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 Supplemental Experimental Procedures  1 

Temperature manipulations using the Peltier device.  2 

A pair of silver cooling pads made from silver wire (A-M systems, Part #787550, O.D. 381 μm) was 3 

attached to one side of Peltier device (CustomThermoelectric, Part #01101-9G30-20CN) and the other 4 

side was attached to the custom-made 3D printed water-cooled heat sink made of silver (i.materialize Inc) 5 

by using thermo-conductive epoxy (CustomThermoelectric, Part #TE-ASTA-7G). The heat sink was 6 

attached to a pair of silicon tubes (A-M systems, Part #8061) to perfuse water through the water channel 7 

in the heat sink (~450 μl/min). The cooling pads were shaped to fit the lateral-medial distance of HVC 8 

(4.8 mm) or Uva (2.4 mm, targeting the medial edge of Uva to avoid damage). For Uva cooling, 9 

polyimide tubing (MicroLumen, Inc. #315-I.5, O.D. 873 μm) was also attached to the probes as an 10 

insulator to enhance the heat delivery. In a subset of experiments, an extended heat sink was placed on the 11 

lower leaflet of the skull to limit temperature changes in HVC caused by the cooling probe implanted in 12 

Uva. Birds were anesthetized with 1.5–2% isoflurane in oxygen and placed in a stereotaxic apparatus. The 13 

position of HVC was stereotaxically determined (0.0 mm anterior, 2.4 mm lateral from the bifurcation of 14 

Y-sinus). The position of Uva was determined with reference to the auditory thalamic nucleus Ovoidalis 15 

(Ov; 2.8 mm anterior, 1.0 mm lateral from Y-sinus, 4.5 – 5.0 mm deep), which was identified by its 16 

robust auditory responses. Uva was located at 1.5-1.7 mm posterior, 0.5 mm lateral of Ov. The outer layer 17 

of skull over the target region was largely removed and the inner layer of skull was removed to create an 18 

opening slightly larger than the size of the cooling pads. For HVC cooling, the cooling pads were placed 19 

over the dura. For Uva cooling, a column of brain tissue 4.0 mm deep was removed by aspiration and the 20 

probes were inserted near the medial-dorsal side of Uva (300 – 800 μm, Figure S4). The surface of the 21 

brain was covered with Kwik-Kast (WPI, Inc), and the extended legs of the heat sink were cemented to 22 

the skull. The temperature of the target region was measured by a thermocouple (Omega, Part #5SRTC-23 

TT-K-40-36) at the end of the experiment while the birds were anesthetized under Isoflurane (1.0% in 24 

Oxygen). For Uva cooling, retrograde tracer (Molecular Probes, Dextran Alexa Fluor 488, 10,000 MW) 25 

was injected in HVC either before or after the experiments to histologically identify Uva. The temperature 26 

change ΔT is defined as the relative difference from the physiologically normal brain temperature (~40 27 

Celsius), which was maintained by running the Peltier device in the slightly warming direction to offset 28 

the cooling effect of placing the probe on the surface of the brain (Figure S1F, H). Song timing effects 29 

were measured as the relative changes from this “normal” temperature condition.  30 

Intracellular recordings in singing birds.  31 



The intracellular microdrive (original design by M. Fee (Long et al., 2010)) was built with a 3D printed 32 

plastic base and chassis (Agile Manufacturing, Inc, Ontario, Canada). A miniaturized headstage (by I. 33 

Yoon, equivalent to HS-2A headstage with gain x0.1, Axon Instruments) was mounted on the back of the 34 

base to amplify signals and receive command current from the intracellular recording amplifier 35 

(AxoClamp-2B, Axon Instruments) through a flexible tether cable (Omnetics, MN, USA). A linear 36 

actuator (Part # 0206A001B+02/1 47:1-Y2825, Micromo, FL, USA) controlled the position of the depth 37 

of the sharp microelectode. The microdrive was surgically implanted over the right HVC using 38 

stereotaxic coordinates (2.4 mm lateral, 0 mm anterior from Y-sinus). HVCRA neurons were identified by 39 

antidromic stimulation with a bipolar stimulating electrode (a pair of 75 μm diameter silver wires, ~500 40 

μm apart, A-M systems, WA, USA) implanted in RA. HVCX neurons were identified by their 41 

spontaneous, DC-evoked, and singing-related activity. In total, we recorded from n = 24 identified 42 

HVCRA neurons and n = 82 HVCX neurons. Recordings were attempted for approximately 7-21 days per 43 

bird and recording microelectrodes were replaced maximally three times a day. Signals were recorded 44 

with in-house software written by KH in MATLAB (Mathworks).  45 

Synaptic event analysis in singing birds. To detect depolarizing synaptic events during singing, an 46 

algorithm detecting large deviations of dV/dt was used (Ankri et al., 1994)(see example traces in Figure 47 

