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Figure S1.  Imaging analysis workflow and identification of spatially tuned cells (related to Fig. 1).  (a) 
Longitudinal tracking of cells in the same FOV across imaging sessions.  The time-averaged images from a deep 
FOV in the RF dataset is shown for three imaging sessions separated by 90 min.  Regions of interest (ROIs) were 
drawn manually for one session in ImageJ over CA1 PC somata.  These polygons were then imported into SIMA 
(Kaifosh et al., 2014) and assigned unique labels.  Using the ROI Buddy software, an affine registration was 
calculated between the time-averaged imaged images, and the resulting transformation was applied to the manually 
drawn ROIs, aligning them with the target imaging session.  Minor adjustments were made to the alignments post-
hoc.  (b) Identification of place cells based on both spatial information and tuning specificity.  A representative 
fluorescence trace from a spatially-tuned CA1 PC is shown with detected Ca2+ transients (p < 0.05) in red.  The 
mouse’s position on the treadmill is plotted below.  For each cell we calculated the tuning specificity and spatial 
information (see Methods).  We then shuffled the running-related transients in time (restricted to running intervals) 
and recomputed the tuning specificity and spatial information.  This procedure was performed 100,000 times, and 
the resulting shuffle distributions for both metrics are shown at right.  The true tuning specificity and spatial 
information are indicated by the dashed lines.  The p-values for this cell were highly significant (p < 0.001) relative 
to both distributions, and therefore this cell was classified as a place cell according to both definitions.  This 
procedure was performed for each cell in every recording in order to identify the place cell populations.  (c) The 
same FOV as in (a) is shown on the left, and the corresponding superficial FOV is shown on the right.  Identified 
place cells are overlaid and are colored according to the centroid of their place field (for cells with multiple fields, 
the field with the highest in-field transient rate was used to calculate the centroid).  The ΔF/F traces for each of the 
identified place cells (as assessed by spatial information) are shown below colored by centroid. 
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Figure S2.  Transient statistics and spatial coding metrics of deep and superficial CA1 PCs (related to Fig. 1).  
(a - c) Within-session averages of paired deep and superficial recordings (either during RF or GOL) are indicated by 
small closed dots.  Mouse averages are indicated by the large colored dots.  Means across animals are shown in the 
inset bar plots as mean +/- s.e.m.  (a) Transient statistics.  (i) The transient frequency, defined as the total number of 
transients per unit time, was significantly higher for deep than superficial CA1 PCs (n = 14 mice, p < 0.001, paired 
T-Test).  (ii) The mean transient amplitude was significantly larger in deep than in superficial CA1 PCs (n = 14 mice, 
p < 0.001, paired T-Test), as was (iii) the mean transient duration (n = 14 mice, p < 0.001, paired T-Test).  (b) 
Spatial coding metrics.  (i) The place field sensitivity (defined as the fraction of complete forward passes through the 
place field associated with a significant Ca2+ transient) was significantly higher in deep than in superficial (n = 14 
mice, p = 0.001, paired T-Test), but the (ii) place cell specificity (defined as the fraction of running-related transients 
occurring within the place field), was significantly higher in superficial than in deep (n = 14 mice, p < 0.001, paired 
T-Test).  Deep fields were slightly larger than superficial (n = 14 mice, p < 0.05, paired T-Test).  (c) The mean 
number of place fields was similar between the sublayers (n = 14 mice, p = 0.15).  (d) The lifetime place coding 
percentage was defined as the fraction of cells that had ever been identified as a place cell after the !th recording.  
For all levels of !, the lifetime place coding percentage was higher in deep than superficial, and consequently the 
deep population converged faster to 100%.  A two-way ANOVA was performed for fraction as a function of days 
and sublayer (n = 168 mice X days).  There was a significant effect of layer (F = 76.0, p < 0.001) and days (F = 39.7, 
p < 0.001) but not of the interaction (F = 0.70, p  = 0.12). 
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Figure S3.  Behavior in the random foraging (RF) and goal-oriented learning (GOL) tasks (related to Figs. 1-
6).  (a-c) Error bars indicate mean +/- s.e.m. across animals (a) Licking and running across sessions of RF 
experiments.  The total number of laps run in the RF experiments was not significantly different across sessions (n  
= 24 mice X sessions, F(session) = 1.84, p = 0.19, Type II ANOVA), nor was the total number of licks (n = 24 mice 
