
Supplementary Data

Supplementary Table S1. The IC Number for Each Network Is Shown Alongside the Visual

Classification (with a Citation if Applicable), a Check Mark if the Network

Was Included in Data Analysis and the Size of Each Network in Voxels

IC# Classification as network Included Size (·104 voxels)

1 Thermal noise 1.77
2 Caudal default mode (Fox et al., 2005) U 2.04
3 White matter 2.23
4 Dorsal frontal cortex U 3.79
5 Parietal cortex U 2.30
6 White matter-CSF boundary 1.65
7 Insular cortex U 1.51
8 Primary visual (van de Heuven et al., 2010) U 1.15
9 Right frontoparietal (van de Heuven et al., 2010) U 2.43

10 Bilateral frontoparietal (van de Heuven et al., 2010) U 2.38
11 Ventral somatomotor cortex U 2.42
12 Extra-striate visual (van de Heuven et al., 2010) U 1.96
13 Left frontoparietal (van de Heuven et al., 2010) U 3.49
14 Entire somatomotor cortex U 2.60
15 Ventral frontal cortex U 4.26
16 Dorsal somatomotor cortex U 4.09
17 Task positive (Fox et al., 2005) U 2.00
18 Posterior cingulate cortex U 1.33
19 Entire default mode (Fox et al., 2005) U 2.65
20 CSF 3.32

CSF, cerebrospinal fluid.



Supplementary Table S2. Brodmann Regions

from Which Average CMRglc, Bq/mL and T1
MPRAGE Contrast Were Calculated in Figure 1

1 Primary Somatosensory Cortex
4 Primary Motor Cortex
5 Somatosensory Association Cortex
6 Premotor Cortex, Supplementary Motor Cortex
7 Somatosensory Association Cortex, Precuneus
8 Includes Frontal Eye Field
9 Dorsolateral Prefrontal Cortex

10 Anterior Prefrontal Cortex
11 Orbitofrontal Area
13 Insular Cortex
17 Primary Visual Cortex (V1)
18 Secondary Visual Cortex (V2)
19 Associative Visual Cortex (V3)
20 Inferior Temporal Gyrus
21 Middle Temporal Gyrus
22 Superior Temporal Gyrus

(caudal part is the Wernicke area)
23 Ventral Posterior Cingulate Cortex
24 Ventral Anterior Cingulate Cortex
25 Subgenual Cortex
30 Part of Cingulate Cortex
31 Dorsal Posterior Cingulate Cortex
32 Dorsal Anterior Cingulate Cortex
34 Anterior Entorhinal Cortex

(on the parahippocampal gyrus)
36 Parahippocampal Cortex

(on the parahippocampal gyrus)
37 Fusiform Gyrus
38 Temporopolar Area
39 Angular Gyrus, (part of Wernicke area)
40 Supramarginal Gyrus (part of Wernicke area)
41 Primary and Auditory Association Cortex
44 Pars Opercularis, part of Broca area
45 Pars Triangularis Broca area
46 Dorsolateral Prefrontal Cortex
47 Inferior Prefrontal Gyrus
48 Caudate
49 Putamen
50 Thalamus
51 Globus Pallidus
52 Nucleus Accumbens
53 Amygdala
54 Hippocampus
55 Hypothalamus

CMRglc, cerebral metabolic rate of glucose consumption.



Supplementary Table S3. Linear Regression Results for Scatter Plots Shown

in Supplementary Figures 7 and 8

Supplementary
figures X-axis Y-axis

Nuisance
signal

regression? R2 Slope Slope, p
Inter-
cept

Inter-
cept, p

7A CMRglc, eyes closed CMRglc, eyes open N/A 0.907 1.11 0 �0.0002 0.501
7B Variance, eyes closed Variance, eyes open No 0.315 0.818 0 11.3 0
7C ALFF, eyes closed ALFF, eyes open No 0.714 1.03 0 0.0356 0
7D FALFF, eyes closed FALFF, eyes open No 0.514 0.846 0 0.0189 0
7E Short-range FCD,