S7A, B). To align synaptic event data to the song, we identified the most typical syllable sequence using a 48 

semi-automatic algorithm run by a support vector machine as described below (see Syllable and gap 49 

duration analysis). The mean onset timings of identified syllables were defined as the standard timing 50 

markers. Detected synaptic events during a specific syllable sequence were aligned to each sound onset 51 

and linearly displaced relative to the standard timing markers. Then, synaptic event rates for a given cell 52 

were calculated as across trial-averages of synaptic events smoothed by a Gaussian filter (3ms SD). The 53 

time stretch was usually within 0 – 20 ms range. The signal correlation between cells was calculated as 54 

the correlation coefficient of the trial-averaged synaptic event rate within the typical syllable sequence. 55 

Surrogate data were generated by randomly shuffling the position of dPSP timings. This procedure was 56 

repeated to yield 10,000 pairs of shuffled data, and the p-value was calculated from the distribution of 57 

correlation coefficients generated from the shuffled data. The power spectrum of dPSPs of each cell was 58 

calculated by the multi-taper spectrogram of detrended, trial averaged dPSP rate (DPSS bandwidth 59 

parameter 4, number of tapers = 3).  60 

Brain slices. After induction of inhalation anesthesia (isoflurene), the bird was decapitated, and the brain 61 

was removed rapidly and placed in oxygenated ice-cold artificial CSF (ACSF). The ACSF consisted of 62 

(in mM) 119 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 1 NaH2PO4, 26.2 NaHCO3, and 11 glucose, 63 

equilibrated with 95%O2/5%CO2. Equiosmolar sucrose and CaCl2 were respectively substituted for NaCl 64 



and MgCl2 during the tissue preparation stage. Sagittal brain slices that included HVC were cut at 300 μm 65 

thickness and transferred to a holding chamber (37 oC) for 30 mins and maintained in room temperature 66 

until use.  67 

Excitatory post-synaptic current (EPSC) and Calcium current recordings. For EPSP onsets and ICa 68 

rise time recordings, we made targeted patch-clamp recordings using MultiClamp 700B (Molecular 69 

devices) and pClamp software. Recordings were performed in 20 µM BMI with Cs-based intracellular 70 

solution (130 Cs-methanesulfonate, 10 HEPES, 0.2 EGTA, 4 ATP-Mg, 0.3 GTP-Na3, 10 71 

phosphocreatine-Na2, 8 TEA-Cl, 5 QX-314-Br, and 0.05 Alexa 594 hydrazide (pH 7.3, adjusted with 72 

CsOH; 295 mOsm), in mM). Electrodes were made with borosilicate glass pipettes (Patch, O.D. 1.5 mm, 73 

I.D. 0.86 mm, Sutter Instruments) pulled to 5-8M ohm when filled with Cs-based internal solution. For 74 

EPSC recordings, a bipolar stimulating electrode was placed in the fiber tract caudal to HVC to evoke 75 

EPSCs in HVCRA neurons.  Latency to EPSC onsets was detected as the time of peak of smoothed dI/dt 76 

(box filter was applied with a window of 5 data points [0.25 ms]) from the stimulus onset. Calcium 77 

currents were activated by depolarizing HVCRA neurons to -30 mV for 500 ms from the resting membrane 78 

potential of -90 mV to fully activate calcium channels.  Rise time was detected as the time of the peak of 79 

the calcium current from the current onset, determined by the peak of smoothed dI/dt (box filter was 80 

applied with a window of 5 data points [0.25 ms]).  Calculation of Q10 was based on 2 data points with 81 

min and max temperature (32-38 or 30-38 oC).  The direction of temperature changes was 82 

counterbalanced to exclude the effects of rundown of calcium currents.  Cells that exhibited substantial 83 

rundown during recording or resting current of < -100 pA with the holding potential of -70 mV were 84 

excluded from the analysis. 85 

HVC paired recordings. The details of the paired recordings from HVC slices were fully described in 86 

(Mooney and Prather, 2005). Briefly, for the measurement of local synaptic latency, we made sharp 87 

intracellular recordings using AxoClamp2B amplifier (Molecular devices) and a custom data acquisition 88 

program (Labview, National Instruments). Electrodes were made with borosilicate glass pipettes (O.D. 89 

