 0, while λE,I have multiplicity NE,I − 1.
The most fundamental quantity of our theory is the eigenvalue λI , since it determines the formation of
the branching-point bifurcations discussed in the main text.

As we said in the main text, the eigenvalue λI is always negative in the weak-inhibition regime. On
the other side, in the strong-inhibition regime λI can change sign, therefore the neural equations exhibit
both homogeneous and heterogeneous solutions. This will be discussed later in Sec. S3.

S2.2 Codimension two bifurcation diagram

In this subsection we derive analytically most of the local bifurcations shown in the weak-inhibition
codimension two bifurcation diagram of Fig. 7 in the main text. We cover only local bifurcations, since the
global ones are analytically intractable. In particular, we find a mathematical description of the saddle-
node and Andronov-Hopf curves (SubSecs. S2.2.1 and S2.2.2 respectively), as well as the coordinates of
the Bogdanov-Takens points (SubSec. S2.2.3), while the cusp and generalized Hopf points are analytically
intractable and therefore have to be studied by means of numerical methods. Even though in the article
we focus on the case NI = 2, we observe that the formulas derived in this subsection are valid for arbitrary
NI .
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S2.2.1 Saddle-node bifurcations on the primary branch

Here we show two different ways to calculate analytically the LP curves of the codimension two bifurcation
diagram in Fig. 7 occurring on the primary branch. The first method is based on the results obtained in
Sec. S1 and provides an explicit (i.e. non-parametric) but approximate formula of the LP curves. The
idea is to take Eqs. (S16) and (S19), that describe the coordinates of the LP points A and C for a fixed
current II , and to use them to obtain the corresponding curves II = f (IE). More explicitly, we can

rewrite Eq. (S19) as b̃ = − 3

√
27
4 ã

2d̃, and from the expression of b̃ reported in Eq. (S10) we can isolate II
to get:

II =
V TI
τI
− NI − 1

N − 1
JIIν

max
I − NE

N − 1
JIEAE

(
µ

(0)
E

)
+

3

√
27

4
ã2d̃. (S32)

Now we observe that ã does not depend on the external currents, while d̃ depends only on IE through

µ
(0)
E (and therefore through the term φ, see Eqs. (S6) + (S7) + (S10)). In this way we obtain II as a

function of IE . According to the results shown in Sec. S1, when II is large enough (i.e. approximately
II > −20), the point C is generated by the blue and red portions of µE,I (see S1 Fig, top), therefore in

this case we need to use the expression of
[
µ

(0)
E

]
0

in Eq. (S32). On the contrary, for a strongly negative

current (i.e. II < −20), the point C is generated by the yellow and cyan portions of the primary branch

(see S1 Fig, bottom), therefore in this case we need to use
[
µ

(0)
E

]
3
. Through this distinction we get the

LP curve shown in S2 Fig, where the orange and violet portions are obtained in the two regimes of II

that we have just described. The point F that separates the two portions occurs when
[
µ

(0)
E

]
0

=
[
µ

(0)
E

]
3

and therefore at IE = IE (B) (therefore the corresponding II can be obtained from Eq. (S32)).

From Eq. (S7) we also observe that the orange portion of the LP curve is not defined for −4Z
2−2p−

q

Z
< 0, therefore its asymptote ([Ias

E ]0, see S2 Fig) is obtained when −4Z
2 − 2p− q

Z
= 0, and thus when[

µ
(0)
E

]
2

=
[
µ

(0)
E

]
3

= − b
4a + Z, according to Eq. (S7). This last condition is satisfied when the green and

yellow portions of the primary branch meet each other, and therefore when IE = IE (A). Therefore the
portion of the LP curve generated by the point C converges to the portion generated by the point A,
without ever touching it. In other terms:

[Ias
E ]0 = IE (A) . (S33)

This is due to the fact that Eqs. (S16) + (S32) are only an approximation of the real LP curve, since
they have been derived from the perturbative expansion of the equilibrium points developed in Sec. S1.
Intuitively, the divergence of II in the IE−II plane that occurs when the orange portion approaches [Ias

E ]0
is due to the divergence of µ

(1)
E , contained in d̃. Since µ

(1)
E is the only term that may explode in Eq. (S32),

we conclude that it diverges also when the curve approaches the second asymptote (i.e. [Ias
E ]1, see S2 Fig).

Thus from Eq. (S9) we get that also [Ias
E ]1 is defined by the equation − 1

τE
+ NE−1

N−1 JEEA ′E

(
µ

(0)
E

)
= 0.

As we know, one solution of this equation is (S15), which defines the point A, as it must be. The second
solution is that with the −√ that we rejected before, namely:

µ
(0)
E = V TE −

2

ΛE

√√√√ 3

√(
NE − 1

N − 1
JEE

νmax
E ΛE

4
τE

)2

− 1.
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This formula, once substituted into Eq. (S3), provides the current of the second asymptote:

[Ias
E ]1 =

1

τE
µ

(0)
E −

NE − 1

N − 1
JEEAE

(
µ

(0)
E

)
− NI
N − 1

JEIν
max
I . (S34)

The second LP curve of the whole codimension two bifurcation diagram (see Fig. 7 in the main text) is
obtained in the same way through the approximation (S22). Therefore we have shown that the asymptotic
expansion of the equilibrium points developed in Sec. S1 is also able to describe qualitatively the LP curve
in the codimension two bifurcation diagram, but for a quantitative characterization of its behavior we
need another approach.

For this reason now we introduce a second method for calculating analytically the LP curve. By
definition, one of the eigenvalues of the Jacobian matrix is zero at the LP points. λE is always negative,
as well as λI since we are in a weak-inhibition regime. Therefore we can only have λR0 = 0 or λR1 = 0. If
Y + Z < 0, according to Eq. (S31) the condition λR0 = 0 is equivalent to X = YZ. This, according to
Eq. (S29), provides:

A ′I (µI) =
− 1
τEτI

+ 1
τI

NE−1
N−1

JEEA ′E (v)

− 1
τE

NI−1
N−1

JII + 1
(N−1)2

[(NE − 1) (NI − 1) JEEJII −NENIJEIJIE ] A ′E (v)
, (S35)

where we have defined the parameter v
def
= µE . Moreover, we can invert Eq. (S35) by means of Eq. (S14),

obtaining:

µI (v) = V TI ±
2

ΛI

√√√√ 3

√(
νmax
I ΛI

4A ′I (µI)

)2

− 1, (S36)

and from Eq. (6) of the main text we get:


IE (v) = 1

τE
v− NE−1

N−1
JEEAE (v)− NI

N−1
JEIAI (µI (v)) ,

II (v) = 1
τI
µI (v)− NE

N−1
JIEAE (v)− NI−1

N−1
JIIAI (µI (v)) .

(S37)

Therefore Eqs. (S35) + (S36) + (S37) define a set of parametric equations with parameter v for the input
currents IE,I that generate the LP bifurcation curve. Unlike Eq. (S32), these formulas are exact, but do
not provide the explicit relation between IE and II .

