
Appendix S1: Model description and methodology

Model description

We begin with a simple correlative model (i.e. calibrated with data provided at the same ecolog-
ical scale as predictions), characterized in a Bayesian framework to allow further integration. We
refer to this model (with associated parameters) as the metamodel, θM , and it is parameterized
with information on the species’ presence, XM , along with associated covariates (e.g., climate,
presence/absence of interacting species, etc.), collectively referred to as DM (Fig. S1). The naive
(i.e., not integrated with information from sub-models) probability that a species is present, ψN ,
is a deterministic function of the metamodel and its covariates:

ψN = f(θM , DM ) (1)

The goal of model fitting is to estimate the posterior probability distribution for the parameters
of θM , given the observations (XM ) and covariates (DM ):

p(θM | XM , DM ) (2)

Using Bayes’ theorem, we find the posterior probability of θM as follows:

p(θM | XM , DM ) =
p(XM | θM , DM )p(θM )

p(XM , DM )
(3)

where p(XM | θM , DM ) is referred to as the likelihood of the observations, p(θM ) is the prior
probability of the model, and p(XM , DM ) is the normalization constant. The normalization
constant involves computing integrals that are often impossible to solve analytically. In prac-
tice, simulation techniques such as MCMC can be used to sample directly from the posterior
distribution, making such computations unnecessary (Link & Barker, 2006). Thus, we use the
proportional form of Bayes’ Theorem:

p(θM | XM , DM ) ∝ p(XM | θM , DM )p(θM ) (4)

The role of the metamodel is to integrate data at the same ecological scale of predictions.
Additional sub-models require outputs that should be comparable to this given ecological scale
(e.g. constraining presence or absence on the landscape). Formally, we will add an additional
model, θS , that is based on a different set of hypotheses and that makes predictions (ψS) based
on an additional dataset (XS , DS):

ψS = g(θS , XS , DS) (5)

For integration to be successful, it must be possible to compute the likelihood of this predic-
tion given the metamodel, p (ψS | θM ) = p (θS | θM , XS , DS); the function g serves to transform
the parameters of the sub-model to the scale of the metamodel. Thus, we refer to g as the
scaling function. In many cases, computing this likelihood will be challenging. The simplest
case is when the parameters of θS are directly comparable to those in θM , or when the scaling is
performed directly within the sub-model, but other solutions are possible. This new likelihood,
which integrates the information from the second model into the first, can be treated as new
“data” to evaluate the parameters of θM . We simply use the posterior distribution of θM from the
previous step (Eq. 4) as the new prior probability of θM , and evaluate the posterior probability
of θM in light of the new data (i.e., information from the submodel θS) and the prior knowledge,
as before:
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Figure S1: The parameters of a correlative metamodel model (left column) are conditioned on
the predictions of a mechanistic sub-model (right column). The metamodel (θM ) operates at a
single scale and uses occurrence data (XM ) and explanatory variables (DM ) to produce a naive
(i.e., not conditioned on sub-models) prediction ψN . The mechanistic sub-model θS includes
data about the response (XS) of lower-level behaviours of the system to explanatory variables
(DS). The models are integrated by calibrating θM to data (XM , DM ) as well as the output of
the sub-model (ψS). This is possible because predictions from the sub-model (ψS) emerge at the
scale of the metamodel via a scaling function g(θS , DS). This prediction incorporates multiple
sources of information coming from several calibration datasets (i.e., XM , DM , XS , and DS) as
well as from multiple types of models (i.e., θM and θS).
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integrated posterior︷ ︸︸ ︷
p(θM | XM , DM , θS , XS , DS) ∝

likelihood︷ ︸︸ ︷
p(θS | θM , XS , DS)

prior for θM︷ ︸︸ ︷
p(XM | DM , θM )P (θM )

prior for θS︷ ︸︸ ︷
p(θS) (6)

This procedure may be applied to an arbitrary number of models, limited only by available
data and computational power. The models may be implemented simultaneously, when multiple
datasets are available and can be evaluated under different underlying models, or they may be
run sequentially, updating the posterior distribution of θM as new information becomes available.
Note that θS itself need not be implemented in a Bayesian framework and the output need not be
identical in form to the output of θM ; it is enough to produce an output that can be evaluated as
a likelihood under the first model and to have some assessment of the confidence in the parameter
estimates of θS to use as a prior.