1.0 mm, I.D. 0.5mm, Sutter Instruments, Novato, CA) pulled to form 80-120M ohm resistance when 90 

filled with 2M potassium acetate. In paired recordings, one or two action potentials were elicited in turn 91 

from each neuron in the pair by passing brief (~10 ms) depolarizing current pulses (0.5 to 1 nA) through 92 

the recording electrode while monitoring the other cell for evoked PSPs. The bath temperature was 93 

changed (range from 23 oC to 37 oC, average ΔT = 5.9) to measure the temperature sensitivity of the 94 

synaptic latencies. A subset of data was also obtained from the targeted patch-clamp recording method 95 

described above, using Potassium-based internal solution (124 K-gluconate, 4 NaCl, 10 HEPES, 2 EGTA, 96 

2 MgCl2, 2 ATP-Mg, 0.3 GTP-Na3, 10 phosphocreatine-Na2, and 0.05 Alexa 594 hydrazide (pH 7.3, 97 



adjusted with KOH; 295 mOsm), in mM). The action potential onset was defined as threshold crossing 98 

event of the membrane potential (~20mV from baseline). The max dV/dt was used to detect synaptic 99 

onset. Two data points were used to estimate Q10.  100 

Table S1: Stability of Q10 values  101 
One potential concern is the extent to which the propagation of neural activity and song timing are well 102 

characterized by Q10 values, which is a necessary precondition to compare Q10 values computed for brain 103 

and behavior.  Specifically, we note that using Q10 (L1/L2 = Q10
(T2-T1)/10) values to characterize 104 

temperature effects implicitly assumes that the ratio of time constant changes only depends on the 105 

temperature difference ΔT = T2-T1 and not on the on absolute temperature T2 and T1.  To confirm the 106 

independence of Q10 values within the range of temperatures studied here, we calculated Q10 values from 107 

maximal temperature differences (ΔT<-6 oC; from ~40 oC to less than ~34 oC) and intermediate 108 

temperature differences (-6 oC <=ΔT < -3 oC; from ~40 oC to more than 34 oC). These calculations 109 

confirmed that Q10 values measured for song timing did not differ between the intermediate and 110 

maximum temperature ranges (Table S1). Similar calculations confirmed that the Q10 values of both 111 

synaptic and action potential latencies measured for activity propagation times within HVC (data in 112 

Figure 2) and across the recurrent network (data in Figure 3) did not differ between the intermediate and 113 

maximum temperature ranges.  These analyses confirmed that temperature effects on song timing and the 114 

propagation of neural activity within the finch’s brain are well characterized by Q10 values.  115 

 116 
 Syllable and 

gap Q10 
(n=23) 

Local latencies; 
synaptic Q10 

(Orthodromically evoked AP 
Q10) 

 

Network latency 
(synaptic + AP) 

Q10 

Q10 estimated from  
ΔT < -6 oC 
(used in the main text). 

1.27 ± 0.03 
2.5 ± 0.3 

(2.01 ±  0.22) 
1.25 ± 0.15 

↑ 
p-value 

↓ 

 
P=0.23 

P=0.3 
(P=0.08) 

P = 0.95 

Q10 estimated  
from middle range  
-6<= ΔT <-3 

1.21 ± 0.03 
2.1 ± 0.3 

(3.7 ± 0.9) 
1.26 ± 0.07 

Table S1 (related to Figure 2) | Q10 values do not depend on temperature ranges. mean ± SEM. 117 
118 



Simulation Methods 119 
To understand the fundamental differences in synaptic activity patterns generated by local and distributed 120 

synfire chains, we constructed computational models of two types of chain networks that relied on 121 

minimal assumptions. Following experimental observations (Hahnloser et al., 2002; Long et al., 2010), 122 

we set the following constraints to the models:  i) ~50% of HVCRA neurons generate action potentials 123 

during singing; ii) synaptic activity is non-zero outside of action potential timings; iii) the onset timing of 124 

synaptic inputs and the timings of action potentials are precise between motifs (or runs of simulations). 125 

We simulated network activity in each model and measured the timing of synaptic activity patterns in 126 

randomly selected pairs of neurons.  These simulated recordings revealed that pairs of neurons in the local 127 

chain model exhibit no correlated synaptic activity whereas neurons in the distributed chain model display 128 

significant correlations in their synaptic activity. 129 

 130 

Local chain model 131 

We consider a local chain model consisting of 100 timing nodes embedded in a randomly connected 132 

network (Figure S6A). Under the assumption that a synchronized action potential activity takes ~5 ms to 133 

travel from one node to the next in the chain, this network will generate ~500 ms of sequential activity, 134 

which roughly corresponds to the duration of a zebra finch song motif. A set of excitatory neurons are 135 

randomly selected with a probability F to represent one timing node, and connected to the other randomly 136 

selected excitatory neurons representing the next timing. The connection from j-th neuron in l-1 th node 137 

to i-th neuron in l-th node,  is defined by the Hebbian learning rule; 138 

 , 139 

where  is the silent/activated state of i-th neuron in the l-th node. The vector 140 

 is called a memory pattern of l-th layer. The feedforward network 141 

embedded with sparse memory patterns have stable states in which synchronized action potentials 142 

propagate over multiple layers (Ishibashi et al., 2006). Because previous experiments reported that a small 143 

subset of HVCRA neurons could fire multiple times during a single motif in zebra finches (Hahnloser et 144 

al., 2002; Long et al., 2010), the neuron once selected is not excluded from a later selection process, with 145 

the consequence that one neuron could be involved in more than one timing representation in the motif. 146 