eyes closed
Short-range FCD,

eyes open
No 0.712 1.04 0 0.304 0

7F Long-range FCD,
eyes closed

Long-range FCD,
eyes open

No 0.334 0.715 0 33.7 0

7G Short-range FCD,
eyes closed

Short-range FCD,
eyes open

Yes 0.606 0.812 0 0.25 0

7H Long-range FCD,
eyes closed

Long-range FCD,
eyes open

Yes 0.137 0.319 0 2.63 0

7I Whole-brain
correlation,
eyes closed

Whole-brain correlation,
eyes open

N/A 0.547 0.905 0 1.1 0

8A Short-range FCD CMRglc No 0.185 0.0166 0 0.283 0
8B Short-range FCD Whole-brain correlation No 0.694 0.894 0 2.06 0
8C CMRglc Whole-brain correlation N/A 0.179 11.5 0 0.433 0
8D FALFF CMRglc No 0.172 0.0437 0 0.313 0
8E Short-range FCD FALFF No 0.683 0.302 0 �0.527 0
8F FALFF Whole-brain correlation No 0.695 2.39 0 3.74 0

Columns show equivalent scatter plot, what is plotted on X and Y axes, whether nuisance signal regression was done, R2 for linear fit and
values for slope, p value from T-test for slope, Y-intercept, and p value from T-test for Y-intercept. (Very low p values less than 2.22 · 10�16

resolved to zero.) T-tests were done using ‘‘regstats.m’’ function in MATLAB. Only gray matter voxels were used for statistics here. All slopes
and intercepts are significant with the exception of the Y-intercept for CMRglc with eyes closed versus eyes open. Results that showed a global
increase in the eyes open condition show either a >1 slope or a >0 intercept, or both, for example, Supplementary Figure S7A, E and I. All
different metrics showed a strong linear relationship with each other in terms of topology; this has been shown previously by Aiello et al.
(2015) See their work for further analysis, including better consideration of shared topological variation due to anatomy, etc.

ALFF, amplitude of low-frequency fluctuation; FALFF, fractional ALFF.

Supplementary Table S4. Tests of Differing Types of Nuisance Signal Regression

No. Tested

Mean signals Motion parameters

Whole-brain White matter CSF Right Fwd. Up Pitch Roll Yaw

Main study i All
ii All X X X X X X X X X

Supplementary Data iii Short-range FCD X X X X X X X X
iv Short-range FCD X X X X X X X
v Short-range FCD X X X X X X X
vi Short-range FCD X X X X X X

The columns are, from left to right: whether the test was done in the main study or the Supplementary Data, the Roman numeral designator,
which R-fMRI metrics were tested with these regressions, and then the rest of the columns have an ‘‘X’’ if the signal listed at the top of the
column was included in this set of regressions, or blank if it was not. (i) and (vi) produced similar results, and (ii), (iii), (iv), and (v) produced
similar results. fMRI, resting state functional magnetic resonance imaging.



SUPPLEMENTARY FIG. S1. Frequencies affected by quadratic detrend (used in this study) and linear detrend (also
commonly used). X-axis is frequency, Y-axis is amplitude expressed as percentage of DC amplitude. (i.e., divide each am-
plitude by the amplitude at the zero frequency times 100%, producing a value from 0% to 100%. In the plots, the X-axis has a
minimum value of 0.0017 Hz shown.) Solid lines are means; dashed lines are mean+one standard deviation. Left column is
the FFT of the trend removed from the whole-brain signal, right column is the FFT of the trend removed from individual
voxels (mean is across all subjects and all voxels). Top row is a quadratic trend; bottom row is a linear trend. Red lines
are voxels without any regressions; blue lines are voxels with all regressions (not applicable to global signal, as it is a regres-
sor itself). There is little difference between quadratic and linear detrends except at the lowest (<0.005 Hz) frequencies where
linear has a slightly larger effect. There is a lesser effect of detrending on the global signal itself, or if all regressions are done
on voxels, versus the voxels’ original signals with no regressions done. All effects are visibly similar to negative exponential
functions. FFT, fast Fourier transformation.