In the same way, if Y + Z > 0, the condition λR1 = 0 is equivalent again to X = YZ, therefore we
re-obtain the same formulas found above. These curves have been plotted in blue in S3 Fig (the reader
may easily verify the agreement with the numerical results shown in Fig. 7 in the main text), where
the portion of the curve between the points BT0 and BT1, and that between the points BT2 and BT3,
correspond to the condition λR1 = 0, while all the other portions are generated by the condition λR0 = 0.
At the points BT0,1,2,3, that represent the Bogdanov-Takens bifurcations, both the eigenvalues λR0,1 are
equal to zero, as we will see in SubSec. S2.2.3.

Every point on the LP curve has also to satisfy the following system of inequalities:
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0 < A ′I (µI) ≤ νmax
I ΛI

4
,

(Y − Z)2 + 4X ≥ 0,

whose solution is v ∈ (va, vb), where:

vb,a = V TE ±
2

ΛE

√√√√ 3

√(
NE − 1

N − 1
JEE

νmax
E ΛE

4
τE

)2

− 1. (S38)

This leads to get four asymptotes [Ias
E ]0,1,2,3 (see S3 Fig) for v → v+

a and v → v−b . In both the limiting

cases we obtain A ′I (µI)→ 0 and therefore either AI (µI)→ 0 or AI (µI)→ νmax
I . Thus the expressions

of the asymptotes are:

[Ias
E ]0 =

1

τE
vb −

NE − 1

N − 1
JEEAE (vb)−

NI
N − 1

JEIν
max
I ,

[Ias
E ]1 =

1

τE
va −

NE − 1

N − 1
JEEAE (va)− NI

N − 1
JEIν

max
I ,

(S39)

[Ias
E ]2 =

1

τE
vb −

NE − 1

N − 1
JEEAE (vb) ,

[Ias
E ]3 =

1

τE
va −

NE − 1

N − 1
JEEAE (va) .

We observe that [Ias
E ]0,1 given by Eq. (S39) correspond to those provided by Eqs. (S33) and (S34).

To conclude, we underline that even if the cusp bifurcations are evident from S3 Fig, we cannot
calculate analytically their coordinates in the codimension two bifurcation diagram. Indeed, it is possible
to prove that these coordinates are given by the solutions of a high-order polynomial equation, which can
be calculated only numerically.

S2.2.2 Andronov-Hopf bifurcations on the primary branch

Andronov-Hopf bifurcations (H for short) are defined by the existence of a simple pair of complex-
conjugate purely imaginary eigenvalues. Since λE,I are always real, this condition can be satisfied only

by λR0,1, by setting Y + Z = 0 and (Y − Z)
2

+ 4X < 0. In particular, from the equation Y + Z = 0 we
get:

A ′I (µI) =
N − 1

(NI − 1) JII

[
1

τE
+

1

τI
− NE − 1

N − 1
JEEA ′E (v)

]
, (S40)

where v
def
= µE as before. Following the same procedure introduced in SubSec. S2.2.1, from Eq. (S40)

we obtain a set of parametric equations with parameter v for the input currents IE,I that define the H
bifurcation curve.

Every point on the curve has also to satisfy the following system of inequalities:
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0 < A ′I (µI) ≤ νmax
I ΛI

4
,

(Y − Z)2 + 4X < 0,

whose solution is v ∈ [vf , vd] ∪ [vc, ve], where:

vc,d =V TE ±
2

ΛE

√√√√√√ 3

√√√√√
νmax

E ΛE (NE − 1) JEE
4 (N − 1)

1
1
τE

+ 1
τI
− νmax

I
ΛI (NI−1)JII
4(N−1)

2

− 1,

ve,f =V TE ±
2

ΛE

√√√√ 3

√(
νmax
E ΛE

4z

)2

− 1,

z =
−b−

√
b2 − 4ac

2a
,

a =

(
NE − 1

N − 1
JEE

)2

− NENI (NE − 1)

(N − 1)2 (NI − 1)

JEEJEIJIE
JII

,

b =− 2

τE

NE − 1

N − 1
JEE +

NENI
(N − 1) (NI − 1)

JEIJIE
JII

(
1

τE
+

1

τI

)
,

c =
1

τ2
E

.

These curves are represented in red in S3 Fig, and again the reader may verify the agreement with
the numerical results shown in Fig. 7 in the main text. It is important to observe that in S3 Fig we
did not distinguish between subcritical and supercritical H bifurcations, because the coordinates of the
generalized Hopf point GH (which, by definition, divides the two kinds of bifurcations, see the main text)
cannot be calculated analytically.

S2.2.3 Bogdanov-Takens bifurcations on the primary branch

Considering the results obtained in SubSec. S2.2.2, the BT bifurcations are given by v = ve,f (equivalently,
they can be obtained from the conditions λR0 = λR1 = 0, since by definition the BTs are the contact points
between the LP and H curves). Therefore we get:
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
IE (BT0) = 1

τE
ve − NE−1

N−1
JEEAE (ve)− NI

N−1
JEIAI

(
µ+
I

)
,

II (BT0) = 1
τI
µ+
I −

NE
N−1

JIEAE (ve)− NI−1
N−1

JIIAI

(
µ+
I

)
,


IE (BT1) = 1

τE
vf − NE−1

N−1
JEEAE (vf )− NI

N−1
JEIAI

(
µ+
I

)
,

II (BT1) = 1
τI
µ+
I −

NE
N−1

JIEAE (vf )− NI−1
N−1

JIIAI

(
µ+
I

)
,


IE (BT2) = 1

τE
ve − NE−1

N−1
JEEAE (ve)− NI

N−1
JEIAI

(
µ−I
)
,

II (BT2) = 1
τI
µ−I −

NE
N−1

JIEAE (ve)− NI−1
N−1

JIIAI

(
µ−I
)
,


IE (BT3) = 1

τE
vf − NE−1

N−1
JEEAE (vf )− NI

N−1
JEIAI

(
µ−I
)
,

II (BT3) = 1
τI
µ−I −

NE
N−1

JIEAE (vf )− NI−1
N−1

JIIAI

(
µ−I
)
,

where:

µ±I = V TI ±
2

ΛI

√√√√√√ 3

√√√√√
 νmax

I ΛI (NI − 1) JII

4 (N − 1)
(

1
τE

+ 1
τI
− NE−1

N−1
JEEz

)
2

− 1.

This concludes our analytical study of the local bifurcations in the weak-inhibition regime, therefore now
we are ready to start the analysis of the strong-inhibition regime.

S3 Strong-inhibition regime

Here we study the case of strong inhibition, i.e. ψ ≥ 1. This section has a similar structure to Sec. S2,
therefore we start by calculating analytically the eigenvalues of the neural network (SubSec. S3.1), and
then we will use them to derive analytically the codimension two bifurcation diagram (SubSec. S3.2).

S3.1 Eigenvalues

In the strong-inhibition regime the inhibitory membrane potentials can be either homogeneous or het-
erogeneous (see main text). In the homogeneous case, the mathematical formalism is the same of Sub-
Sec. S2.1. In the heterogeneous case, we can reinterpret the inhibitory population as a collection of
smaller inhibitory subpopulations. For this reason, in order to perform our bifurcation analysis, we need
to extend the results of SubSec. S2.1 to the case of a multi-population network. Therefore if we consider
a network with a generic number of populations P and we suppose that Nα is the size of the population

α (so that

P−1∑
α=0

Nα = N), the whole connectivity matrix of the system can be written as follows:
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J =


J00 J01 · · · J0,P−1

J10 J11 · · · J1,P−1

...
...