X sessions, F(session) = 1.31, p = 0.27, Type II ANOVA).  (b) Licking and running across days of the GOL 
experiment.  The total number of laps run per session of the GOL experiment was not significantly different across 
days (n  = 16 mice X days, F(day) = 0.28, p = 0.76, Type II ANOVA), nor was the total number of licks (n = 16 
mice X days, F(day) = 0.82, p = 0.46, Type II ANOVA).  (c) Licking and running across sessions of the GOL 
experiment aggregated across days.  The total number of laps run per session was not significantly different across 
sessions within each day (n  = 18 mice X sessions, F(session) = 0.05, p = 0.95, Type II ANOVA), nor was the total 
number of licks (n = 18 mice X sessions, F(session) = 0.31, p = 0.74, Type II ANOVA).   
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Figure S4.  Assessment of cue-associated firing (related to Fig. 2).  (a) Images of the two belts (A and B) used in 
the RF experiments.  The order of the fabrics was the same for the two belts, but the six cues (1: silver glitter 
masking tape; 2: green pom poms; 3: velcrow; 4: glue gun spikes; 5: pink foam strips; 6: jewels) were affixed in a 
different order.  (b) In order to look for evidence of cells anchoring their place fields to specific cues in the A-B 
condition of the RF experiments, we first identified cue-associated cells on belt A (defined as having a tuning vector 
within 10 cm of the center of the cue).  For the population of cells associated with each cue, we then calculated the 
distance from their tuning vectors on belt B to the associated cue.  The distribution for each cue is shown in a unique 
color.  A population of cells strongly anchoring to the cue should be indicated by an increased fraction of cells at 
small distances.  (c) The true fraction of cells falling within 10 cm of the cue on belt B is quantified for each cue.  
For none of the cues was the fraction of associated cells higher than would be expected by chance (10%, dashed 
line), and there was no difference detected across cues (F(cue) = 0.01, p = 0.99, 1-way ANOVA).  Error bars 
indicate mean +/- s.e.m. across animals. 
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Figure S5.  Long-term remapping dynamics of deep and superficial CA1 PCs during random foraging 
(related to Fig. 2).  (a) Experimental schematic.  Five animals ran in a single context for seven consecutive days 
(one 12-minute session per day) for randomly administered water rewards (three per lap).  The context was novel on 
the first day of the experiment.  (b) The population vector correlation (calculated across all cells) is plotted as a 
function of elapsed days and aggregated by mouse.  Superficial maps were more stable than deep (n = 60 mice X 
layer X days, F(layer) = 5.87, p < 0.05, Type II ANOVA).  The shuffle distribution is shown by the dashed line and 
was obtained by randomly pairing cell identities.  The effect of days elapsed was also significant (F(days) = 60.1, p 
< 0.001), but the interaction was not (F(layer X days) = 1.47, p = 0.23).  Error bars indicate mean +/- s.e.m. (c) The 
tuning curve correlation is plotted as a function of elapsed days and aggregated by mouse.  Superficial CA1 PC 
place maps were more stable than deep over days-long timescales (n = 60 mice X layer X days, F(layer) = 4.12, p < 
0.05, Type II ANOVA).  The shuffle distribution is shown by the dashed line and was obtained by randomly pairing 
cell identities.  The effect of time was also highly significant (F(days) = 32.4, p < 0.001), but the interaction between 
layer and elapsed days was not significant (F(layer X days) = 1.24, p = 0.27).  Error bars indicate mean +/- s.e.m. 
across animals. 
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Figure S6.  Regression analysis of performance vs. goal-zone representation (related to Fig. 6).  (a-c) 
Performance on the goal-oriented learning task (!, the fraction of licks in the reward zone) was modeled as a linear 
combination of !!, !!, and ! (the day of the experiment).  (a) Partial regression plots illustrate the strength of the 
linear relationship between the covariates and performance.  (b) Component-component-plus-regression (CCPR) 
plots show the change in performance attributable to each covariate after accounting for the effects of the remaining 
two variables.  (c) Summary of the regression analysis results.  The simple linear regression model is shown above.  
Parameters were estimated through ordinary least squares.  There was a significant relationship between !! and ! 
and between ! and !, but not between !! and !.  Omnibus and Jarque-Bera tests indicate that the residuals are 
normally distributed.  The Durbin-Watson test indicates the absence autocorrelation in the residuals.  The condition 
number (Cond No.) indicates that multicolinearity is not a significant issue in the model (Greene, 2003). 

