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1. INTRODUCTION

This supplementary material accompanies the main paper and contains the following content.

Section 2 derives an analytic form for the ecological bias that arises under the naive model

(4), while Section 3 describes two of the state-of-the-art models proposed in the literature to

account for spatial autocorrelation. Section 4 gives examples of the spatial data generated

in the simulation study. Finally, Section 5 presents an additional simulation study assessing

the sensitivity of Model-Local to the choice of the number of intercept terms G.

2. DERIVATION OF ECOLOGICAL BIAS

From the main paper the naive ecological and aggregate models have the following risk

specifications:

aSchool of Mathematics and Statistics, University of Glasgow, Glasgow, UK
bUK Met Office, Exeter, UK.
∗Correspondence to: Duncan Lee, School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK. E-mail:

Duncan.Lee@glasgow.ac.uk

This paper has been submitted for consideration for publication in Environmetrics



Environmetrics D. Lee and C. Sarran

Ecological Rk = exp(xT

kβ̃ + φ̃k) exp(µ̂kα̃),

Agregate Rk = exp(xT

kβ + φk)

qk∑
i=1

E∗
ki exp(wkiα).

Assuming that E∗
ki = 1/qk for all grid squares i in areal unit k, the pollution component of

the aggregate risk model simplifies to (1/qk)
∑qk

i=1 exp(wkiα). This is the sample equivalent of

E[exp(Wkα)], the moment generating function of the random variable Wk that characterises

the distribution of average pollution levels spatially within areal unit k. If you further assume

that Wk ∼ N(µk, σ
2
k), then the moment generating function is given by exp(µkα + 0.5α2σ2

k).

This means that the correct risk model has pollution component exp(µ̂kα + 0.5α2σ̂2
k) (with

the sample mean and variance replacing the unknown theoretical values) rather than

exp(µ̂kα̃) from the naive ecological model. If the mean and variance (µ̂k, σ̂
2
k) are independent

then no bias occurs, but this is not the case if the variance depends on the mean. For example,

if the variance of Wk increases with the mean in a linear fashion, as is approximately the

case with the data presented in Section 2 of the main paper, then σ̂2
k = a+ bµ̂k where b > 0.

Then comparing the multipliers of µ̂k in the ecological and aggregate models shows that

α̃ = α + 0.5bα2. Thus as the effect size α is small for air pollution and health studies, the

bias should be small due to the α2 in the bias term 0.5bα2.

3. MODELS FOR SPATIAL AUTOCORRELATION

Here we describe the models proposed by Hughes and Haran (2013) and Lee and Mitchell

(2013) for modelling spatial autocorrelation in ecological regression studies, as they are

compared to the model proposed in this paper in the simulation study in the main paper.
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3.1. Model by Hughes and Haran (2013)

The orthogonal smoothing model of Hughes and Haran (2013) replaces the random effects

φ in (1) in the main paper with a linear combination of basis functions that are orthogonal

to the covariates. Denote the matrix of covariates in model (1) in the main paper for all n

observations as X̃ = (µ̂,X), where µ̂ is the vector of estimated pollution concentrations for

all n areal units described in (4) in the main paper. The residual projection matrix from a

normal linear model based on this extended covariate matrix is given by

P = In − X̃(X̃TX̃)−1X̃T.

The basis functions included in the disease model come from the set of eigenvectors of

the matrix product PWP, where W is the binary neighbourhood matrix determining the

spatial adjacency structure of the areal units. Thus this matrix product combines spatial

information via W with covariate orthogonality via P. Hughes and Haran (2013) show that

the eigenvectors of PWP correspond to all possible mutually distinct patterns of spatial

clustering orthogonal to the covariates, and that the eigenvectors corresponding to the

positive eigenvalues relate to positive spatial autocorrelation. Additionally, the magnitude

of the jth eigenvalue λj also determines the relative importance of the spatial pattern

in the jth eigenvector, so Hughes and Haran (2013) suggest choosing the first q << n

eigenvectors corresponding to positive and decreasing eigenvalues. Denote this n× q matrix

of eigenvectors by M, where mT

k = (mk1, . . . ,mkq) is the kth row. Here q is a tuning parameter

in the model, with large values leading to less dimension reduction. The model proposed by

Hughes and Haran (2013) is given by
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Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n, (1)

Rk = exp(xT

kβ + µ̂kα + mT
kδ),

δ ∼ N(0, τ 2Q(W)−1
s ).

Here δ has a Gaussian prior with a precision matrix given by Q(W)s = MTQ(W)M,

where Q(W) = diag(W1)−W is the precision matrix for the intrinsic CAR prior.