. . .
...

JP−1,0 JP−1,1 · · · JP−1,P−1

 , Jαβ =

Jαα (INα − IdNα) , for α = β,

JαβINα,Nβ , for α 6= β,

for α, β = 0, . . . ,P− 1. The matrix Jαβ , which contains the connections from the population β to the
population α, is Nα ×Nβ . Thus the Jacobian matrix of the system is:

J =


J00 J01 . . . J0,P−1
J10 J11 . . . J1,P−1

...
...

. . .
...

JP−1,0 JP−1,1 . . . JP−1,P−1

 , Jαβ =


− 1
τα

IdNα + Jαα
Mα

A ′α (µα) (INα − IdNα ) , for α = β,

Jαβ
Mα

A ′β
(
µβ
)
INα,Nβ , for α 6= β,

(S41)

where µα are the solutions of the following system of equations:

− 1

τα
µα +

Nα − 1

Mα
JααAα (µα) +

P−1∑
β=0
β 6=α

Nβ
Mα

JαβAβ (µβ) + Iα = 0, α = 0, . . . ,P− 1. (S42)

Now we introduce the following theorem (being part of a larger work on multi-population networks, we
leave it without proof, which will appear in another article).

Theorem S1 (Eigenvalues of a multi-population network) The Jacobian matrix (S41) has eigenvalues:

λPγ = −
[

1

τγ
+
Jγγ
Mγ

A ′γ (µγ)

]
, (S43)

with algebraic multiplicity Nγ − 1 for γ = 0, . . . ,P − 1 (in the case P = 2 studied in this article, these
are the eigenvalues that for simplicity we called λE,I). The remaining P eigenvalues are those of the
following “reduced” P×P Jacobian matrix:

JR =


JR

00 JR
01 . . . JR

0,P−1

JR
10 JR

11 . . . JR
1,P−1

...
...

. . .
...

JR
P−1,0 JR

P−1,1 . . . JR
P−1,P−1

 , JR
αβ =


− 1
τα

+ Nα−1
Mα

JααA ′α (µα) , for α = β,

Nβ
Mα

JαβA ′β (µβ) , for α 6= β.

(S44)

Example. The following Jacobian matrix:
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J =



−1 2 2 2 0 0 −4 −4 −4
2 −1 2 2 0 0 −4 −4 −4
2 2 −1 2 0 0 −4 −4 −4
2 2 2 −1 0 0 −4 −4 −4
3 3 3 3 −2 4 −6 −6 −6
3 3 3 3 4 −2 −6 −6 −6
0 0 0 0 1 1 −5 −9 −9
0 0 0 0 1 1 −9 −5 −9
0 0 0 0 1 1 −9 −9 −5



represents a network with N = 9, P = 3, N0 = 4, N1 = 2, N2 = 3, where the populations 0, 1 are
excitatory while the population 2 is inhibitory. The eigenvalues of J are λP = −3,−6, 4, with algebraic
multiplicities 3, 1, 2 respectively. The remaining 3 eigenvalues are those of the reduced Jacobian matrix:

JR =

[
5 0 −16
6 2 −12
0 3 −23

]
,

namely:

λR0 ≈ −21.943, λR1,2 ≈ 2.971± 2.564ι.

As we said in the main text, for the sake of clarity in this work we study the case NI = 2 (for NI > 2
the analysis is still feasible, but more complicated, thus it is left to the interested reader). For ψ ≥ 1
(and more precisely whenever λI ≥ 0) the stationary solutions of the network are given by Eq. (12) of
the main text, which can be interpreted as a special case of Eq. (S42) in the case of three populations.
Therefore now the Jacobian matrix of the network is:

J =

[
J00 J01 J02

J10 J11 J12

J20 J21 J22

]
, (S45)

where:

J00 = − 1

τE
IdNE +

JEE
N − 1

A ′E (µE) (INE − IdNE ) , J01 =
JEI
N − 1

A ′I (µI,0)1NE , J02 =
JEI
N − 1

A ′I (µI,1)1NE ,

J10 =
JIE
N − 1

A ′E (µE)1tNE , J11 =
1

τI
, J12 =

JII
N − 1

A ′I (µI,1) ,

J20 =
JIE
N − 1

A ′E (µE)1tNE , J21 =
JII
N − 1

A ′I (µI,0) , J22 =
1

τI
.

Here 1NE is the NE × 1 all-ones vector and 1tNE is its transpose. As we said, this allows us to reinterpret
the network as if it were made of the usual excitatory population with NE neurons, and two inhibitory
populations with one neuron each. According to Thm. S1, we are in the case with N0 = NE and N1 =
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N2 = 1, therefore the network has the eigenvalue λP0 = λE = −
[

1
τE

+ JEE
N−1A ′E (µE)

]
with multiplicity

NE − 1 (see Eq. (S43)), while the other eigenvalues are those of the following reduced Jacobian matrix
(see Eq. (S44)):

JR =

 −
1
τE

+ NE−1
N−1

JEEA ′E (µE) JEI
N−1

A ′I (µI,0) JEI
N−1

A ′I (µI,1)
NE
N−1

JIEA ′E (µE) − 1
τI

JII
N−1

A ′I (µI,1)
NE
N−1

JIEA ′E (µE) JII
N−1

A ′I (µI,0) − 1
τI

 . (S46)

In other terms, the remaining eigenvalues are the solutions of the following third-order characteristic
polynomial:

å
(
λR
)3

+ b̊
(
λR
)2

+ c̊λR + d̊ = 0, (S47)

where:

å =1,

b̊ =− tr
(
JR

)
,

(S48)

c̊ =
1

2

{[
tr
(
JR

)]2
− tr

((
JR

)2
)}

,

d̊ =− det
(
JR

)
.

Now, if we define:

Q̊ =
3

√√√√ ∆̊1 +

√
∆̊2

1 − 4∆̊3
0

2
,

∆̊0 =̊b2 − 3̊åc,

∆̊1 =2̊b3 − 9̊åb̊c+ 27̊a2d̊,

we get that the eigenvalues of JR are:

λRk = − 1

3̊a

(̊
b+ ukQ̊+

∆̊0

ukQ̊

)
,
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for k = 0, 1, 2, where as usual u0 = 1, u1 = −1+ι
√

3
2 , u2 = −1−ι

√
3

2 .
To conclude, we observe that for arbitraryNI there is an explicit relation between any pair of inhibitory

membrane potentials µI,i and µI,j , that will prove very useful in determining the parametric equations
of the bifurcations. Thus from the second and third equation of the system (11) in the main text we get:

− 1

τI
µI,i +

JII
N − 1

AI (µI,j) = − 1

τI
µI,j +

JII
N − 1

AI (µI,i) .