SUPPLEMENTARY FIG. S2. Post-hoc test. Reducing the threshold for connections from r = 0.6 to r = 0.25 for FCD-
based metrics increases statistical significance but does not change overall trends. Left: The mean in each network is shown
on the Y-axis with numbered networks along the X-axis. Error bars are one standard error. Dark gray is N = 11 in the eyes
closed condition, light gray is N = 11 in the eyes open condition. Right: Scatter plot with each network as a point, mean of
each metric (N = 11) in the eyes closed condition as the X-axis, mean of each metric (N = 11) in the eyes open condition as
the Y-axis. Results without nuisance signal regression are shown for A and B, results with full nuisance signal regression
are shown for C and D. Black line is Y = X. All values are number of connected voxels. Significance threshold is from the
main text ( p £ 8.9 · 10�4). (A) Short-range nzFCD with threshold 0.25, like threshold 0.6, is significantly greater in the eyes
open condition (*), but unlike threshold 0.6 is also significantly different network to network (*). ( p = 5.66 · 10�5 for net-
work vs. network, p = 7.57 · 10�5 for eyes open vs. eyes closed, p = 1.00 for interaction.) (B) Long-range nzFCD with
threshold 0.25 is, unlike threshold 0.6, significantly greater in the eyes open condition (*) but remains nonsignificantly
different network to network. ( p = 0.962 for network vs. network, p = 2.28 · 10�7 for eyes open vs. eyes closed, p = 1.00
for interaction.) (C) As (A), but with full nuisance signal regression. Eyes closed versus eyes open is no longer significant,
though network versus network remains significant. ( p = 5.18 · 10�18 for network vs. network, p = 0.236 for eyes open vs.
eyes closed, p = 1.00 for interaction.) (D) As (B), but with full nuisance signal regression. Eyes closed versus eyes open is
no longer significant. ( p = 0.596 for network vs. network, p = 0.167 for eyes open vs. eyes closed, p = 1.00 for interaction.)
These results are very similar to the greater threshold, as shown in Figures 3B and 4B and Supplementary Figure S3, except
that p values are lower and there is more significance.



SUPPLEMENTARY FIG. S3. Result from main text. FCD-based metrics with standard r = 0.6 threshold. Left: The mean in
each network is shown on the Y-axis with numbered networks along the X-axis. Error bars are one standard error. Dark gray is
N = 11 in the eyes closed condition, light gray is N = 11 in the eyes open condition. Right: Scatter plot with each network as a
point, mean of each metric (N = 11) in the eyes closed condition as the X-axis, mean of each metric (N = 11) in the eyes open
condition as the Y-axis. Results without nuisance signal regression are shown. Black line is Y = X. All values are number of con-
nected voxels. (A and B) FCD-based metrics have similar behavior to FDG. (A) Short-range nzFCD which, like FDG, is signif-
icantly greater in the eyes open condition (*) but not significantly different network to network. (B) Long-range nzFCD, which
has the same trend as short-range nzFCD but is not significant. FCD with zeros included in averaging was very similar to nzFCD
except with less statistical significance. Total nzFCD (not shown) was very similar to long-range nzFCD. Voxel-wise scatter plots
are shown in Supplementary Figure S7E, F. (C–D) Nuisance signal regression eliminates the state difference in FCD. (C) Iden-
tical to (A), except nuisance signal regression was performed before calculating FCD. (D) Identical to (B), except nuisance signal
regression was performed before calculating FCD. The previous observation, that the mean result for eyes open was always larger
than the mean result for eyes closed, has been lost. Instead, short-range nzFCD is now significantly different network to network
(*). Voxel-wise scatter plots are shown in Supplementary Figure S7G, H. Statistics are given in Table 1. FCD, functional con-
nectivity density; FDG, fluoro-deoxyglucose; nzFCD, FCD with zeros removed for averaging purposes only.



SUPPLEMENTARY FIG. S4. Result from main text. Variance-based metrics do not well approximate FDG. Left: The mean
in each network is shown on the Y-axis with numbered networks along the X-axis. Error bars are one standard error. Dark gray is
N = 11 in the eyes closed condition, light gray is N = 11 in the eyes open condition. Right: Scatter plot with each network as a point,
mean of each metric (N = 11) in the eyes closed condition as the X-axis, mean of each metric (N = 11) in the eyes open condition as
the Y-axis. Black line is Y = X. Results without nuisance signal regression are shown. (A) Broadband variance, which differs in-
significantly network versus network or condition versus condition. (B) ALFF, which varies significantly network versus network
and condition versus condition (*). (C) FALFF, which varies significantly network versus network (*) but not condition versus
condition. Results with nuisance signal regression are very similar with identical significance except that ALFF is no longer sig-
nificant for condition versus condition. Voxel-wise scatter plots are shown in Supplementary Figure S7B–D. Statistics are given in
Table 1. ALFF, amplitude of low-frequency fluctuation; FALFF, fractional ALFF.