  



Movie S1.  Two-photon z-stack of the CA1 pyramidal layer (related to Fig. 1).  A two-photon z-stack was 
obtained with 2 µm spacing between planes in vivo.  250 volumes were acquired sequentially.  The data was motion-
corrected in SIMA (2D HMM) and averaged across time to obtain a high-resolution structural volume.  The movie 
was created and edited in ImageJ and iMovie. 

Movie S2.  Functional imaging of deep and superficial CA1 PCs (related to Fig. 1).  This movie shows a near-
simultaneous recording of GCaMP6f activity in deep and superficial sublayers during a GOL experiment.  Motion 
artifacts were removed as described (2D HMM).  See Methods for details of in vivo two-photon imaging strategy.  
The movie was created and edited in ImageJ and iMovie. 

Table S1.  Summary of statistical tests performed (related to all figures).  For all statistical tests performed in 
the manuscript we have included the full test parameters and results.  



Supplemental Experimental Procedures 
 
Mice and viruses: 
All experiments were conducted in accordance with the US National Institutes of Health guidelines and with the 
approval of the Columbia University Institutional Animal Care and Use Committee.  Experiments were performed 
with adult male and female wild-type mice on a C57/Bl6 background (Jackson Laboratory).  Animals were kept in a 
vivarium on a 12 hr light/dark cycle and were housed with 3-5 littermates per cage. 

Recombinant adeno-associated virus (rAAV) expressing GCaMP6f under the CaMKII promoter, rAAV1/2(CaMKII-
GCaMP6f), was used for broad expression of GCaMP6f in the CA1 str. pyramidale.   

Viral injection and hippocampal window/headpost implant: 

Viral delivery to hippocampal area CA1 was performed via stereotactic viral injection with a Nanoject syringe, as 
previously described (Kaifosh et al., 2013; Lovett-Barron et al., 2014).  60 nL (6 x 10nL pulses) of rAAV stocks 
were injected at each of three dorsoventral locations (-2.3 mm AP, -1.5 mm ML, -0.9, -1.05, -1.2 mm DV relative to 
cortical surface). 

Mice were surgically implanted with an imaging window (diameter: 3.0-mm; height: 1.5-mm) over the left dorso-
intermediate hippocampus and with a stainless-steel headpost for head fixation during imaging.  Imaging cannulas 
were constructed by adhering (Narland optical adhesive) a 3-mm glass coverslip (64-0720, Warner) to a cylindrical 
steel cannula.  We used the same headpost as in previous publications, and the surgical procedure was performed as 
described previously (Kaifosh et al., 2013; Lovett-Barron et al., 2014).  Briefly, following induction of anesthesia 
(Isoflurane: 3% induction, 1.5-2.0% maintenance; 1.0 L/min O2) and administration of analgesia (buprenorphine 
0.05-0.1mg/kg), the scalp was removed, and a 3 mm diameter craniotomy was performed with a fine-tipped dental 
drill (V00033, Henry-Schein).  The dura was removed, and the underlying cortex was aspirated (B30-50, B27-50, 
SAI) until the medial-lateral fibers of the external capsule were clearly visible. The cannula was gently fit into the 
craniotomy until the glass was in contact with the capsular fibers.  The headpost was affixed to the skull using dental 
cement (675572, Dentsply).  Mice were active within 15 minutes of surgery, and analgesia was continued for three 
days post-operatively. 