This equation can be rewritten for example as follows:

âµ4
I,j + b̂µ3

I,j + ĉµ2
I,j + d̂µI,j + ê = 0,

where:

â =
Λ2
I

4τ2
I

,

b̂ =− Λ2
I

2τI

(
φ̂+

V TI
τI

)
,

ĉ =
Λ2
I

4

[
φ̂2 +

(
V TI
τI

)2

+
4

τI
V TI φ̂

]
+

1

τ2
I

− ξ̂,

d̂ =− Λ2
I

2
φ̂V TI

(
V TI
τI

+ φ̂

)
− 2

τI
φ̂+ 2ξ̂V TI ,

ê =

(
ΛI
2
φ̂V TI

)2

+ φ̂2 − ξ̂
(
V TI

)2

,

φ̂ =
1

τI
µI,i +

JII
N − 1

AI (µI,i)−
νmax
I JII

2 (N − 1)
,

ξ̂ =

(
νmax
I ΛIJII
4 (N − 1)

)2

,

therefore we can express µI,j in terms of µI,i by means of the formula of the solutions of a fourth-order
polynomial equation:

[µI,j ]0,1 =− b̂

4â
− Ẑ ± 1

2

√
−4Ẑ2 − 2p̂+

q̂

Ẑ
,

(S49)

[µI,j ]2,3 =− b̂

4â
+ Ẑ ± 1

2

√
−4Ẑ2 − 2p̂− q̂

Ẑ
,
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where the quantities Ẑ, p̂, q̂ are defined similarly to Eq. (S8). The relation between µI,i and µI,j is shown
in Fig. (5) of the main text. In particular, in SubSecs. (S3.2.3) and (S3.2.4) we will use Eq. (S49) to
calculate analytically the LP and H bifurcations on the secondary branches in the case NI = 2.

S3.2 Codimension two bifurcation diagram

Now we are ready to use all the results of SubSec. S3.1 for the evaluation of the codimension two
bifurcation diagram in the strong-inhibition regime. The case λI < 0 is similar to SubSec. S2.2, therefore
here we consider only the bifurcations that occur for λI ≥ 0, namely under spontaneous symmetry-
breaking. As usual, here we cover only local bifurcations. Of special interest is the formation of the
branching points, which are discussed in SubSec. S3.2.1, since they represent the central topic of this
article. Then in SubSec. S3.2.2 we calculate the zero-Hopf (neutral saddle) bifurcations, and finally
we derive analytically also the saddle-node, Andronov-Hopf and Bogdanov-Takens bifurcations on the
secondary branches, in SubSecs. S3.2.3, S3.2.4 and S3.2.5 respectively. The formulas that we derive for
the branching-point and zero-Hopf bifurcations are valid for arbitrary NI . However, unlike the weak-
inhibition case, the formulas of the saddle-node, Andronov-Hopf and Bogdanov-Takens bifurcations are
valid only for NI = 2, even though our formalism can be easily extended to the case NI > 2 (results not
shown).

S3.2.1 Branching-point bifurcations

In this subsection we study the condition λI = 0 that gives rise to the branching-point bifurcations (BP
for short), namely:

1

τI
− |JII |
N − 1

A ′I (µI (BP)) = 0. (S50)

The solutions of this equation are:

µI (BP) = V TI ±
2

ΛI

√
3
√
ψ2 − 1. (S51)

Being a limiting case, the condition λI = 0 can be studied either from Eq. (6) or equivalently from
Eq. (11) (see the main text) after setting µI,0 = . . . = µI,NI−1. Thus for example, if we choose to use
Eq. (6), from its second equation we get:

µE (BP) = V TE ±
2

ΛE

√√√√√ 1
1{

2(N−1)
νmax
E

NEJIE

[
1
τI
µI (BP)−NI−1

N−1
JIIAI (µI (BP))−II

]
−1

}2 − 1
(S52)

while from its first equation we obtain:

IE =
1

τE
µE (BP)− NE − 1

N − 1
JEEAE (µE (BP))− NI

N − 1
JEIAI (µI (BP)) , (S53)
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where µE (BP) and µI (BP) are given by Eqs. (S51) and (S52) respectively. Since µE (BP) depends
on II , Eq. (S53) defines explicit functions IE = F± (II) that represent the currents IE,I at which
a BP bifurcation occurs. From Eq. (S51) we observe that µI (BP) has two different possible values
depending on the sign in front of the square root, while from Eq. (S52) we see that µE (BP) has
four possible solutions, due to the sign of the square root and to the value of µI (BP). The pairs(
µE (BP) = V TE + . . . , µ+

I (BP)
def
= V TI + . . .

)
and

(
µE (BP) = V TE − . . . , µ

+
I (BP) = V TI + . . .

)
define the

two portions of the curve that we call F+ (we observe that µE (BP) is calculated from the µI (BP) of

the corresponding pair through Eq. (S52)), while the pairs
(
µE (BP) = V TE + . . . , µ−I (BP)

def
= V TI − . . .

)
and

(
µE (BP) = V TE − . . . , µ

−
I (BP) = V TI − . . .

)
define F−. Moreover, from Eqs. (S51) and (S52) we see

that the functions F± exist if and only if:



τI |JII |νmax
I ΛI

4(N−1)
≥ 1,

1
1{

2(N−1)
νmax
E

NEJIE

[
1
τI
µI (BP)−NI−1

N−1
JIIAI (µI (BP))−II

]
−1

}2−1
≥ 0,

{
2(N−1)

νmax
E

NEJIE

[
1
τI
µI (BP)− NI−1

N−1
JIIAI (µI (BP))− II

]
− 1
}2

6= 1,

from which we obtain that F+ is defined for [Ias
I ]0 < II < [Ias

I ]1, while F− for [Ias
I ]2 < II < [Ias

I ]3, where:

[Ias
I ]0 =

1

τI
µ+
I (BP)− NI − 1

N − 1
JIIAI

(
µ+
I (BP)

)
− νmax

E NEJIE
N − 1

,

[Ias
I ]1 =

1

τI
µ+
I (BP)− NI − 1

N − 1
JIIAI

(
µ+
I (BP)

)
,

[Ias
I ]2 =

1

τI
µ−I (BP)− NI − 1

N − 1
JIIAI

(
µ−I (BP)

)
− νmax

E NEJIE
N − 1

,

[Ias
I ]3 =

1

τI
µ−I (BP)− NI − 1

N − 1
JIIAI

(
µ−I (BP)

)
.

Therefore the horizontal asymptotes [Ias
I ]0,1,2,3 in the IE−II plane define the domain of the two functions

F± and describe the behavior of the BP curves for large values of |IE | (compare with Fig. 10 in the main
text).

To conclude, we observe that for NI > 2, we may observe the formation of special branching points
that are not determined by the condition λI = 0, rather by the fact that one of the eigenvalues of the
reduced Jacobian matrix (S44) tends to zero. These branching points can be studied analytically through
our approach, but since the complexity of the corresponding eigenvalues strongly depends on NI and on
the degree of heterogeneity of the inhibitory population, we do not analyze them in detail.