SUPPLEMENTARY FIG. S5. Post-hoc test. Broadband variance after alternate preprocessing also does not show signif-
icant eyes open versus eyes closed or network versus network differences. Left: The mean in each network is shown on the Y-
axis with numbered networks along the X-axis. Error bars are one standard error. Dark gray is N = 11 in the eyes closed con-
dition, light gray is N = 11 in the eyes open condition. Right: Scatter plot with each network as a point, mean of each metric
(N = 11) in the eyes closed condition as the X-axis, mean of each metric (N = 11) in the eyes open condition as the Y-axis.
Black line is Y = X. Results are without nuisance signal regression. (A) Broadband variance except calculated after filtering
using the same filter as was used for FCD (a hard-edged Fourier filter with pass-band 0.01–0.08 Hz). It has low ( p < 0.05) p
values but is not significant (using the threshold from the main text, p £ 8.9 · 10�4) for both network versus network and eyes
open versus eyes closed ( p = 0.0229 for network vs. network, p = 0.0311 for eyes open vs. eyes closed, p = 1.00 for interac-
tion). Other than having a higher mean, the network to network height differences appear similar to ALFF shown in Supple-
mentary Figure S4B. (B) Broadband variance except calculated after removing a quadratic trend from the data. It is
nonsignificant for both network versus network and condition versus condition ( p = 0.983 for network vs. network,
p = 0.364 for eyes open vs. eyes closed, p = 0.959 for interaction). This result is almost identical to not having performed
the detrending, as shown in Supplementary Figure S4A.



SUPPLEMENTARY FIG. S6. Overlap of whole-brain
masks for different modalities. Mean – one standard error is
shown, eyes closed as dark gray, eyes open as light gray.
Whole-brain masks were generated with SPM8 for co-
registered BOLD, FDG, and anatomical MRI (‘‘Anatomy’’)
and were compared in terms of percentage overlap. All over-
lap is very high (*98–100%). There is a small (0.45%) but
significant ( *, p = 0.0036) difference between eyes closed
and eyes open subjects’ registrations only for FDG versus an-
atomical MRI. (N = 11 per group, modality.)



SUPPLEMENTARY FIG. S7. Within-metric, between-state scatter plots for all voxels in gray matter and white matter,
excluding the cerebellum. All subjects within a group (eyes open or eyes closed) were averaged together for a given metric,
and the voxel’s value for that metric in the eyes closed condition plotted on the X-axis and the same voxel’s value for that
metric in the eyes open condition plotted on the Y-axis. Gray matter voxels are shown as dark gray dots, white matter voxels
are shown as light gray dots. The red dashed line is the identity line of X = Y in every case. Histograms are shown for gray
matter and white matter along each axis, 40 bins, scaled in the axis direction to match the scatter plot, scaled in the other
direction arbitrarily for display purposes. Unless otherwise noted, nuisance signal regression was not performed. (A) FDG
as shown in the main text, Figure 3A. (B) Broadband variance as shown in Supplementary Figure S4A. (C) ALFF as
shown in Supplementary Figure S4B. (D) FALFF as shown in the main text, Figure 3D. (E) Short-range FCD as shown
in the main text, Figure 3B. (F) Long-range FCD as shown in Supplementary Figure S3B. (G) Short-range FCD with nui-
sance signal regression as shown in Supplementary Figure S3C. Color is lighter as this metric falls into fewer discrete values,
thus the white background is not completely occluded by dots. (H) Long-range FCD with nuisance signal regression as shown
in Supplementary Figure S3D. (I) Correlation (Z) with the whole-brain signal as shown in the main text, Figure 3C. Note that,
while data are noisy, all of the trends seen in the main text as an increase from baseline can be seen here as either an increased
slope or an upward shift from the identity line. Statistics for line fits on gray matter voxels are shown in Supplementary
Table 3.



SUPPLEMENTARY FIG. S8. Between-metric scatter plots for all voxels in gray matter and white matter, excluding the
cerebellum. Eyes open and eyes closed groups were combined for this figure. All subjects were averaged together for a given
metric, and the voxel’s value for one metric plotted on the X-axis and the same voxel for another metric plotted on the Y-axis.
Gray matter voxels are shown as dark gray dots, white matter voxels are shown as light gray dots. The blue dashed line is a
least-squares linear fit between the two metrics using gray matter voxels only. Histograms are shown for gray matter and
white matter along each axis, 40 bins, scaled in the axis direction to match the scatter plot, scaled in the other direction ar-
bitrarily for display purposes. Nuisance signal regression was not performed on any of the metrics shown. (A) Short-range
FCD on the X-axis, FDG on the Y-axis. (B) Short-range FCD on the X-axis, whole-brain correlation on the Y-axis. (C) FDG on
the X-axis, whole-brain correlation on the Y-axis. (D) FALFF on the X-axis, FDG on the Y-axis. (E) Short-range FCD on the
X-axis, FALFF on the Y-axis. (F) FALFF on the X-axis, whole-brain correlation on the Y-axis. Compare results to Aiello et al.
(2015), Figures 2 and 3. Statistics for line fits on gray matter voxels are shown in Supplementary Table S3.