In vivo two-photon imaging: 

All imaging was conducted using a two-photon 8 kHz resonant scanner (Bruker).  A piezoelectric crystal was 
coupled to the objective (Nikon 40X NIR water-immersion, 0.8 NA, 3.5 mm working distance), allowing for rapid 
displacement of the imaging plane in the z-dimension.  In order to align the CA1 pyramidal layer with the imaging 
plane, we adjusted the angle of the mouse’s head using two goniometers (±10° range, Edmund Optics).  For 
excitation we used a 920nm laser (50-100 mW, Coherent).  Red (tdTomato) and green (GCaMP6f) channels were 
separated by an emission cube set (green, HQ525/70m-2p; red, HQ607/45m-2p; 575dcxr, Chroma Technology), and 
fluorescence signals were collected with photomultiplier tubes (green GCaMP fluorescence, GaAsP PMT, 
Hamamatsu Model 7422P-40; red tdTomato fluorescence, multi-alkali PMT, Hamamatsu R3896).  A custom dual 
stage preamp (1.4 x 105 dB, Bruker) was used to amplify signals prior to digitization.  All experiments were 
performed at 2x digital zoom, covering 150 µm x 150 µm in each imaging plane.  For paired recordings of deep and 
superficial CA1 PCs, images were 512 x 512 pixels per plane, and we allowed the piezo to settle for 40 ms after 
switching planes to maintain the flatness of the planes (jump-settle-acquire-jump-settle-acquire…), resulting in a 
frame rate of 7 Hz.  Deep and superficial planes were separated by 25 µm.  The superficial imaging plane was 
defined as the first complete layer of CA1 PC somata above the stratum pyramidale/radiatum border (typically 10 - 
15µm from the border), and the deep imaging plane was 25µm above (Supplemental Movie 1). 

Behavioral training 

Random foraging (RF): Mice were water-restricted (>90% pre-deprivation weight) and trained to run on a cue-
deplete burlap treadmill belt for water rewards over the course of 1-2 weeks.  We applied a progressively restrictive 
water reward schedule, with mice initially receiving 40 randomly placed rewards per lap and ultimately receiving 3 
randomly placed rewards per lap.  Mice were trained for 20 minutes daily until they regularly ran at least one lap per 
minute.  Mice were habituated to the optical instrumentation (presence of objective, laser, shutter sounds) prior to 
imaging experiments. 



Goal-oriented learning (GOL): Mice were water-restricted (>90% pre-deprivation weight) and trained to run and 
lick simultaneously for water rewards on a cue-deplete burlap treadmill belt over the course of 1-2 weeks.  Mice 
were first trained to obtain water operantly through the water port (water delivered ad libitum in response to tongue 
contact with a capacitance-sensing cannula).  Once mice reliably licked for rewards,!they were required to advance 
the treadmill for reward eligibility (e.g. 5 steps of forward progress resulted in 5 sec of reward availability).  Reward 
zones were randomized each lap.  Similarly to the RF training protocol, we implemented a progressive training 
schedule in which the number of reward zones per lap, as well as the spatial extent and time-limit on each zone, was 
gradually decreased until mice ran for a single randomly place 10 cm reward zone per lap with a 3 sec time limit.  
Because the reward zone shifted from lap-to-lap, this protocol trained mice to run and lick simultaneously as they 
searched for rewards.  Mice were habituated to the optical instrumentation prior to imaging experiments. 

Contexts: 

Similar to our previous work, each context (A and B) consisted of the same treadmill belt (3 joined fabric ribbons), 
but distinct in their visual, auditory, tactile, and olfactory stimuli (Fig 2b, Danielson et al., 2016; Lovett-Barron et al., 
2014).  To allow for comparison of deep and superficial CA1 PC activity between similar contexts, the belts were 
made of the same three fabrics in the same order, but the locations of all of the six tactile cues (1: silver glitter 
masking tape; 2: green pom poms; 3: velcrow; 4: glue gun spikes; 5: pink foam strips; 6: jewels) were shuffled 
between the two belts. 

Stimulus presentation and behavioral readout: 

Visual, auditory, and olfactory stimuli were presented and behavioral data were recorded as described previously 
(Danielson et al., 2016; Kaifosh et al., 2013; Lovett-Barron et al., 2014).  In order to reliably track the position of the 
treadmill belt, we defined registration anchors at known positions along the belts and interpolated between them 
using a quadrature encoded movement signal tied to the rotation of the treadmill wheels.  Registration anchors were 
marked by radio-frequency identification (RFID) buttons (16mm, 125kHz, SparkFun Electronics) at evenly spaced 
positions along the belt, and were read off as they passed over a fixed RFID reader (ID-12LA, SparkFun).  The 
rotational quadrature signal was produced by marking treadmill wheels with offset tick marks, and this signal was 
encoded by a pair of photodiodes (SEN-0024, SparkFun) aligned to the wheels (< 0.5cm resolution). 