S3.2.2 Zero-Hopf (neutral saddle) bifurcations

By definition, the zero-Hopf bifurcations (ZH for short) are detected when the network has a zero eigen-
value and a pair of complex-conjugate purely imaginary eigenvalues. In our case, this occurs at the
intersection of the BP and H curves, therefore the ZH bifurcations satisfy the following conditions (see
Eqs. (S40) and (S50)):
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
A ′I (µI (ZH)) = N−1

(NI−1)JII

[
1
τE

+ 1
τI
− NE−1

N−1
JEEA ′E (µE (ZH))

]
,

1
τI
− |JII |

N−1
A ′I (µI (ZH)) = 0.

From this system of equations we get:

A ′E (µE (ZH)) =
N − 1

(NE − 1) JEE

(
1

τE
+
NI
τI

)
,

A ′I (µI (ZH)) =
N − 1

τI |JII |
,

and therefore:

µ±E (ZH) =V TE ±
2

ΛE

√√√√√√ 3

√√√√√
νmax

E ΛE (NE − 1) JEE

4 (N − 1)
(

1
τE

+ NI
τI

)
2

− 1,

(S54)

µ±I (ZH) =V TI ±
2

ΛI

√
3
√
ψ2 − 1.

Therefore finally, from Eq. (6) or (11) in the main text, we see that the coordinates of the ZH bifurcations
are:


IE (ZH0) = 1

τE
µ+
E (ZH)− NE−1

N−1
JEEAE

(
µ+
E (ZH)

)
− NI

N−1
JEIAI

(
µ+
I (ZH)

)
,

II (ZH0) = 1
τI
µ+
I (ZH)− NE

N−1
JIEAE

(
µ+
E (ZH)

)
− NI−1

N−1
JIIAI

(
µ+
I (ZH)

)
,


IE (ZH1) = 1

τE
µ−E (ZH)− NE−1

N−1
JEEAE

(
µ−E (ZH)

)
− NI

N−1
JEIAI

(
µ+
I (ZH)

)
,

II (ZH1) = 1
τI
µ+
I (ZH)− NE

N−1
JIEAE

(
µ−E (ZH)

)
− NI−1

N−1
JIIAI

(
µ+
I (ZH)

)
,


IE (ZH2) = 1

τE
µ+
E (ZH)− NE−1

N−1
JEEAE

(
µ+
E (ZH)

)
− NI

N−1
JEIAI

(
µ−I (ZH)

)
,

II (ZH2) = 1
τI
µ−I (ZH)− NE

N−1
JIEAE

(
µ+
E (ZH)

)
− NI−1

N−1
JIIAI

(
µ−I (ZH)

)
,


IE (ZH3) = 1

τE
µ−E (ZH)− NE−1

N−1
JEEAE

(
µ−E (ZH)

)
− NI

N−1
JEIAI

(
µ−I (ZH)

)
,

II (ZH3) = 1
τI
µ−I (ZH)− NE

N−1
JIEAE

(
µ−E (ZH)

)
− NI−1

N−1
JIIAI

(
µ−I (ZH)

)
.

In the current and the previous subsection we have studied the case λI = 0. From now on we will restrict
ourselves to the case λI > 0.
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S3.2.3 Saddle-node bifurcations on the secondary branches

The results of this subsection are valid only for NI = 2. The LP curve that occurs on the secondary
branches is given by the condition that one eigenvalue of the Jacobian matrix (S45) is equal to zero.
Since the determinant of a matrix is equal to the product of its eigenvalues, and moreover the eigenvalues
λE are never equal to zero, then the LP curve is described by the equation det

(
JR

)
= 0. After some

algebra, this condition can be rewritten as áA ′E (µE)− b́ = 0, where:

á =
1

τ2
I

NE − 1

N − 1
JEE +

1

τI

NE

(N − 1)2 JEIJIE
[
A ′I (µI,0) + A ′I (µI,1)

]
+

1

(N − 1)3

[
2NEJEIJIEJII − (NE − 1) JEEJ

2
II

]
A ′I (µI,0) A ′I (µI,1) ,

b́ =
1

τE

[
1

τ2
I

−
(

JII
N − 1

)2

A ′I (µI,0) A ′I (µI,1)

]
, (S55)

therefore we get:

A ′E (µE) =
b́

á
. (S56)

Now, by inverting Eq. (S56), we obtain µE as a function of á, b́, that in turn depend on µI,0 and µI,1.
Combining this result with Eq. (S49) (for i = 0 and j = 1), we get µE as a function of µI,0 only, which

can be used to get the parametric equations of the LP curve. Indeed, if we define v
def
= µI,0, now we have

formulas µ±E = f± (v) (depending on the sign in the expression µ±E = V TE ± · · · ) and µI,1 = g (v), which
replaced into Eq. (12) of the main text provide the parametric equations of the currents IE,I on the LP
curve, as a function of the parameter v.

In particular, it turns out that the two portions of the LP curve are generated by [µI,1]1 (see Eq. (S49)),
therefore the points on the curve have to satisfy the following system of inequalities:


0 < A ′E (µE) ≤ νmax

E ΛE
4

,

0 < A ′I (µI) ≤ νmax
I ΛI

4
,

−4Ẑ2 − 2p̂+ q̂

Ẑ
≥ 0.

(S57)

The system (S57) determines the range of v where the LP curve is defined, but unfortunately it cannot
be solved explicitly. However, in this case the extremes of the range of v do not define any important
codimension two bifurcation point or asymptote, differently to what occurs for the LP curve on the
primary branch. For this reason their exact evaluation is not fundamental. Nevertheless, for the sake of
completeness some numerical examples are shown in S1 Table for different values of JII .

From the formula of b́ it is interesting to observe that A ′E (µE) is proportional to

1
τ2
I
−
(
JII
N−1

)2

A ′I (µI,0) A ′I (µI,1). Since for λI → 0 we get µI,0 → µI,1, and since 1
τ2
I
−
(
JII
N−1A ′I (µI,0)

)2

=

−λI
(

1
τI
− JII

N−1A ′I (µI,0)
)

, we conclude that λI = 0 implies A ′E (µE) = 0. In other terms, according to

our analytical formula the LP curve on the secondary branches cannot exist for λI = 0, as it must be.
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To conclude, we observe that on the LP curve we have new CP bifurcations, whose coordinates
cannot be calculated analytically, as in the case of the primary branch (a numerical derivation has been
implemented in S1 File).

S3.2.4 Andronov-Hopf bifurcations on the secondary branches

Similarly to SubSec. S3.2.3, the results below are valid only for NI = 2. If we replace λR = ±ιω into
Eq. (S47), we get the following system of equations:


åω3 − c̊ω = 0,

b̊ω2 − d̊ = 0.