SUPPLEMENTARY FIG. S9. FDG result after perform-
ing gray matter normalization. As Figure 3A, except each
voxel’s value was divided by the mean value from all gray
matter voxels. This eliminates any significant eyes open ver-
sus eyes closed difference and creates a significant network
versus network difference.



Section S1: Details of Image Registration Method

Statistical Parametric Mapping (SPM8, www.fil.ion
.ucl.ac.uk/spm/software/spm8) and BioImage Suite (bio-
imagesuite.yale.edu) were used through MATLAB version
2014A (www.mathworks.com) along with custom MATLAB
functions to perform all preprocessing steps, including resting
state functional magnetic resonance imaging (R-fMRI) pre-
processing functions originally created by Majeed et al. (2011).

Slice timing correction (R-fMRI), motion correction (R-
fMRI), and segmentation (mean R-fMRI, positron emission
tomography [PET], and anatomical MRI) were conducted
in SPM8 in that order, with default parameters except that
the middle (150th) volume was used as the reference for mo-
tion correction. The Brain Extraction Tool (fsl.fmrib.ox
.ac.uk/fsl/fslwiki/BET) was used to create a per-subject
‘‘whole-brain mask’’ (mean R-fMRI).

Cross-modality image registration and normalization to the
Montreal Neurological Institute (MNI) template brain were
conducted in BioImage Suite on a per subject basis. The gray
and white matter, 2 mm isotropic voxels, MNI standard tem-
plate from BioImage Suite was used. All registrations used de-
fault parameters except for 50 iterations, cross-correlation used
as the distance metric, and as specified below. Due to contrast
differences across all three modalities (PET, R-fMRI, and ana-
tomical MRI), the gray and white matter probability maps (cre-
ated from segmentation in SPM8) were used for registration and
normalization rather than the original images. The MNI tem-
plate had values of 1.0 in all white matter and 0.5 in all gray
matter. Thus, to create matching contrast for registration pur-
poses, each gray matter probability map from anatomical
MRI was multiplied by 0.5 (so 100% probability of gray matter
equaled 0.5) and added to the equivalent white matter probabil-
ity map (so 100% probability of white matter equaled 1.0) on a
per-subject basis. This produced, in the original anatomical
space, a map of similar contrast to the MNI template. A non-
linear registration was performed from that image to the tem-
plate brain, giving the transformation ‘‘from anatomical to
template space.’’ The anatomical MRI’s gray matter probabil-
ity map was blurred with a Gaussian kernel (r = 7 mm) and the
gray matter probability map from the mean R-fMRI image
was affine linearly registered to it, to give the transformation
‘‘from R-fMRI space to anatomical space.’’ The PET gray
matter probability map was also affine linearly registered to
the blurred anatomical MRI gray matter, to give the transfor-
mation ‘‘from PET space to anatomical space.’’ (For subjects
7 and 20 the affine linear transformations were calculated in
the opposite direction and reversed due to an error occurring
if the standard direction was used.)

Following calculation of all transformations, they were ap-
plied as follows. Each image in the R-fMRI data, mean R-
fMRI image, probability maps from it, and whole-brain
mask all had the transformations ‘‘from R-fMRI space to an-
atomical space’’ first and ‘‘from anatomical space to template
space’’ second applied. The PET image and the probability
maps from it all had the transformations ‘‘from PET space
to anatomical space’’ first and ‘‘from anatomical space to
template space’’ second applied. The anatomical MRI
image and the probability maps from it all had the transforma-
tion ‘‘from anatomical space applied to template space’’
applied. The anatomical MRI images, mean R-fMRI im-
ages, and PET images were compared visually by a re-

searcher for all subjects to the template image using the
brain outline, lateral sulcus, and cerebellar-cerebral divide
as landmarks. Visual inspection confirmed a tight registra-
tion to the template for all three modalities (PET, R-fMRI,
and anatomical MRI) and all subjects. Additional tests of
registration accuracy are described in Section S8.

