Antigen	Conjugate	Clone	Supplier
Panel 1			
CD3	ECD	UCHT1	Beckman-Coulter
CD4	Qdot605	\$3.5	Invitrogen
CD8	APC-H7	SK1	BD
TCR-γδ	Brilliant Violet 421	B1	BD
CD56	Brilliant Violet 711	HCD56	BioLegend
ΙϜΝγ	AlexaFluor700	B27	BD
ΤΝFα	PECy7	MAb11	eBioscience
IL-2	APC	MQ1-17H2	BD
IL-17	AlexaFluor488	N49-653	BD
IL-22	PE	IC7821P	R&D
Panel 2			
CD3	APC-H7	SK7	BD
CD8	Brilliant Violet 650	RPA-T8	BD
CD16	Brilliant Violet 510	3G8	BioLegend
CD26	APC	BA5b	BioLegend
CD56	Brilliant Violet 711	HCD56	BioLegend
CD57	Brilliant Violet 605	NK-1	BioLegend
CD66 (dump)	FITC	B1.1/CD66	BD
CD158b	PE	CH-L	BD
CD161	PECy5	DX12	BD
ΙΕΝγ	AlexaFluor700	B27	BD
ΤΝFα	PECy7	MAb11	eBioscience
Perforin	Brilliant Violet 421	B-D48	BioLegend

S1 Table¹: Antibody panels for flow cytometry

 $^{^{1}}$ **S1 Table.** Antibody cocktails used in flow cytometry analysis of whole blood assays.

S1 Fig. Flow cytometry gating strategy: (**A**) Gating strategy applied to analyze stimulated whole blood samples. Small lymphocytes were gated based on forward (FSC) and side scatter (SSC), followed by doublet exclusion using FSC-area vs FSC-height. Then, to ensure uniform fluorescence during acquisition, a time gate was applied before identifying two CD3⁻ natural killer (NK) cell subsets, defined as CD56^{hi} and CD56^{dim}. From the time gate, we also identified $\gamma\delta$ T and CD8⁺ T cells amongst CD3⁺CD4⁻ cells (middle row) while CD4⁺ T cells were identified amongst CD3⁺CD8⁻ cells (bottom row). (**B and C**) Flow cytometric measurement of intracellular cytokine expression. (**B**) Representative plots illustrating cytokine expression in CD4⁺ and CD8⁺ T cells from a single whole blood sample. Rows correspond to the four stimulation conditions used in the assay. (**C**) IFN γ -expression by $\gamma\delta$ T cells, CD3⁺CD56⁺ NKT-like cells, CD3⁻CD56^{dim} NK and CD3⁻CD56^{hi} NK cells.

S2 Fig. Impact of INH treatment on antigen-specific responses to ESAT-6/CFP10 peptide pools (A) or BCG stimulation (B): Frequencies of antigen-reactive cytokine⁺ $\gamma\delta$ (top left) T cells, CD3⁺CD56⁺ NKT-like (top right), CD3⁻CD56^{dim} NK (bottom left), and CD3⁻CD56^{hi} NK (bottom right) cells. All frequencies were background subtracted. Red and blue lines correspond to group treated (IBO) or not treated (OBI) with INH for 6 months, respectively, in the time window preceding BCG re-vaccination. Unadjusted p-values were calculated with the Mann-Whitney *U*test, comparing frequencies of cytokine-expressing cells between the two groups in each of the 6 immune subsets at the end of the 6-month INH Rx or observation. P-values below 0.025, correcting for testing in two groups using the Boneferroni method were considered statistically significant.

S3 Fig. Impact of INH pre-treatment on frequency of BCG-specific IFNγ production by non-CD4 T cells. (**A**) Pie charts showing median proportions of BCG-specific CD4, CD8, γδ T, CD3⁺CD56⁺ NKT-like, CD3⁻CD56^{dim} NK, and CD3⁻CD56^{hi} NK cells co-expressing IFNγ, TNFα, IL-2, IL-17, and/or IL-22 at 3 weeks post-vaccination. (**B**) Schematic diagram of blood draws to assess short-term boosting of BCG-specific responses. Median frequencies (error bars denote IQR) of IFNγ-expressing (**C**) CD8 T cells (defined as CD3⁺CD4⁻CD8⁺ cells), (**D**) γδ T cells, (**E**) CD3⁺CD56⁺ NKT-like cells, (**F**) CD3⁻CD56^{dim} NK, and (**G**) CD3⁻CD56^{hi} NK cells. Unadjusted p-values, calculated with Mann-Whitney *U*-tests, represent inter-group comparisons.