Following experimental observations that nearly half of HVCRA are active during song (Hahnloser et al., 147 

2002), we set F = 1-(0.5)1/P  ~ 0.0069 in the local chain model.  148 

We define the critical synaptic strength  such that the membrane potential reaches the action potential 149 

threshold under the condition that the activity pattern of the presynaptic layer completely overlaps with 150 

the memory pattern (the inner product of the memory pattern and activity vector is 1; 151 



 where is the population activity vector of l-th 152 

layer). Synaptic connection strength  is set to 10 % larger than . 153 

Recurrent local interactions were modeled by adding a population of 1000 inhibitory HVCI neurons 154 

which make the ratio of the number of inhibitory to excitatory neurons 1:4. The number of presynaptic 155 

excitatory (HVCRA) neurons for one postsynaptic neuron is  and the number of presynaptic 156 

inhibitory neurons (HVCI) for one neuron is  where  is the ratio of the number of inhibitory to 157 

excitatory neurons ( ). Here, we set  which gives a random connection 158 

probability of 0.01 (except for Figure S6I).  The synaptic strength is set to  for excitatory synapses and 159 

-g  for inhibitory synapses.  The parameter  represents the ratio of inhibitory to excitatory 160 

synapse strength. When the firing rates of excitatory and inhibitory neurons are the same, 161 

 gives the exact balance of inputs from random-recurrent connections. We set the network state 162 

g = 5 (i.e., slightly inhibitory dominant) to prevent unstable oscillatory states (Brunel, 2000). The other 163 

HVC projection neuron type (i.e., the HVCX cell) is not necessary for singing (Scharff et al., 2000), 164 

therefore we did not explicitly model HVCX cell activity here. 165 

 166 

Distributed chain model 167 

We consider a distributed chain model that consists of four groups of neurons representing four song 168 

production nuclei: HVC, RA, the brainstem vocal respiratory group (VRG), and Uva, a major afferent to 169 

HVC that links the VRG to HVC and that is critical to singing (Figure S6E).  Each group consists of 1600 170 

excitatory neurons and 400 inhibitory neurons.  For each group, a set of excitatory neurons is randomly 171 

selected with a probability F to represent one timing node.  The neurons in a node are assigned as the 172 

activated neurons and make long-range connections to the activated neurons in the next timing node in the 173 

next group following the Hebbian learning rule. Similar to the local chain model, selected neurons are not 174 

excluded from the later selection process. Neurons in the fourth group (i.e., Uva) make long-range 175 

connections to neurons in the first group (HVC) to form the circular chain structure.  This process is 176 

repeated P times to generate a longer chain structure embedded in the distributed network. We set P = 25 177 

so that activity propagates in total through 100 nodes in the distributed chain model (25 cycles in total). 178 

This 100-layer distributed network generates ~500 ms of sequential activity, which roughly corresponds 179 

to the duration of a zebra finch song motif with the assumption that a synchronized action potential volley 180 

takes ~5 ms to travel from one node to the next.  Therefore, the connection from j-th neuron in l-1 th node 181 

to i-th neuron in l-th node, , is defined as follows; 182 



  183 

where  is the k-th silent/active state of i-th neuron in l-th node. The vector 184 

 is called k-th memory pattern of l-th layer. 185 

Following experimental observations that nearly half of HVCRA are active at least once during song 186 

(Hahnloser et al., 2002), we set  which will result in 187 

action potential activity in ~50% of the HVCRA neurons over a ~500 ms period. This indicates that less 188 

than 3 % of neurons are active at one time in one group, but within a single run of activity, approximately 189 

50 % of neurons will be activated. Synaptic connection strength is set to 10 % larger than . Random 190 

local connections are generated exactly in the same manner as we described in the local chain model. 191 

Note that the focus of this modeling effort is to understand whether differences in the connectivity of 192 

HVC neurons play an important role in defining the correlation level of synaptic input patterns, regardless 193 

of the implementation of the dynamics of the RA and VRG groups. The only assumption we make here is 194 

that the RA and VRG groups can rapidly convey changes in the HVC group’s firing rate back to HVC 195 

during singing. Therefore, the implementation of local network structure in each group is statistically 196 

similar in the distributed chain model. 197 

 198 

Neuron model 199 

To understand the relationship between the synaptic input distribution and network activity patterns 200 

without involving the details of the implementation of action potential generation, we used the leaky 201 

integrate-and-fire neuron model to implement the membrane dynamics of the HVCRA and HVCI neurons 202 

using the same model parameters. The membrane potential dynamics of a neuron are described as: 203 