SPM8 motion correction on each R-fMRI run provided six
motion parameters: three translations (right, forward, and up)
and three rotations (pitch, roll, and yaw). For each subject
and motion parameter, the maximum deviation was taken
by subtracting its minimum value from its maximum value
over the entire time series.

Section S2: Network Generation

Networks were generated using Independent Component
Analysis (ICA). ICA has been shown to produce consistent
results across different subjects and over multiple runs
(Chen et al., 2008; Damoiseaux et al., 2006; Franco et al.,
2009; Margulies et al., 2010; Meindl et al., 2010; Zuo
et al., 2010). This was conducted using the Group ICA
of fMRI Toolbox (GIFT; mialab.mrn.org/software/gift/)
(Correa et al., 2007). Before running GIFT each three-
dimensional R-fMRI image in 2 mm MNI space was blurred
with a Gaussian kernel with a full-width, half-maximum
(FWHM) of 8 mm and a kernel size of 6 mm isotropic.
ICA was run on all 22 subjects together. All default param-
eters in GIFT were used. This process produced 20 T maps,
each from an independent component (IC #1–IC #20). Each
T map was thresholded at p £ 0.05 corrected for Type I errors
using sequential goodness of fit (SGoF) (Carvajal-Rodriguez
et al., 2009) to produce a network mask for each IC. Resul-
tant network sizes are shown in Supplementary Table S1.

A template of brain regions for the 2 mm MNI brain
(Holmes et al., 1998) was used to define voxels being located
in gray matter, white matter, or cerebrospinal fluid (CSF),
and in either the cerebrum or cerebellum. (The same tem-
plate could be used for all subjects, as all subjects were in
2 mm MNI space at this point.) In every network, voxels out-
side of gray matter or white matter, and voxels in the cerebel-
lum, were excluded from the network mask. This was
conducted to focus on cerebral networks and also save com-
putational time. The cerebellum was not fully imaged in
some subjects and was excluded for this reason.

All 20 networks were plotted against a mean 2 mm MNI tem-
plate brain and visually inspected. The networks were cate-
gorized according to either their cortical regions or similar
appearance to previously published networks. These classifica-
tions are shown in Supplementary Table S1. To focus on corti-
cal networks, four networks were excluded from further
analysis. These networks included IC #1, corresponding to ther-
mal noise, IC #3, corresponding to white matter, IC #6, corre-
sponding to the white matter/CSF boundary, and IC #20,
corresponding to CSF. Other than exclusion of noncortical net-
works, these classifications were for informational purposes
only and all networks were treated equally during data analysis.

Section S3: Preprocessing of R-fMRI Metrics

All R-fMRI metrics were calculated in 2 mm MNI space to
match cerebral metabolic rate of glucose consumption
(CMRglc) results and network masks.



Before calculation of R-fMRI metrics, all data were set to
zero outside of the whole-brain mask and loaded into MAT-
LAB for further processing. Each 3D R-fMRI image (in
2 mm MNI space, 300 per run) was separately blurred
using a Gaussian kernel with a FWHM of 8 mm and an iso-
tropic kernel size of 6 mm. Gray matter, CSF, and white mat-
ter masks were created by thresholding the respective
anatomical MRI probability maps at p > 0.8.

For all types of R-fMRI analysis, two types of nuisance sig-
nal regression were conducted: (i) not running any nuisance sig-
nal regression at all, (ii) regressing nine signals from each
voxel, which were the six motion parameters from motion cor-
rection (three translation, three rotation) and the mean R-fMRI
signals of the whole-brain, white matter, and CSF masks. These
two basic sets of regressions (none vs. all) were chosen for sim-
plicity; ‘‘no regressions’’ was particularly important as even re-
gression of minor motion variation could introduce artifactual
shared variance into the signal, and ‘‘all regressions’’ was par-
ticularly important because this follows typical R-fMRI prepro-
cessing. See Section S7 for alternative subsets of regressions.

Section S4: Time Considerations

Calculation of both ALFF and FALFF took less than 5 sec
per R-fMRI run. Without down-sampling, each R-fMRI run
would have taken over 24 h to calculate functional connectivity
density (FCD), with down-sampling this was reduced to
*1.25 h. Calculation of whole-brain correlation took less
than 30 sec per subject. The computer used was a Dell Preci-
sion T7600 with Intel(R) Xeon(R) CPU E5-2687W 0 @ 3.10
GHz, 64 GB RAM, Windows 7 SP1 64-bit OS.