ω = 0 is a solution if and only if d̊ = 0 (this condition corresponds to the BT bifurcation that we
will discuss later in SubSec. S3.2.5). Moreover, the remaining solution ω 6= 0 exists if and only if

åd̊− b̊̊c = 0. By means of Eq. (S48), after some algebra this last condition can be written more explicitly

as à (A ′E (µE))
2

+ b̀A ′E (µE) + c̀ = 0, where:

à =
NE − 1

N − 1
JEE

[
2

τI

NE − 1

N − 1
JEE +

NE

(N − 1)2
JEIJIE

(
A ′I
(
µI,0

)
+ A ′I

(
µI,1

))]
,

b̀ =2
NE

(N − 1)3
JEIJIEJIIA

′
I

(
µI,0

)
A ′I
(
µI,1

)
−
(

1

τE
+

1

τI

)[
4

τI

NE − 1

N − 1
JEE +

NE

(N − 1)2
JEIJIE

(
A ′I
(
µI,0

)
+ A ′I

(
µI,1

))]
,

c̀ =
2

τI

[(
1

τE
+

1

τI

)2

−
(

JII

N − 1

)2

A ′I
(
µI,0

)
A ′I
(
µI,1

)]
. (S58)

Therefore we get:

A ′E
(
µ±E
)

=
−b̀±

√
b̀2 − 4àc̀

2à
. (S59)

Now we can follow the same procedure explained in SubSec. S3.2.3 for the LP curve, ending up with a
parametric formula for the H curves on the secondary branches.

As usual, we need to find also the range of the parameter v = µI,0. As for the LP curve, this range
cannot be calculated analytically. However, in some cases one of the extremes of the range can be found.
Indeed, in Fig. 10 of the main text we showed that when inhibition and excitation are strong enough,
the H curves of the secondary branches are connected to the BP curves through the same ZH bifurcation
points that we calculated in SubSec. S3.2.2, and whose inhibitory membrane potentials are known (see
Eq. (S54)). First of all we want to prove briefly that the H curves of the secondary branches actually
converge to the ZH points, when they exist. For λI → 0 we know that µI,0 and µI,1 converge to the
inhibitory potential µI of the primary branch, therefore the reduced Jacobian matrix (S46) becomes:

JR → JR =

 −
1
τE

+ NE−1
N−1

JEEA ′E (µE) JEI
N−1

A ′I (µI)
JEI
N−1

A ′I (µI)
NE
N−1

JIEA ′E (µE) − 1
τI

− 1
τI

NE
N−1

JIEA ′E (µE) − 1
τI

− 1
τI

 .
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It is easy to prove that this matrix has eigenvalues λ
R
0,1 = λR0,1 and λ

R
2 = λI = 0, where λR0,1 are given

by Eq. (S31). In other words, for λI → 0 the two complex-conjugate purely imaginary eigenvalues λ
R
0,1

converge to λR0,1. This means that the H curve of the secondary branches meets the BP curve when two
eigenvalues are complex-conjugate purely imaginary and equal to those of the primary branch. As we
know, the latter is the condition that defines the H curves of the primary branch. Therefore the H curves
of the primary and secondary branches and the BP curve meet each other at the same point, which must
be ZH, according to the results in SubSec. S3.2.2. Therefore in this case one of the extremes of the
parameter for each H curve is v = µI (ZH), as given by Eq. (S54), while the other must be calculated
numerically.

We conclude by observing that the point GH is analytically intractable, as in the case of weak
inhibition.

S3.2.5 Bogdanov-Takens bifurcations on the secondary branches

The BT bifurcations occur at the intersection points between the LP and H curves, therefore they are
defined by Eqs. (S56) + (S59). From them we obtain the condition:

àb́2 + áb̀b́+ á2c̀ = 0. (S60)

Now, these parameters are functions of µI,0 and µI,1 (see Eqs. (S55) + (S58)), therefore from Eqs. (S49)
+ (S60) we obtain two equations in two unknowns, from which in principle we should be able to derive
the inhibitory membrane potentials. However, these equations turn out to be analytically intractable.
For this reason, the BT bifurcations can be calculated only numerically (see S1 File). The simplest way

is by checking when the condition d̊ = 0 is satisfied on the H curves of the secondary branches, because
this corresponds to find the points where the H and LP curves meet each other. Alternatively, it also
possible to check the condition c̊ = 0, since åd̊− b̊̊c = 0 on the H curves and b̊ 6= 0 (with the exception of

the ZH points, where b̊ = −tr
(
JR

)
= −

(
0 + λR0 + λR1

)
= 0).

S4 Examples of dynamics from the codimension two bifurcation
diagram

The codimension two bifurcation diagrams shown in Figs. 7 and 10 of the main text contain almost all
the information concerning the dynamics the model is able to exhibit for different values of IE,I and JII .
However, the knowledge about the amplitude of the oscillations, as well as the value of the membrane
potentials at the equilibrium points and their stability, is carried out by the codimension one diagrams.
For this reason, by following the same logical path as in [2], in this section we integrate the results shown
in the main text by providing the codimension one bifurcation diagrams for several values of II in both
the weak and strong-inhibition regimes (see SubSecs. S4.1 and S4.2 respectively).

S4.1 Weak-inhibition regime

Let us first consider the weak-inhibition regime JII = −10. Due to the high symmetry of the bifurcation
diagram of the network (see Fig. 7), we focus on its upper-half part, as shown in S4 Fig. The codimension
two bifurcation points, with the addition of the relative maxima and minima of the H and the limit point
of cycles curves (identified by the labels p1, p2 and p3), provide a subdivision of the IE − II plane, which
is also detectable by white and gray backgrounds. Specifically, we find nine areas, identified by the letters
A-I, where the system exhibits qualitatively similar dynamics. Overall, the system displays temporal
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behavior which is of considerable physiological interest. In particular, we stress the presence of damped
oscillations, stable oscillations and hysteresis. Damped oscillations are involved in the thalamus, in the
olfactory bulb and in the cortex [3–6] as a reaction to impulse stimulation. Moreover, stable oscillatory
activity is an emerging property of the thalamocortical system and can be observed at the mesoscopic
scale in EEG signals [7]. Oscillations are commonly classified in the frequency bands delta (1-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-80 Hz). Slow and infra-slow oscillations (0.1-1
Hz and 0.02-0.1 Hz respectively) can also be observed, as well as fast and ultra-fast rhythms (80-200 Hz
and 200-600 Hz) [8].

It is important to observe that our model, as described by Eq. (3) in the main text, is dimensionless.
In order to match it with neurophysiological recordings, it is natural to express the membrane potentials
in mV. Moreover, since in our analysis we chose τE = τI = 1 (see Table 1), and since the membrane
time constant of biological neurons is of the order of 10 ms (see for example [9]), we conclude that
in our simulations time is expressed in centiseconds. For this reason, if numerical simulations exhibits
oscillations with dimensionless frequency fnum, the corresponding frequency in physical units is 100×fnum

Hz.
By going into the details of our analysis, below we list all the areas highlighted in S4 Fig, and we

describe their corresponding codimension one bifurcation diagrams. The collection of these diagrams is
shown in S5 Fig, where each panel describes the equilibrium points in the excitatory population as a
function of IE , while II is held constant (the equilibria of the inhibitory population have been omitted
due to the similarity with those of the excitatory population). In S4 Fig, we identify the bounds of
each area on the II -axis by the notation II (B), where B represents the bifurcation acronym; moreover,
II (LB) = −17 and II (UB) = −2 characterize the lower and upper bounds, respectively, of the inhibitory
current of the whole diagram.