 204 

 205 

where  is the membrane potential of the i-th neuron,  is the leak potential, and is the input 206 

current of i-th neuron. ,  are the membrane and current time constant, respectively.  is 207 

the delta-function, and  is the k-th action potential timings of j-th neuron,  is the delay between the 208 

timing of presynaptic action potential to the postsynaptic synaptic onset. When the membrane potential 209 

exceeds the threshold voltage  ( ), a neuron emits an action potential and the 210 

membrane potential is set to the reset potential  and remains insensitive to the input current 211 

during the refractory time period . The parameters of the model and networks are summarized at 212 



the end of this section. We did not incorporate bursting properties in individual HVCRA neurons to reduce 213 

the complexity of the model. This should not affect synaptic activity patterns because the membrane 214 

potential time constant (~20ms) is slow relative to the firing rate within the burst (>200Hz); this slow 215 

time constant will filter out higher frequency components of the synaptic activity driven by high 216 

frequency action potential bursts.   217 

 218 

Behaviors of local and distributed chain models 219 

The architecture of the network plays an important role in shaping synaptic correlations. In local chain 220 

models, the action potential activity traveling through the local chain model is temporally uniform. The 221 

resultant synaptic activity patterns transmitted by these random local connections are also temporally 222 

random and uncorrelated between neurons. In contrast, in the distributed chain model, synaptic inputs are 223 

transiently generated in many neurons once in every four propagation steps, while the rest of the time 224 

synaptic input would remain relatively silent.  The temporal organization of active and silent phases of 225 

synaptic activity, which contrasts with the uniform synaptic activity of the local chain model, could 226 

generate detectable correlations between neurons within HVC. We confirmed these predictions using 227 

simulations of the local and distributed chain models.  228 

 229 

Simulations of neural activity in local and distributed chain models 230 

First, the simulation of a local chain model (Figure 6F, Figure S6A) displayed sequential action potential 231 

activity that propagated through 100 groups in a stable manner.  To quantify the similarity of activated 232 

patterns to the embedded patterns, we calculated the overlap parameters. The overlap parameters are 233 

defined as the inner product of the population activity vector and each memorized pattern. An overlap 234 

parameter is 0 when the activated pattern is orthogonal to the memory pattern and 1 when all the neurons 235 

in the memory pattern are activated. The overlap parameters showed sequential activation patterns and 236 

approached a value of 1 (Figure S6B,C), suggesting that the embedded patterns are activated in the 237 

learned order.  Then, we randomly sampled the membrane potential activity of 20 excitatory neurons 238 

(Figure 6G). Examples of membrane potential traces from 2 runs of simulations are shown (Figure S6D). 239 

The baseline synaptic activity was non-zero and within a cell was stereotyped between runs, as we 240 

observed in the intracellular recordings experiments made in the HVC of singing finches. However, no 241 

significant correlation was detected in synaptic onset timings between pairs of neurons, as revealed by the 242 

correlation coefficient analysis (Figure 6I, Top, gray circles). Still, it is possible that weak synaptic 243 

correlations could be detected by measuring the population average. Therefore, we calculated the 244 

population averaged synaptic activity from half of the neurons in the group but this average activity 245 

diverged from that calculated using the other half of the neurons in the population (Figure 6I, Bottom, 246 



gray circles).  These results suggest that synaptic input timings in different neurons are not correlated in a 247 

local chain model. 248 

 249 

Second, we simulated the distributed chain model (Figure 6A, Figure S6E), in which sequential action 250 

potential activity propagates through the four groups repeatedly (i.e., 25 cycles).  To clearly visualize the 251 

sequential action potential activity patterns, we calculated overlaps parameters of the first (i.e., the HVC) 252 

group. The overlap parameters showed stable transitions of action potential activity from the first to the 253 

last memorized patterns (Figure S6F,G), indicating that divergent connections embedded in the system 254 

did not prevent stable transitions. However, when one of the overlap parameters is activated, some of 255 

other overlap parameters are also active which is evident from the small baseline fluctuations of other 256 

overlap parameters (Figure S6F,G). Next, we randomly sampled 20 excitatory neurons activity from the 257 

HVC group (Figure 6C).  Although the action potential activity in different cells formed a sequential 258 

pattern, underlying synaptic activity appeared to be both more frequent and correlated between cells. 259 