3.2. Model by Lee and Mitchell (2013)

The model proposed by Lee and Mitchell (2013) has the general form

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n, (2)

Rk = exp(xT

kβ + µ̂kα + φk),

φk|φ−k, τ
2, ρ,W ∼ N

(
ρ
∑n

i=1wkiφi

ρ
∑n

k=1wki + 1− ρ
,

τ 2

ρ
∑n

k=1wki + 1− ρ

)
,

τ 2 ∼ Inverse-gamma(a = 0.001, b = 0.001),

ρ ∼ Uniform(0, 1),

which is fitted using Integrated Nested Laplace Approximations (INLA, Rue et al (2009))

rather than McMC simulation. The model is iteratively re-fitted using different but fixed

neighbourhood matrices W, until a convergence criterion is met. If wkj ∈W is estimated as

one then (φk, φj) are smoothed towards each other in the modelling process (see equation

(3) in the main paper), otherwise wkj = 0 and the two random effects are conditionally

independent and are not smoothed towards each other. Thus allowing the elements of W to
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be estimated allows for localised spatial smoothing. The algorithm for jointly estimating the

model parameters Θ = (β, α,φ, τ 2, ρ) and the neighbourhood matrix W is as follows.
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Algorithm

1: Estimate a starting posterior distribution for model (2) using INLA,

which is denoted by f(Θ(0)|Y,W(0)). For this initial model we

assume the random effects are independent, which is achieved by

restricting model (2) by fixing ρ = 0.

2: Iterate the following two steps for i = 1, 2, . . . , i∗, until one of the two

termination conditions for the neighbourhood matrix W, outlined

in step 3, are met.

a: Estimate W(i) deterministically from the current posterior

distribution f(Θ(i−1)|Y,W(i−1)). Set w
(i)
kj = 1 if the marginal

95% posterior credible intervals for (φ
(i−1)
k , φ

(i−1)
j ) overlap and

areas (k, j) share a common border. Otherwise, set w
(i)
kj = 0.

b: Estimate the posterior distribution f(Θ(i)|Y,W(i)) of model (2)

using INLA.

3: After i∗ iterations one of the following two termination conditions will

apply.

Case 1 - The sequence of W estimates is such that W(i∗) =

W(i∗+1), which is the estimated neighbourhood matrix Ŵ.

Case 2 - The sequence of W estimates forms a cycle of k dif-

ferent states (W(i∗),W(i∗+1), . . . ,W(i∗+k−1),W(i∗+k)), where

W(i∗) = W(i∗+k). In this case the estimated neighbourhood

matrix Ŵ is the value from the cycle of k states that has the

minimal level of residual spatial autocorrelation, as measured

by the absolute value of Moran’s I statistic, a measure of

spatial autocorrelation.
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When one of the termination conditions has been met Ŵ is the estimated spatial structure

of the random effects, and Θ is summarised by the posterior distribution f(Θ|Y,Ŵ).

4. SIMULATION STUDY- DATA GENERATION

Simulated disease count data Yk are generated for the n = 323 local and unitary authorities

comprising mainland England, using the following model:

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n, (3)

Rk = exp(wkα + φk),

w = (w1, . . . , wn) ∼ N(µ1,Σ1),

φ = (φ1, . . . , φn) ∼ N(m,Σ2).

The expected counts Ek are generated from a uniform distribution on the range [70, 130],

giving a moderate disease prevalence in terms of the existing literature. The risk of disease

in area k, Rk is modelled on the log scale by two components. The first is a vector of air

pollution concentrations denoted by w, which are generated from a multivariate Gaussian

distribution with mean µ = 20 and a variance matrix Σ1 specified by the Matérn family of

autocorrelation functions. For the latter the smoothness parameter equals 1.5, the range

parameter equals 60 and the standard deviation parameter is 4.5. The corresponding

regression parameter is α = 0.024, which is similar to the estimated effect sizes presented

in Section 5 of the main paper. The second component in the risk generation model is the

residual (confounding) spatial autocorrelation φ, which is generated from a multivariate

Gaussian distribution with mean m and variance Σ2, the latter again being specified by

the Matérn family of autocorrelation functions. The spatial range (controlling the minimum
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distance at which pairs of areas are uncorrelated) for Σ2 is varied in the simulation study

between 0, 20 and 60, to investigate its impact on model performance. In all cases the

spatial autocorrelation between a pair of areas depends on the distance between their

centroids (central points).

The mean function m for φ is either chosen to be the constant vector of zeros, or a vector

containing three distinct values, {−1, 0, 1}. Specifying a constant vector of zeros results in

globally smooth residual spatial autocorrelation (used in scenarios A-C), while setting it

equal to the vector with distinct values, {−1, 0, 1} results in localised spatial autocorrelation

(used in scenarios D-F). For the latter, if two neighbouring areas have the same mean

value then their residuals are similar (corresponding to spatial smoothness), while if they

have different mean values then their residuals are not similar (corresponding to no spatial

smoothness).