Ca2+ data processing: 

Motion correction: All imaging data were analyzed using the SIMA software package (Kaifosh et al., 2014).  
Motion correction was performed using a modified 2D Hidden Markov Model (Dombeck et al., 2007; Kaifosh et al., 
2013), in which the model was re-initialized each plane in order to account for the 40ms settling time of the piezo 
(see Methods: In vivo two-photon imaging), resulting in discontinuous displacements across planes.  This modified 
algorithm has been made freely available in version 1.3 of the SIMA package.  In cases where motion artifacts were 
not adequately corrected, the affected data was discarded from further analysis. 

Segmentation of CA1 PC somata:  For each field-of-view, segmentation was performed manually in ImageJ 
(http://imagej.nih.gov/ij/) by conservatively outlining putative CA1 PC somata in each plane of the time-averaged 
images of motion-corrected movies.  This was performed for one imaging session of each FOV, and the resulting 
polygons were imported into SIMA and assigned unique labels.  Using the SIMA project’s ROI Buddy graphical 
user interface (Kaifosh et al., 2014), an affine registration was calculated between the time-averaged images of the 
segmented session with each unsegmented session, and the resulting transformation was applied to the manually 
drawn ROIs, aligning them with the target imaging session (Fig S1a).  Minor adjustments were made to the 
alignment post-hoc in ROI Buddy. 

Signal extraction:  Dynamic GCaMP6f fluorescence signals were extracted from ROIs using SIMA according to the 
previously described formulation. We computed the relative fluorescence changes (ΔF/F) as described (Jia et al., 
2011), with uniform smoothing window t1 = 3 sec. and baseline size t2 = 60 sec.  We detected statistically significant 
Ca2+ transients as described previously (Danielson et al., 2016; Dombeck et al., 2007; Lovett-Barron et al., 2014).  
In order to improve our sensitivity, we then recalculated the baseline of the raw signal after masking frames 
identified previously as occurring during a significant transient.  ΔF/F was then recalculated, and transients re-
estimated.  Transients less than one second were removed to reduce false positives.  This iterative procedure was 
repeated three times and effectively removed the transient contamination from the calculated baseline. 



Identification of spatially-tuned cells: 

In order to identify spatially-tuned cells (Fig S1b), we implemented two approaches: one based on tuning specificity 
and one based on spatial information.  We restricted our analysis to running epochs, defined as consecutive frames 
of forward locomotion (imaging frames in which at least one forward pair of beam breaks occurred) at least 1 sec in 
duration and with a minimum peak speed of 5 cm/sec.  Consecutive epochs separated by < 0.5 seconds were merged.  
Running-related transients were defined as those that were initiated during a running-related epoch.  Transient start 
was defined as the first imaging frame with mean fluorescence >= 2!, with ! equal to the standard deviation of the 
baseline frames.  Offset was defined as the first frame with mean fluorescence <= 0.5!!(Dombeck et al., 2007). 

Tuning specificity: The spatial tuning vector (Danielson et al., 2016) was calculated as !!!!
!(!!)! , where !! is the 

position of the mouse at the onset time of the j-th running-related transient, and!!! is the fraction of running frames 
acquired at position !!.  Only the animal’s position at the time of transient onset was used for constructing the tuning 
vector and rate maps.  The tuning specificity was defined as the magnitude of the spatial tuning vector (equivalently, 
tuning specificity = 1 – circular variance of occupancy-normalized transients).  In order to assess the significance of 
the tuning specificity, for each cell we generated a null tuning distribution by shuffling the transient onset times 
(restricted to running frames) and repeatedly recomputing the tuning specificity.  This process was repeated 100,000 
times, and the p-value was defined as the fraction of this distribution that exceeded the cell’s true tuning specificity. 