Examples of membrane potential traces from 2 runs of simulations are shown in Figure S6H. Neurons in 260 

the distributed chain model have frequent incidents of correlated synaptic onsets (highlighted by dashed 261 

lines, Figure S6H). In fact, the correlations in the synaptic onset timings between pairs of neurons were 262 

significant (Figure S6I, Top, red circles).  Furthermore, the population averaged synaptic activity from 263 

half of neurons in the group had clear similarities to that calculated from the other half (Figure S6I, 264 

Bottom, red circles). 265 

 266 

Both our local and distributed models also captured the observation made with extracellular and 267 

intracellular recordings in singing birds that a small fraction of HVCRA neurons can be active more than 268 

once in the motif (see Figure 2b, neuron #2, of Hahnloser et al., 2002; Supplementary Figure 2, Bird#15 269 

of Long et al., 2010). The percentage of neurons active more than once in our simulations is ~13% (see 270 

following section for an accounting of this percentage); the actual percentage of HVCRA neurons that are 271 

of this less sparsely active type is unknown.  To summarize, our simulation results indicate that neurons 272 

within a single group in the distributed chain model exhibit significantly correlated synaptic inputs, 273 

whereas neurons in the conventional local chain model do not exhibit correlations in their synaptic 274 

activity patterns (Fig. 6I). Furthermore, this prediction is highly robust in the face of variations in network 275 

structure within the range of parameters where sequential activity propagates in a stable manner (Figure 276 

S6I). For example, we can change the balance of random local interaction and feedforward interaction. 277 

The parameter  defines the number of presynaptic excitatory neurons. The number of Inhibitory 278 

neurons is defined as , therefore excitatory-inhibitory balance is maintained. One reasonable 279 

expectation of a local chain model is that neurons should display higher synaptic correlation levels if the 280 



number of local connections (  is changed. However, we found that changing did not change 281 

the correlation level of local chain models (Figure S6I) until the network attained a new stable state where 282 

neurons maintain random action potential activity through local random connections (Figure S6J,K). The 283 

transition from sequential to random activity states can induce correlations in the system (Figure S6I), but 284 

such a network no longer has HVC-like stable sparse sequential action potential activity.   285 

 286 

Synaptic Correlation Analysis in Simulations 287 

Synaptic correlation is calculated as the correlation coefficient of trial-averaged synaptic event rates 288 

between pairs of neurons. The trial-averaged synaptic event rates were obtained by averaging 5 runs of 289 

simulations.  Ten randomly selected pairs of excitatory neurons from the local chain model or from the 290 

HVC group in the distributed chain were used for this analysis. We repeated this procedure in 5 different 291 

realizations of network architecture, which were generated from different seeds of pseudo-random 292 

variables to calculate the synaptic correlations. The similarity of the population averaged synaptic event 293 

rate was calculated as the correlation coefficient of population averaged synaptic activity obtained from 294 

two groups neurons, each containing 10 neurons. Data were generated in the same way as described 295 

above, using 5 runs of simulations repeated with 5 different network realizations. 296 

 297 

Overlap Analysis 298 

Overlaps between the action potential activity and k-th memorized patterns are defined as: 299 

, 300 

where  if neuron i generates an action potential at time t, otherwise set to zero. We 301 

smoothed  with 1ms SD Gaussian window to account for the jitter in action potential timings 302 

in each trial. The lower and upper bound of the overlap parameter is zero (no overlap with the memory 303 

pattern k) and 1 (complete overlap with the memory pattern k). 304 

 305 

Linearity Index 306 

Whether memorized patterns are sequentially activated in the correct order was quantified by calculating 307 

a linearity index, which was defined as:  308 

 309 

For example, if the memory pattern is embedded in the order of [1,2,3,4,5], then an activation pattern 310 

[1,2,4,5] has Lin = 2/3.  This index is 1 when only the correct transitions are observed and 0 when no 311 



correct transitions are observed.  Activation of a pattern is detected as the threshold exceeding events of 312 

overlap parameters. Here, the threshold is set to 0.3.  313 

 314 

Expected ratio of active cells 315 

We consider the problem of selecting cells with a probability F for multiple times (N) with replacement. 316 

This means a cell can be selected more than once. The probability of a cell k-times selected among N-317 

times selection process is described as the binomial distribution, 318 

P(N,k) = NCk F
k (1-F)(N-k), 319 

where NCk = N! / ((N-k)! k!). 320 

From the experimental constraint that nearly half of cells do not fire action potential during singing, we 321 

can calculate F  = 1-(0.5)1/N.  322 

For the local chain model, we have N=100 layers of propagation steps, therefore F = 0.0069. 323 

Next, the probability that a cell fires once is 324 

P(N,1)= N * F * (1-F)N-1 = 0.3478. 325 

The remaining is the probability that a cell fires more than once, which is 0.1522. For a circular chain 326 

model, N = 25, then F = 0.0273 and the probability of a cell fire more than once is 0.1486. For a finite 327 

size simulation, there is a small fluctuation from this value (in our simulation, both models are ~0.13). 328 