Section S5: FCD Preprocessing

FCD-based metrics were calculated from the R-fMRI sig-
nal. These metrics are degree-based, as they are based on the
number of voxels that a given voxel is strongly correlated
with, or ‘‘connected to’’ functionally (Tomasi and Volkow,
2010). Before calculation of FCD, each voxel’s time series
was filtered to between 0.01 and 0.08 Hz with a boxcar
in the Fourier domain and set to zero mean, unit standard
deviation. The number of correlations was calculated be-
tween each voxel and all voxels in a down-sampled brain
to reduce computational time. Comparison between FCD
maps resulting from down-sampled and nondown-sampled
comparisons appeared quite similar, except the number of
connections was scaled down based on extent of down-
sampling. The amount that was chosen to down-sample
was 4.5 voxels in each dimension (So skip four voxels,
then five voxels, then four voxels, then five voxels, etc.).
This level of down-sampling was chosen as it guaranteed
a minimum of eight comparable voxels and a maximum
of 27 comparable voxels (the median value was also 27
comparable voxels) within a cube of six (original) voxels
in each direction (thus a 13 · 13 · 13 cube). (Note that the
actual calculation of FCD used a sphere, the cube was
just used for estimation of loss due to down-sampling, see
Section FCD-based R-fMRI metrics: short-range, long-
range, and total FCD in Methods for the actual data analy-
sis.) The differences in the number of comparable voxels
occur over lines of only one voxel horizontally or vertically,
ensuring that FCD differences resulting from down-

sampling across any brain region larger than 2 mm (all
brain regions tested herein) will average out.

FCD is calculated on a per-voxel basis by counting the
number of above-threshold connections between that
voxel and other voxels. As in the original FCD studies,
Pearson correlation was used to calculate connections
with r > 0.60 used to indicate a connection (Tomasi and
Volkow, 2010, 2011). Unlike some of the original studies,
FCD was not given an upper limit on the number of connec-
tions. After observation of the main results, additional post
hoc tests with r > 0.25 were done also, for details see Sec-
tion S6 below.

Two methods were used for averaging together FCD.
First, all values in the network were averaged including
zero values (referred to as FCD) as this was done in previous
studies that calculated FCD in hubs (Tomasi and Volkow,
2011), second, only nonzero values in the network were av-
eraged (referred to as nonzero FCD or nzFCD), as this may
increase signal to noise ratio by only measuring reporting
voxels. Note that, unlike when zeros are included, long-
range nzFCD can be higher than total nzFCD because sub-
traction of short-range FCD from total FCD can set voxels
to zero, thus removing low-valued voxels from averaging.

Section S6: Consideration of Type II Errors

While SGoF does reduce Type II (false negative) errors
compared to older methods, any form of multiple compari-
sons correction increases the chance of Type II errors.
Thus, likely candidates for such errors are discussed in this
section.

FCD-based metrics

Due to the high standard error observed for long-range
nzFCD, it is possible that a Type II statistical error (false
negative) has been made in considering it nonsignificant.
To reduce the standard error by increasing the number of
connections, the threshold for counting voxels as linked
was reduced from r = 0.60 to r = 0.25 in a post hoc test that
used the same methods and significance threshold as the
main study. While this is much lower than has been used
for FCD (Tomasi and Volkow, 2010) it is similar to earlier
work on degree of connectivity and hierarchical clustering of
R-fMRI voxels (Buckner et al., 2009; Cordes et al., 2002).
Results from this are shown in Supplementary Figure S2. To
summarize, before nuisance signal regression short-range
nzFCD with r = 0.25 threshold was significantly different net-
work versus network and eyes open versus eyes closed, and
long-range nzFCD with r = 0.25 threshold was significantly
different eyes open versus eyes closed. Following nuisance sig-
nal regression, only short-range nzFCD with r = 0.25 threshold
was only significant network versus network. This result sug-
gests that the nonsignificance of short-range FCD for network
versus network and long-range FCD for eyes open versus eyes
closed may be Type II statistical errors.