The template for this localised smoothness is presented in panels D to F of Figure 1

where in each case the three distinct mean levels are evident. This figure displays example

realisations from the residual spatial structures φ generated under scenarios A to F, which

differ in both the presence (A-C) or absence (D-F) of localised smoothness, and the type of

global smoothness assumed. For the latter A and D correspond to independence in space, B

and E are globally spatially smooth with a smaller range parameter (less smooth) than the

pollution covariate, while C and F are globally spatially smooth with the same range as the

pollution covariate.

[Figure 1 about here.]
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5. SIMULATION STUDY - SENSITIVITY TO G

In this section we present an additional simulation study, that assesses the sensitivity

of Model-Local to the choice of the number of intercept terms G. The study design is

identical to that used in the first simulation study in the main paper, and full details are

given in Section 4 of the main paper and Section 4 of this supplementary material. We

consider values of G = 3, 4, 5, 7 in this study, where in scenarios A to C the true value that

generated the data is G = 1 (globally smooth residual spatial autocorrelation) while for

scenarios D to F the true value is G = 3. We thus compare G = 5 used in the main paper

against alternative odd values of G ranging between 3 and 7, with odd values being chosen

because it allows the prior to shrink the group indicators Z = (Z1, . . . , Zn) towards a single

group G∗. To assess the performance of the model when G is even, and hence when the

prior shrinks Z equally towards two groups, we also consider G = 4 here.

The results of this study are presented in Table 1 in this supplementary material, which

has the same format as Table 2 in the main paper. The table shows little sensitivity to the

choice of G across the range of 12 scenarios used in this study. All values of G result in

negligible bias, with percentage biases being less than 1.1% in all cases. The RMSE values

are also very similar across the different values of G, with little systematic differences for any

of the scenarios. The only slight differences are observed in scenarios D-F with SDφ=0.1,

where the RMSE is slightly lower for the true value of G = 3 compared with the other values.

Finally, the coverages are also very similar across the different values of G, with the only

notable differences being for scenarios D-F with SDφ=0.1, where the coverages show small

decreases as G increases away from its true value of 3.

[Table 1 about here.]
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Figure 1. Maps displaying example residual spatial autocorrelation structures generated in the simulated data for scenarios A to F in

the first simulation study in the main paper.
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TABLES

Table 1. Results of a sensitivity analysis for Model-Local to different values of G. The
top panel displays the bias (as a % of the true value) for the pollution-health relationship,
the middle panel displays the root mean square error (as a % of the true value), while the
bottom panel displays the coverage probabilities (as a %) of the 95% uncertainty intervals.

Scenario SDφ
Value of G

G = 3 G = 4 G = 5 G = 7

Bias

A 0.1 -0.21 -0.12 -0.34 -0.34
0.01 0.06 0.05 0.07 0.06

B 0.1 -0.79 -0.80 -0.80 -0.79

0.01 -0.19 -0.20 -0.18 -0.19
C 0.1 -0.86 0.92 0.95 0.91

0.01 0.10 0.10 0.10 0.09

D 0.1 -0.30 0.23 -0.11 -0.40
0.01 -0.21 -0.14 -0.11 -0.28

E 0.1 0.39 1.09 0.81 0.30

0.01 0.30 0.33 0.31 0.28
F 0.1 0.38 0.72 0.93 0.77

0.01 -0.01 0.03 -0.04 -0.09

RMSE

A 0.1 6.41 6.37 6.45 6.45
0.01 4.46 4.46 4.46 4.45

B 0.1 15.43 15.51 15.28 15.48

0.01 5.00 4.99 4.91 5.00
C 0.1 19.22 19.90 18.91 19.17

0.01 5.17 5.17 4.74 5.17

D 0.1 7.34 8.00 7.60 7.86
0.01 5.27 5.53 4.84 5.36

E 0.1 16.45 17.50 16.88 16.96

0.01 4.64 4.71 4.70 4.68
F 0.1 21.55 22.35 22.64 23.37

0.01 4.62 4.61 4.64 5.13

Coverage

A 0.1 95.4 95.4 94.8 96.0
0.01 97.8 97.6 96.2 97.6

B 0.1 84.4 81.6 85.6 83.8

0.01 95.4 94.8 95.6 95.4
C 0.1 73.6 70.0 77.0 73.2

0.01 95.0 94.4 96.2 94.8

D 0.1 95.4 92.8 94.4 91.0
0.01 95.8 94.4 94.6 95.2

E 0.1 79.6 77.6 76.2 74.0
0.01 94.6 95.0 94.0 95.0

F 0.1 67.2 63.6 63.2 58.8

0.01 95.8 95.6 95.6 95.6
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