329 



Summary of the network and neuron model parameters. 330 
 331 

Network parameters   In 

equation 

Unit Local 

chain 

Distribute

d chain 

Connection strength (excitatory) (1)   1.1 1.1 

Number of local excitatory presynaptic 

neurons (2) 

  40 40 

Ratio of number of Inh/Exc neurons   1/4 1/4 

Number of local inhibitory presynaptic 

neurons 

  10 10 

Ratio of the strength of Inh/Exc synapse   5 5 

Connection strength (inhibitory)   -4.4 -4.4 

Number of regions   1 4 

Number of excitatory neurons in one 

region  

  4000 1000 

Number of memorized patterns in HVC   100 25 

Memory pattern firing rate     0.0069 0.0273 

1)  is defined as the critical strength of synaptic efficacy that drives the membrane potential reach to 332 

the action potential threshold when a complete memory pattern is activated in the presynaptic 333 

neurons.  334 

2)  is varied in Figure S6 to test the robustness of the model. 335 

 336 

Single neuron parameters  Unit Value 

Membrane time constant   ms 20 

Synaptic exponential decay time 

constant 

 ms 2 

Leak potential  mV -60 

Threshold potential  mV -50 

Reset potential  mV -60 

Refractoriness  ms 2 

Synaptic delay  ms 4 

 337 
  338 



3. Supplemental Figures  339 
 340 

 341 
Figure S1 (related to Figure 1)| Custom made Peltier cooling devices for surface and deep cooling. 342 
A,B, Peltier cooling devices for HVC surface cooling (A) and Uva cooling (B). C,D, Schematic diagram 343 
showing the methods to measure temperature in HVC (C) and near Uva (D). E,F, Typical brain 344 
temperature for a given current (E). Even without applying current, we observed that placing a metal plate 345 
coupled to a heat sink significantly cools the brain by ~ 2 °C, as also reported in (Long and Fee, 2008).  346 
Therefore, we compensated for this cooling offset by slightly warming the brain. The change of brain 347 
temperature was measured relative to this compensated (warmed) temperature (F). Temperature was 348 
measured at least 30 sec after the current setting was changed.  G,H, Similar measurements made ~5 mm 349 
deep in the brain close to Uva. Compared to the HVC surface cooling probe, the Uva cooling probe has 350 
less cooling capacity at the tip because of the larger surface area along the probe’s length. 351 



 352 
Figure S2 (related to Figure 2) | A, Schematic diagram of the experimental setup to measure local 353 
HVCRA - HVCRA interactions in brain slices. B, An example of an EPSC evoked in an HVCRA cell by 354 
antidromic stimulation of HVCRA axons. (red: 38 °C, blue: 32 °C). Scale bar: 5 ms, 50 pA. C, Bath 355 
temperature significantly affects synaptic transmission between HVCRA neurons (n = 10 cells, Synaptic 356 
onset latencies Q10 = 1.91 ± 0.19). D, Schematic diagram of the experimental setup to measure voltage 357 
dependent Ca currents HVCRA cells in brain slices. E, An example of the Ca current evoked in an HVCRA 358 
cell (red: 38°C, blue: 32 °C). Command voltage is from -90 mV to -30 mV; recordings were performed 359 
with cesium and QX-314 in the pipette to block potassium and sodium currents. Scale bar: 5 ms, 200 pA. 360 
F, Bath temperature significantly affects the rise time of ICa in HVCRA cells (n = 9 cells, Q10 = 2.51 ± 361 
0.51). G, Schematic diagram of paired sharp/patch recordings in HVC slices to measure the latencies of 362 
synaptic transmission within HVC. H, An example of EPSP recorded in HVCInt evoked by an action 363 
potential in an HVCRA cell. I, Bath temperature significantly affects synaptic transmission between 364 
different HVC PN types and interneurons (n = 10 pairs, Q10 = 2.67 ± 0.31). Mean  ±  SE.  365 



 366 
Figure S3 (related to Figure 3) | Dilation of activity propagation is largely attributable to 367 
temperature effects on synaptic transmission, as changes in axonal conduction times were 368 
negligible. A-C, Schematic diagrams of the experimental setup to compare the effect of (A) bilateral, (B) 369 
ipsilateral, (C) contralateral HVC temperature manipulations. D, Temperature manipulation of HVC on 370 
the stimulating side (contra) had no significant effect on the synaptic onset and action potential timings (n 371 
= 7, Q10  = 1.01 ± 0.03; no significant difference from Q10 = 1; P=0.82).  The lack of an effect of 372 
contralateral cooling on activity propagation suggests that focal cooling of HVC exerts negligible effects 373 
on axonal conduction velocity near the cooled site.  In contrast, temperature manipulation on the side of 374 
the intracellular recording exerted effects on activity propagation through the recurrent network similar to 375 
the effects of bilateral HVC cooling (Ipsi; n = 4, Q10  = 1.23 ± 0.09; no significant difference from 376 
bilateral cooling effect, n = 18, Q10 = 1.21 ± 0.04, P=0.85). This result suggests that the delayed synaptic 377 
response observed in bilateral HVC cooling is largely attributable to effects on synaptic transmission local 378 
to the recorded cell.  379 