[A-B] For II (CPC) < II < II (UB) (where CPC is the acronym for the cusp bifurcation of cycles),
areas A and B are characterized by non-oscillating activity (motivated by the absence of stable limit
cycles) and bistability. Nonetheless, stable equilibrium points, both foci and nodes, exist. The unstable
equilibrium points and the unstable limit cycles create basin separatrixes that determine, depending on
the initial conditions, the equilibrium to which the solutions converge. In particular, the lowest stable
portion of the equilibrium curve is characterized by a low firing rate activity, and since the eigenvalues
are complex-conjugate, these equilibria are foci. This means that for all the initial conditions belonging
to the basin of attraction of the low-activity state, damped oscillations appear. On the contrary, the
highest stable portion of the equilibrium curve corresponding to the high firing activity is characterized
by real eigenvalues and thus is constituted by nodes. Examples of temporal evolution of the membrane
potentials that converge to foci, as well as to stable nodes, are represented in S6 Fig, left. Furthermore,
bistability is present in the codimension one bifurcation diagrams of areas A-B. As we said in the main
text, in A bistability occurs in presence of hysteresis.

[C-H] Stable oscillations with different frequencies are present for all II (BT3) < II < II (CPC).
However, they are generated by different kinds of bifurcations. In more details, in area C the subcritical
H bifurcation gives rise to unstable limit cycles. Due to the vicinity to the CPC bifurcation, the limit
point of cycles curve is two-fold crossed and leads the unstable limit cycles to become stable and hereafter
unstable again. Finally, these limit cycles vanish in a homoclinic bifurcation where the frequency of the
oscillations decays to 0 Hz. Thus, in a narrow range of values of IE , three stable solutions coexist:
a damped oscillating solution and a non-oscillating solution, as in the areas A-B, together with stable
oscillations in the range of about 30-128 Hz. Furthermore, in area D, stable limit cycles originate from the
unstable ones after reaching the limit point of cycles curve. These stable limit cycles reach the maximum
oscillation frequency just after they change stability; its value is about 150 Hz. The stable limit cycles
vanish in the homoclinic bifurcation. Finally, in the remaining areas E-H, we always observe oscillatory
activity described by one or two families of stable limit cycles. In all the cases, the frequencies span from
the theoretical 0 Hz at the homoclinic bifurcation up to 170 Hz. Several examples of oscillations are
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shown in S6 Fig, right.
[I] To conclude, for II (LB) < II < II (BT3) the system presents both stable equilibrium points and

stable limit cycles. In particular, stable equilibria describe states with high firing rates for large IE . On
the contrary, states with low firing rates emerge for low IE . Moreover, for intermediate values of IE , the
unstable equilibria are surrounded by stable limit cycles. In turn, the stable limit cycles are enclosed
between two homoclinic bifurcations.

S4.2 Strong-inhibition regime

Let us now consider the strong-inhibition regimes JII = −34 and JII = −100. The codimension two
bifurcation diagrams in these cases are more complex than that of the weak-inhibition regime. For this
reason, we do not show systematically the codimension one bifurcation diagrams for each slice that can
be identified in the whole codimension two diagrams, contrarily to what we did in the weak-inhibition
regime. Nonetheless, we provide the codimension one diagrams in three different sample areas called A,
B, C highlighted in S7 Fig, and specifically for II = −4, II = −13.25 and II = −16. We underline that,
nearby the graphs of µE = µE(IE), we show also that of µI = µI(IE). This choice is motivated by the
fact that, unlike the weak-inhibition regime, now the secondary branches of equilibria exhibit qualitative
differences in excitatory and inhibitory neurons. The collection of these diagrams is shown in S8 Fig and
S9 Fig.

[A] The model exhibits non-oscillating or oscillating activity depending on the inhibitory strength.
On the one hand, for JII = −34 the model exhibits non-oscillating activity on both the primary and
the secondary branches since stable limit cycles do not exist. The primary branch is characterized by
stable foci (nodes) for low (high) values of IE . These equilibria describe low- and high-activity states,
respectively. For intermediate values of IE , the solutions of the model converge to the stable equilibria
of the secondary branches. However, bistability is present. On the other hand, for JII = −100 the H
bifurcation gives rise to stable limit cycles that represent oscillating activity with frequencies from 0 Hz
at the homoclinic bifurcation up to 89 Hz.

[B] For both JII = −34 and JII = −100, the system presents both stable equilibria (nodes and
foci) and stable limit cycles. As before, stable equilibria describe states with high firing rates for large
IE , while states with low firing rates emerge for low IE . Moreover, for intermediate values of IE , the
unstable equilibria of both the primary and secondary branches are surrounded by stable limit cycles.
In particular, for JII = −34, the high-amplitude stable oscillations produced by the H bifurcation on
the primary branch exhibit frequencies from 0 Hz at the homoclinic bifurcation up to nearly 90 Hz. On
the contrary, the low-amplitude oscillations originated from the secondary branches display frequencies
from 124 to 154 Hz. For JII = −100, the oscillations originated from the H bifurcation on the secondary
branches span from 70 to 102 Hz.

[C] This third case turns out to be similar to the previous one. However, for both the inhibition
strengths considered here, new stable limit cycles arise on the primary branch for low IE , and vanish
at the homoclinic bifurcation. In particular, for JII = −34, their frequencies lie from 0 to 142 Hz. A
similar frequency range (0-130 Hz) characterizes the limit cycles for high IE . On the contrary, we find a
narrow frequency range for the low-amplitude oscillations on the second branches (152-164 Hz). Finally,
for JII = −100, the oscillations on the primary branch exhibit frequency from 0 Hz at the homoclinic
bifurcation to 73 Hz, while those on the secondary branches show frequency in the narrow range from 73
to 89 Hz. It is important to underline that, for both the inhibitory strengths, the high-frequency limit
cycles display a torus bifurcation (gray loop in S8 Fig and S9 Fig). Close to this bifurcation the spectrum
of the oscillations contains two incommensurable frequencies, therefore the neural network undergoes a
quasiperiodic motion, as shown in S10 Fig.
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S5 How the network size and sparse connections influence the
branching points

It is interesting to investigate how the network parameters affect the BP bifurcations. Particularly
important is to study the role of the network sizeN , because this allows us to compare our finite-size model
with its mean-field approximation. In SubSec. S5.1 we show that the branching points disappear in the
thermodynamic limit N →∞, which proves that the mean-field theory provides only an approximation
of the real behavior of the network. This is a consequence of the all-to-all connectivity of the network,
therefore it is natural to wonder what is the behavior of the network when its synaptic connections are
sparse. In SubSec. S5.2 we argue that, contrary to the fully-connected case, the BP bifurcations may
occur also in large networks if the synaptic connections are sparse enough.