Example 1

To produce the simulated dataset used in the first example, we first simulated 100 presence-
absence points at randomized locations in ecological space (i.e., temperature and precipitation)
using the spsample function from package sp in R (Bivand et al., 2013; R Core Team, 2014).
This function generates points with a specified amount of spatial clustering (ranging from 0
to 1, where 1 represents complete spatial independence); we selected a value of 0.2 for our
analysis. Presence or absence at each point was determined by randomly sampling from a
Bernoulli distribution, where the probability was selected using a pre-determined function of
temperature and precipitation. We then fit the naive model in JAGS as a logistic regression, with
both linear and quadratic terms for both temperature and precipitation and using uninformative
priors (Normal with µ = 0 and σ = 10000). We discarded the first 5000 MCMC samples as
burnin, and then collected an additional 2000 samples for analysis. The final sample size was
selected to provide for relatively rapid computational time; the addition of longer final samples
or extended burnin periods had no effect on the results.

For the mechanistic submodel, we computed the predicted probability of presence as a func-
tion of precipitation, using the experimental data and the theoretical prediction that the species
will be present when the population growth rate is greater than 0. For each of the five experi-
mental treatments, we computed the probability of presence as the integral of the normal density
from 0 to infinity, where the mean of the normal distribution was equal to the average population
growth rate at each precipitation treatment and the standard deviation was the corresponding
standard error for each treatment. We then fit these data to the same model, priors, and sample
sizes as those from the previous step. Fitting the metamodel is simply a matter of repeating the
exact procedure for fitting the naive model, but using informative priors generated from the naive
model step. Because the sub-model considered only precipitation, and because the response was
highly correlated to precipitation, we expected the submodel to produce highly precise estimates
of the parameters for the effect of precipitation on the probability of presence. However, the
sub-model was quite simplistic, and thus likely over-estimates its precision when considering the
species range wholistically (as is done with the metamodel). Thus, we applied a prior weight
of 0.05 to the sub-model. This allowed the sub-model to inform the integrated model without
dominating the results. For temperature-related parameters, the posterior distributions for the
naive and integrated models were indistinguishable, whereas parameters related to precipitation
were substantially revised, including large reductions in uncertainty for the integrated model
(Fig. 2).
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Figure S2: Relative posterior density of all example one parameters for the naive model, mech-
anistic sub-model, and the integrated model. Parameters related to temperature (b1 and b2)
were not informed with additional data, and showed little change from the naive model. The
intercept (b0 and parameters related to precipitation (b3, b4) were informed by integration and
showed substantial revision between the naive and integrated models. Boxplots show the median,
interquartile range, and the range.
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Figure S3: Map of permanent forest plot locations

All scripts were prepared in R and tested under R version 3.0.3. The MCMC analyses
were performed using the JAGS (Just Another Gibbs Sampler) software package, version 3.4.0
(Plummer, 2014). Additionally, the rjags, coda, and sp packages are required to complete the
analysis.