 380 
 381 

Figure S4 (related to Figure 4) | Locations of cooling probes used in deep brain temperature 382 
manipulations. A,B, Reconstructed positions of the cooling probes in four birds used for deep brain 383 
cooling experiments (Fig. 3). Cooling probes were targeted to the dorsomedial side of Uva. (A) Sagittal 384 
section. (B) Coronal section. .  C, Modified Peltier cooling device with extended heat sink. D, Schematic 385 
showing the positions of the cooling probe and the extended heat sink. E, an example of HVC 386 
temperature during Uva cooling with and without extended heat sink. F, Relationships between the 387 
temperature near Uva and HVC. G, Decay of temperature changes measured at various depths when the 388 
surface of HVC is cooled (black circles) or when thalamic regions near Uva are cooled (blue circles).  389 



 390 
Figure S5 (related to Figure 5) | Uva cooling does not affect resting membrane potentials of HVC 391 
neurons. A, Schematic diagrams of the experiments. After measuring the song dilation effect of Uva 392 
cooling, a subset of birds of which HVC temperature were well clamped were used for sharp intracellular 393 
recordings from HVC neurons under isoflurane anesthesia. B, C, example traces of membrane potential 394 
dynamics of HVCRA (B) and HVCx (C). D, Uva cooling did not change the resting potential of HVC PNs 395 
(n = 3 HVCRA, n = 3 HVCX, n = 2 HVCint,, P < 0.39).   396 
  397 



 398 
Figure S6 (related to Figure 6) | (Simulation Result) Overlap parameters and membrane potential 399 
dynamics in two models.  A, Schematic of local chain models. B, Overlap parameters represent the 400 
similarity between the action potential activity and each memorized pattern. The sequential activation 401 
pattern of overlap parameters indicates that the embedded patterns are activated in the correct order. C, 402 
When one of the overlap parameter is activated, the activity of some of other overlap parameters is 403 
slightly elevated (small fluctuations near the baseline) due to the divergent connections. This indicates 404 
that a small number of cells are activated outside of the correct timing; however, these numbers are not 405 
large enough to disturb the correct flow of the activation pattern. D, Examples of membrane potential 406 
traces from two runs of simulations in the local model. E, Schematic of distributed chain models. F,G, 407 



Overlap parameter plots of HVC neurons in distributed chain models. H, Examples of membrane 408 
potential traces from two runs of simulations in the distributed model. I, Synaptic correlation from pairs 409 
(Top) and populations (Bottom) of neurons with various numbers of local recurrent excitatory 410 
connections, CE. Each dot is calculated from 5 runs of simulations in the same network with different 411 
initial conditions in membrane potential values. Within the chain network regime (CE < 320), the 412 
distributed but not the local chain models generate correlated synaptic activity. J, As the number of local 413 
interactions CE increases, sequential activity is no longer maintained (orange shaded region), and the 414 
network dynamics approaches the random activity regime in which random action potential activity is 415 
maintained by local random connections. K, An example of network activity (left) and membrane 416 
potential dynamics (right) near the boundary of synfire chain and random activity regimes (CE = 320, 417 
Local chain model).  418 
  419 



 420 
Figure S7 (Related to Figure 8)| dPSP detection algorithm can detect most large depolarizing 421 
synaptic events. The synaptic onset timings of HVCRA and HVCX neurons are not significantly 422 
biased from time lag zero. A, Examples of HVCRA cells membrane potential dynamics during singing 423 
(grey lines) and median filtered traces (5ms window, black lines). Circles: detected dPSP onsets.  B, An 424 
example of dV/dt trace measured from the bottom trace in (A). The detection threshold is 1xSTD of dV/dt 425 
trace. C, Normalized cross correlation of synaptic onset timing between HVCRA - HVCX (black) and 426 
HVCRA – Shelf  (red) neuron pairs. The peaks of cross correlation values of all the pairs are plotted. 427 
Population averaged synaptic correlation is plotted with SEM (hatched region). D, The distribution of the 428 
peak timings for HVCRA - HVCX pairs and HVCRA - Shelf  pairs. 429 
  430 
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