Spatial information: For each cell we first computed the spatial information content (Skaggs, et al., 1993) as 
!! = ! !!!

!!! ln !!! !! where !! and !! are the transient rate and fraction of time spent in the !th bin, ! is the overall 
firing rate, and ! is the number of bins.  We computed !!!for multiple values of !!= 2, 4, 5, 8, 10, 20, 25, and 100.  
We then created 100,000 random reassignments of the transient onset times within the running-related epochs and 
re-computed the values of !!! , where ! is the index of the shuffle.  In calculated spatial information using binned data, 
it is important to note that this measure is biased by both the number of bins chosen and by the number of events 
fired by the cell.  Performing shuffles on a per-cell basis addresses the latter bias.  To roughly correct from the bias 
associated with binning, we subtracted the mean of this null distribution from all estimates to obtain values !! = 
!! − ! !

!"",!!! !!!!"",!!!
!!! . Finally, we computed a single estimate of the information content for the true transient 

onset times, !! = !max! !!, and for the shuffles, !! = max! !!! .  Note that by maximizing !!!  over bin sizes we have 
allowed each iteration of the shuffle to maximize its value across bin sizes (an alternate less conservative choice 
would have been to enforce that each shuffle be calculated using the same bin size as was optimal for !!).  The 
spatial tuning p-value was taken as the fraction of values of ! for which ! exceeded !!. 

Remapping analysis: 

In order to compute the similarity between spatial maps in different sessions, we computed three metrics throughout 
the manuscript: population vector (PV) correlation, centroid shift, and tuning curve correlation.  In the PV 
correlation analysis, all cells were included regardless of degree of tuning or of activity.  To be included in the 
centroid shift analysis, a cell needed to be identified as a place cell on the basis of its tuning specificity in both 
sessions of the comparison.  Similarly, for a cell to be included in the tuning curve correlation analysis, a cell needed 
to be identified as a place cell on the basis of its spatial information in both sessions of the comparison.  We chose 
this approach because the centroid shift metric is most appropriately applied to singly peaked tuning profiles, and 
the tuning specificity place cell criterion selects for such cells. 

Population vector correlation: The 1D rate maps of all deep or superficial cells in the experiment (rows) were 
stacked, resulting in a matrix whose columns represented population vectors of activity for that sublayer at different 
positions on the belt.  The same position bin was compared across the two sessions of the comparison, and 
correlations were averaged across position bins to obtain one measure per sublayer. 

Centroid shift: For each cell identified as a place cell on the basis of tuning specificity, the centroid shift was taken 
as the angle (in radians) between tuning vectors in the two sessions being compared. 

Tuning curve correlation:  Rate maps were formed by dividing the number of transients starting in each bin by the 
occupancy of that bin.  We calculated rate maps with 100 position bins and smoothed with a Gaussian kernel (!=3 



bins).  The tuning curve correlation for each cell was defined as the Pearson correlation coefficient between the 
tuning curves. 

Shuffling analyses: 

RF vs. GOL (Fig 4): To compare the difference in task modulation between sublayers (Δ task modulation), we 
performed two shuffles.  First, we compared the true Δ task modulation with a null distribution generated by 
randomizing cell identity (with regard to superficial/deep designation) within each experiment and recomputing the 
Δ task modulation (100,000 shuffles).  In the second shuffle, we compared the true Δ task modulation with a null 
distribution generated by shuffling the RF/GOL identity of the experiments while maintaining the sublayer identity 
of each cell (100,000 shuffles) 

Reward representation vs. performance (Fig 6): To estimate the likelihood of obtained the observed difference in r-
values by chance [|r(!! vs !) – r(!! vs !)|], we compared the observed difference with a null distribution.  The null 
distribution of r-value differences was generated by randomizing cell identity within each experiment and 
recomputing the r-values for each sublayer (100,000 shuffles). 

Statistics: 

All statistical tests are described in the corresponding figure legends.  All comparisons were two-sided, and all data 
was aggregated by mouse except where indicated.  A paired two-sample T-Test was performed wherever possible to 
compare population means across animals, and the non-parametric Mann-Whitney U test was used otherwise.  
ANOVA was used to compare behavior across sessions and days of the experiment.  Null distributions were 
generated as described above. 
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