Example 2

We formulated a metamodel for the second example that allowed for the full use of three sources
of data: occurrences from forestry plots (see below) as well as coarser-scale presence-absence
information and Phenofit projections (both from Morin & Thuiller, 2009). Plot data originated
from four forest permanent plot databases and included samples widely distributed in Eastern
North America, from Florida to north Canada (Fig. S3). In the US, we included 86,000 plots
standardized since 1990 and monitored until 2013 with up to 4 remeasurements by forest plot
(O’Connell et al., 2013). Quebec data were provided from the Ministère des Forêts de la Faune
et des Parcs with 12,409 permanent plots, and DOMTAR, a forest company in paper production
with 1,741 plots, and surveyed from 1960–2011 with up to 10 remeasurements (Ministère des
Ressources Naturelles du Québec, 2013). Ontario and New-Brunswick included 1,038 and 2,748
plots respectively (Porter et al., 1999; Ontario Ministry of Natural Resources, 2014). Ontario
monitored forest plots from 1992–2006 with up to 3 remeasurement, and New-Brunswick from
1985–2010 with up to 7 remeasurements.
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We divided the dataset into calibration and validation subsets, with 1/3 of the data reserved
for validation and the remaining 2/3 used for calibration. As in the previous example, we modeled
the probability of presence as a function of climate. We considered seven climate variables: the
number of degree days (ddeg), minimum temperature (min_temp), potential evapotranspiration
(PET), annual precipitation (an_prcp), summer precipitation (sum_prcp), winter precipitation
(win_prcp), and the ratio of annual precipitation to potential evapotranspiration (pToPET).
See Morin & Thuiller (2009) for a complete description of these variables. For projection, we
used predictions for 2100 from the HadCM3 GCM (Pope et al., 2000) driven by the A2 emission
scenario (Nakićenović, 2000), and used the parameters of the models to forecast suitability into
the future. Exploratory analysis revealed that there were collinearities within the predictor
variables. Thus, we only included three variables in the model: ddeg, an_prcp, and pToPET.
To select the form of the naive model (and thus the metamodel), we used stepwise regression
with BIC as the evaluation criteria. The search scope included all models with linear, quadratic,
and cubic terms for all three variables. Thus, the naive model (which also defined the scope of
the metamodel), can be formulated as a simple Binomial GLM, as in Example 1:

ψN = logit−1 (θMDM ) (7)

where ψN is the probability of presence in the naive model, θM is the parameter vector of the
metamodel (presently unconstrained by any additional information), andDM is the macroclimate
covariate matrix at the metamodel scale. The parameter vector is estimated following equation
2 in the main text:

p (θM | XM , DM ) ∝ p (XM | θM , DM ) p (θM ) (8)

Because Phenofit provided predictions in the form of a probability of presence (rather than
directly in terms of the metamodel parameters as in the previous example), it was necessary to
relate these predictions to the metamodel. We opted to do this via simulation because it is a
natural method to use in an MCMC scheme. We thus treated the Phenofit predictions (ψP ) as
an observed result of a true underlying set of occurrences (XP ). Because these occurrences were
unobserved (and in the case of the future distribution, unobservable), it was necessary to infer
them using MCMC. For each MCMC iteration, we generated a simulated occurrence dataset X̂P

by drawing from a Binomial distribution with probabilities equal to ψP . In order to give both the
occurrence dataset and Phenofit predictions equal weight, we drew the same number of samples
as were present in the occurrence dataset. The metamodel was then fit to these simulated data
(with conditioning on the naive model as well):

integrated posterior︷ ︸︸ ︷
p(θM | XM , DM , XP , ψP ) ∝

new information
from Phenofit︷ ︸︸ ︷

p (XP | θM , DM , ψP )

naive metamodel
posterior︷ ︸︸ ︷

p (XM | θM , DM ) p (θM )

prior for
Phenofit︷ ︸︸ ︷
p (ψP ) (9)

This procedure, by generating a random dataset with each iteration, incorporated the variance
in the Phenofit predictions. Finally, because we were interested in two separate questions with
respect to Phenofit integration (one regarding how integration affects uncertainty in our present
estimate of the species distribution and a one regarding the effect of integration on projections
into the future), we performed two separate integrations with the Phenofit information. To
address the first question, we used the Phenofit predictions for the present as ψP and present
climate as DM , producing the Integrated-Present model. To address the second, we used the
future predictions from Phenofit and future climate, resulting in the Integrated-Future model.
In both cases, the naive model was a GLM relating present occurrences to present climate (and
thus the prior response to the environment was static, similarly to how one might use the same
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conventional SDM to both model present distribution and project into the future). Convergence
for all models was assessed by comparing the results of multiple chains with overdispersed starting
points. Based on the results of these initial runs, we thinned all posterior samples by recording
only every 50th sample, and we obtained 25000 posterior samples for each model following
a burn-in period of 20000 samples. Finally, we evaluated the Naive and Integrated-Present
models by computing the area under the receiver operating curve (AUC) and by computing
calibration curves using reserved data. AUC measures the ability of the model to discriminate
presences and absences, where a value of 1 indicates perfect discrimination and 0.5 is random
discrimination. Because we obtained joint posterior distributions for all models, it is not possible
to evaluate the performance of a ‘best’ model; rather, we computed AUC for every posterior
sample of both models, resulting in posterior distributions of AUC (Fig. 4). Median AUC
values were 0.802 and 0.797 for the Naive and Integrated-Present models, respectively, and
the overlap between the two distributions suggests little difference in the performance of each
model. Calibration curves suggested that the Integrated-Present model overpredicted somewhat
compared to the Naive model (Fig. 5). This is unsurprising, as the validation data were a
reserved subset of the same data used to fit the naive model, while the Integrated-Present model
included additional information. Furthermore, fitted values from Phenofit were generally greater
in the same geographic region than the Naive model (see Fig. 6, main manuscript), explaining the
overprediction of the Integrated-Present model and suggesting that values from the two models
may not be exactly numerically equivalent, despite the interpretation of both as a probability
of presence. No model evaluation was performed for the Integrated-Future model, because no
independent dataset is available for future predictions.