S5.1 Differences between our approach and the mean-field theory

In this subsection we explain intuitively why the mean-field theory does not account for the formation
of the branching points. The mean-field theory makes the assumption that within each population the
membrane potentials are independent and identically distributed. Therefore, by hypothesis, it forbids
the presence of heterogeneous solutions, like those that emerge from the BP bifurcations. Due to this
assumption, according to the mean-field theory developed by McKean, Tanaka, Sznitman, and others
[10–17], Eq. (3) in the main text can be reduced to a system of two differential equations:


dVE(t)
dt

= − 1
τE
VE (t) +REJEEE [AE (VE (t))] +RIJEIE [AI (VI (t))] + IE ,

dVI (t)
dt

= − 1
τI
VI (t) +REJIEE [AE (VE (t))] +RIJIIE [AI (VI (t))] + II ,

(S61)

where Rα = lim
N→∞

Nα
N (namely the ratio between the size of population α and that of the whole network

in the thermodynamic limit, therefore in our case RE = 0.8 and RI = 0.2), while Vα represents any
membrane potential in the population α. Moreover, E [·] denotes the average over trials at a given
time instant, and it means that the system is generally supposed to be stochastic. Stochasticity can
be introduced in different ways, for example through Brownian motions, random initial conditions, or
random synaptic weights [18]. In this work we consider a deterministic system, therefore we get simply
E [Aα (Vα (t))] = Aα (Vα (t)). In this way, the neural network is described by a system of two coupled
equations in the unknowns VE,I (t), whose Jacobian matrix is:

Jmf =

[ − 1
τE

+REJEEA ′E (µE) RIJEIA
′
I (µI)

REJIEA ′E (µE) − 1
τI

+RIJIIA
′
I (µI)

]
. (S62)

Its characteristic equation is:

amf
(
λmf

0,1

)2

+ bmfλmf
0,1 + cmf = 0,

where:
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amf =1,

bmf =
1

τE
+

1

τI
−REJEEA ′E (µE)−RIJIIA ′I (µI) ,

cmf =
1

τEτI
−
(

1

τE
RIJIIA

′
I (µI) +

1

τI
REJEEA ′E (µE)

)
+RERI (JEEJII − JIEJEI) A ′E (µE) A ′I (µI) .

From Eq. (S31) it easy to see that lim
N→∞

λR0,1 = λmf
0,1. The only difference between λR0,1 and λmf

0,1 is in

the ratios that multiply the synaptic weights (Nα−1
N−1 or Nα

N−1 for the finite-size network, and Rα in the
mean-field case). This difference, which is due to the absence of self-connections, is small for large
networks. Therefore, when compared to a finite-size network, the mean-field approximation takes into
account only the information provided by λR0,1, and neglects that of λE,I . Clearly λE is always negative,
therefore it never affects the changes of dynamics of the system. However, in a finite-size network λI can
change sign, generating a BP bifurcation. The mean-field approximation neglects this information, and
this is a consequence of the fact that lim

N→∞
λI = − 1

τI
. In other words, in the thermodynamic limit the

eigenvalue λI is always negative. For this reason, it cannot generate BP bifurcations, which is consistent
with the hypothesis of identical neurons. In mathematically more rigorous terms, we get that the center
manifold [19] of the network is not affected anymore by λI for N →∞, so that the dynamics is governed
only by λR0,1. This proves that the mean-field approximation oversimplifies the description of the network,
since it takes into account only the primary branch.

The LP and H bifurcations on the primary branch undergo only small quantitative changes in the
thermodynamic limit, since the ratios NE−1

N−1 and NI−1
N−1 in Eqs. (16) and (20) of the main text converge

quickly to 0.8 and 0.2 respectively for N → ∞. Quantitative small changes occur also in the curves of
the global bifurcations.

S5.2 Finite-size effects are stronger for sparse anatomical connections

According to the definition of ψ (see Eq. (4) in the main text), the formation of the branching points

is determined by the ratio |JII |N−1 . It is natural to argue that, more generally, in a network with sparse

connections their formation is determined by the ratio |JII |MI
, where MI is the mean number of incoming

connections per neuron of the inhibitory population. For this reason, in this subsection we extend our
analysis to the case of sparse connectivity matrices (to simplify matters, we consider a purely inhibitory
network, since inhibition is sufficient to generate BP bifurcations). For example, we can consider the
block-circulant topology BCF,G (M0, . . . ,MF−1) with circulant-band blocks introduced in [18]:
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J =JII


B(0) B(1) · · · B(F−1)

B(F−1) B(0) · · · B(F−2)

...
...

. . .
...

B(1) B(2) · · · B(0)

 ,
(S63)

B(i) =



1− δi0 1 · · · 1 0 · · · 0 1 · · · 1

1 1− δi0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 1

1
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 1− δi0 1

1 · · · 1 0 · · · 0 1 · · · 1 1− δi0



,

where B(0), ...,B(F−1) are G × G circulant matrices (so that FG = N), with bandwidth 2ξi + 1, for
i = 0, ..., F − 1. The network equipped with these synaptic connections can be interpreted as a collection
of F neural masses with G neurons each. If we define:

H (x) =

0, x ≤ 0,

1, x > 0,

then M0
def
= 2ξ0 − H

(
ξ0 −

⌊
G
2

⌋
+ (−1)

G
)

is the number of connections that every neuron in a given

mass receives from the neurons in the same mass. Furthermore,Mi
def
= 2ξi + 1−H

(
ξi −

⌊
G
2

⌋
+ (−1)

G
)

,

for i = 1, ..., F − 1, is the number of connections that every neuron in the jth mass receives from
the neurons in the (i+ j)th mod F mass, for j = 0, ..., F − 1. Therefore we conclude that MI =

F − 1 +
∑F−1
i=0

[
2ξi −H

(
ξi −

⌊
G
2

⌋
+ (−1)

G
)]

.

Now, if we suppose that the membrane potentials are homogeneous, the eigenvalues of the correspond-
ing Jacobian matrix are:
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λmG+n =


− 1
τI

+ JII
MI

[
F − 1 +

F−1∑
i=0

g (n, ξi, G)

]
A ′I (µI) , m = 0, ∀n,

− 1
τI

+ JII
MI

[
−1 +

F−1∑
i=0

e
2π
F
miιg (n, ξi, G)

]
A ′I (µI) , m 6= 0, ∀n,

(S64)

g (n, ξi, G) =



2ξi −H
(
ξi −

⌊
G
2

⌋
+ (−1)G

)
, n = 0, ∀ξi,

−1, n 6= 0, ξi =
⌊
G
2

⌋
,

sin

(
πn(2ξi+1)

G

)
sin(πnG )

− 1, n 6= 0, ξi <
⌊
G
2

⌋
,

with m = 0, ..., F − 1 and n = 0, ..., G − 1. They depend on the ratio JII
MI

, where now MI does not
necessarily diverge in the thermodynamic limit (consider for example the case when G→∞ for F fixed,
and the parameters ξi are finite and independent from G). In other terms, the eigenvalues λmG+n do not
necessarily converge to − 1

τI
for N → ∞ (compare with SubSec. S5.1). Therefore this topology exhibits

stronger finite-size effects than the fully-connected network, thus we expect that in the case of sparse
connections the BP bifurcations may occur also in large networks.

We also underline that, according to [18], if MI does not diverge for N → ∞, the neurons do not
become independent, therefore Sznitman’s mean-field theory cannot be used to simplify the description
of the network, even in the thermodynamic limit. This further underlines the importance of a formalism
that allows the study of networks composed of an arbitrary number of neurons.
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