Implementation

Here, we provide a brief guide on implementing our framework. We focus on our two examples,
providing a brief outline of the steps to reproduce the analyses using the code and data provided
in Appendix S2. In the section for each example, we provide some references to software packages
that may be of assistance to beginning users. As a full discussion of the practicalities of Bayesian
modelling is beyond the scope of this paper, we direct the reader to some of the many excellent
resources for Bayesian and hierarchical modelling in ecology (e.g., we suggest Bolker, 2007; Royle
& Dorazio, 2009; Link & Barker, 2010). We also provide some additional information on applying
model weights. Our intent is that, with this guide and the accompanying code, users familiar
with R and with some experience with Bayesian modelling will be able to implement our method.

Example 1

Example 1 is implemented fully using off-the shelf statistical software. Data preparation, ex-
ploration, and visualization is all performed in R (R Core Team, 2014). Parameterization of all
models is performed using JAGS, which is a standalone implementation of a Metropolis-Hastings
and Gibbs sampler, as well as RJAGS, the R interface to the JAGS program (Plummer, 2014).
Within the example_1 directory in Appendix S2, we provide 6 numbered scripts. These are
designed to be run from the command line using the RScript program that ships with most
standard R installations (e.g., Rscript 1-m1.r to run the first script). However, we encourage
users to review the code rather than simply running the examples from the command line. Users
of the R console (or the RStudio environment) will be able to run the code one line at a time,
provided the working directory is set to the example_1 directory beforehand.
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Figure S4: Posterior distributions of the area under the receiver operating curve (AUC) for the
Naive and Integrated-Present models. For comparison, the y-values have been scaled by the
maximum densities. Boxplots in the upper panel show the median, interquartile range and 1.5×
the interquartile range, along with more extreme values plotted individually.
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Figure S5: Calibration curve for the Naive (left panel) and Integrated-Present (right panel)
models. The calibration curve compares the predicted probability of presence from the model
(horizontal axis) to the observed proportion of presences (left axis); values were computed by
classifying grid cells into 20 equal-width bins and performing a linear regression (weighted by
the sample size in each bin) of predicted values against observed frequencies. Axes end at 0.7
because neither model predicted probabilities of presence greater than this value. Solid lines
are posterior mean values, shaded regions are 95% credible intervals. The dashed line indicates
perfect calibration.
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There are three main steps to running the analysis, corresponding to the first three numbered
scripts. The first (file 1-m1.r) generates the simulated presence-absence dataset, loads a JAGS
model representing the metamodel (from the file ex1_metamodel.jags), and runs JAGS on the
model to produce posterior samples for the naive model. Note that, because the naive model
and the metamodel are at the same scale and differ only in whether they include additional
information from the sub-model, the JAGS model file is the same for both. All data and results
from this step are saved to the dat/ex1_m1.rdata file. Step two (2-m2.r) creates the dataset for
the sub-model, loads the JAGS model (ex1_model2.jags), and runs the model, saving all results
to dat/ex1_m2.rdata. Finally, the third step (3-mm.r) simply reads the estimates from the sub-
model, incorporates them into the information passed to JAGS for estimating the metamodel,
and runs JAGS to obtain the integrated posterior samples and save them to dat/ex1_mm.rdata.
The posterior samples are saved as MCMC objects from package coda; users should refer to the
documentation for that package for information on using these objects. The remaining three
scripts contain code for reproducing the figures contained in the main manuscript. Users may
find them useful for guidance on working with posterior samples generated with JAGS.

Example 2

For performance reasons, we have implemented Example 2 as a standalone C++ program, de-
signed to be run multi-threaded in high-performance computing applications. Due to the size
of the dataset and the increased complexity of the model (relative to Example 1), the com-
putational load is considerably higher. The procedure to compile and run the model is also
somewhat more complex. Therefore, to facilitate exploration without requiring users to actually
build and run the model, we have included the posterior samples we obtained with Appendix
S2. This will allow users to build the figures and explore the results of the naive and integrated
models. For the portions that can be run in R, as in Example 1, we have included numbered
scripts that can be run with Rscript. There are three scripts included in the example_2/r/
directory, numbered 1, 3, and 5 (steps 2 and 4 are running the C++ program to obtain sam-
ples for the naive and integrated models, respectively). Step 1 (1_prepare_naive_data.r)
prepares the dataset for the naive model to be used with the sampler, resulting in the files
dat/mcmc/naiveData.csv (for use with the C++ program) and dat/mcmc/naiveData.rds (for
use with R, can be loaded using the readRDS function). Step 2 (see following paragraph) creates
the file results/mcmc/naivePosterior.csv, which contains the posterior samples for the naive
model and which we have included for users that do not wish to build and run the C++ program
themselves. Step 3 reads the results of the naive model estimation and uses it to prepare the files
needed to estimate the integrated model. As with step 2, step 4 depends on the C++ program
and produces posterior samples for both the Integrated-Present and Integrated-Future models
(files integratedPresent.csv and integratedFuture.csv, respectively, in the results/mcmc/
directory). Finally, step 5 reads all of the CSV files containing posterior samples and processes
them into MCMC objects (saved in results/posteriors.rdata) that can be easily manipulated
in R with the coda package. We also include code for reproducing the figures contained in the
manuscript (all scripts starting with fig), and a brief interactive script for performing model
evaluation (evaluation.r)

For users wishing to build and run the C++ program to estimate the posterior distribu-
tions, some knowledge of C++ compilers will be required. A familiarity with GNU Make will
also be of assistance, because the build procedure is fully automated and documented within
the included makefile. All C++ code is contained within the src subdirectory and should
be fully compatible with any platform capable of compiling and running standard C++98
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programs. The only external dependency is the GNU Scientific Library (freely available at
http://www.gnu.org/software/gsl/), an open-source C library which we have used for random
number generation and other mathematical operations. Additionally, for high-perfomance com-
puting applications, we have included compiler commands for using OpenMP. When enabled,
this will significantly improve the speed at which the likelihood is computed, and thus reduc-
ing the runtime of the model. All compiler commands, as well as the commands used to run
the model and generate posterior samples, are included in the makefile. Additionally, once
the program is compiled, help with program options can be obtained using the -h switch (i.e.,
integrated_model -h at the command line).

Model weights

Model weights, expressed mathematically as the prior probability of each individual sub-model,
allow the user to express prior belief that a particular sub-model is effective at describing the
range of a species. This is particularly useful, as in Example 1, when a sub-model is highly
statistically precise but, due to limited scope, is not effective alone at describing the range of
a species. The hypothetical experiment in Example 1 included only 5 treatments in a single
variable, and thus misses many important processes that generate species ranges. Selecting the
specific weighting to use will, of necessity, be somewhat subjective, as it is often difficult to
express prior belief of this sort in precise mathematical terms. As a start, users may consider
weighting models based on sample size or number of independent treatments, as we have done in
example 1, where the weight for the sub-model of 0.05 was chosen based on the 5 precipitation
levels relative to 100 independent data points in the correlative dataset. Implementation of the
weights within the model code itself will depend on the implementation. In the case of Example
1, the weight was applied by decreasing the precision of all terms that were informed by the
submodel (i.e., making the prior that resulted from the sub-model less informative).
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