Variance-based metrics

The fact that there were few changes due to regression in-
dicates that broadband variance and FALFF do not reflect
characteristics of the signals that were regressed, even though
the internal normalization of FALFF is very different from



nuisance signal regression (Zou et al., 2008). Due to concerns
that broadband variance may have been sensitive to very low
or very high frequencies, thus eliminating significance, post
hoc tests was done where variance was calculated either fol-
lowing a quadratic detrend (as linear detrend, except with qua-
dratic equation, see Section S11 below and Supplementary
Figure S1 for discussion of the frequencies affected), or fol-
lowing band-pass filtering to the 0.01 to 0.08 Hz band.
These results are shown in Supplementary Figure S5. To sum-
marize, no significant differences were observed in either
case. However, results following a quadratic detrend were
nearly identical to results without detrending, and results fol-
lowing filtering had some similarities to ALFF.

Motion parameters

For motion parameters, to ensure even minor motion dif-
ferences between groups would be detected, a significance
threshold of p £ 0.50 was also tested. Whether the threshold
for significance was set at 0.05 or 0.50 for SGoF, the results
were identical, suggesting Type II errors did not influence
motion results.

Discussion

Certain p values deemed nonsignificant when corrected for
multiple comparisons were as low as 1.60 · 10�3 (Table 1).
Some of these results may be incorrectly non rejected null hy-
potheses, that is, Type II statistical errors. Therefore, it is
worth considering if the conclusions of this study would
have been different had these null hypotheses been rejected.
The nonsignificant but <0.05 p values for eyes open versus
eyes closed included ALFF with nuisance regression per-
formed and short-range FCD with zeros included. The nonsig-
nificant but <0.05 p values for network versus network
included FCD and nzFCD. These results being significant
would not have changed the conclusions of this study, how-
ever, and provide additional support for the observation
(Fig. 4E and Table 2) that FCD measures some of the same
network to network variation as FALFF. Indeed, network ver-
sus network does become statistically significant if a lower r
threshold is used which also reduced error (Supplementary
Fig. S2). Therefore, if one or more of the results with
8.9 · 10�4 < p £ 0.05 were Type II statistical errors, it would
not have unduly influenced the conclusions of this study.

Section S7: The Effects of Regression on Potential
R-fMRI Biomarkers

Methods

To clarify which regressions caused which effects, four
additional types of nuisance signal regression were con-
ducted for short-range FCD analysis: (iii) as the regressions
done in the main study, but not regressing the mean signal
from the whole-brain mask, (iv) as the regressions done in
the main study, but not regressing the mean signals from
the whole-brain mask or the CSF mask (thus only white mat-
ter and motion parameters), (v) as the regressions done in the
main study, but not regressing the mean signals from the
whole-brain or white matter masks (thus only CSF and mo-
tion parameters), (vi) as ii above, but not regressing the mean
signals from the whole-brain, white matter, or CSF masks

(thus only motion parameters). All regressions in the main
study and Supplementary Data are listed in Supplementary
Table S4. (Note that, whether regression of motion parame-
ters was done or not, all data analyzed still included the mo-
tion correction as described in Section S1.)

Results

Regression of white matter, CSF, and motion parame-
ters (iii), just white matter and motion parameters (iv)
or just CSF and motion parameters (v) produced results
similar to performing all regressions (ii). p values were
above the significance threshold for the main study for
eyes open versus eyes closed ( p = 0.10, 1.2 · 10�3, and
0.94, respectively; threshold at p £ 8.9 · 10�4), far below
the significance threshold for network versus network
( p = 2.4 · 10�11, 4.3 · 10�11, and 1.4 · 10�11, respective-
ly), and nonsignificant for interaction ( p ‡ 0.98 for all
three).

Conversely, if only the motion parameters were regressed
(vi), results were similar to not performing any regression
(i). A p value was produced below the significance threshold
for the main study for eyes open versus eyes closed
( p = 2.3 · 10�4), above the significance threshold but still
less than 0.05 for network versus network ( p = 1.6 · 10�3),
and not significant for interaction ( p = 1.0).

Discussion

Thus, using regression of any one of the large-scale, mean,
R-fMRI signals (including white matter or CSF) was similar
to performing all nuisance regressions (which included the
whole-brain signal), whereas regression of just the motion
parameters was similar to not performing nuisance regres-
sion at all. This is unusual as previous studies have demon-
strated differing signal variance and temporal features in
white matter versus gray matter (Birn et al., 2008; Chang
and Glover, 2009; Chang et al., 2009). As combined PET-
MRI scanners are still comparatively new, this similarity is
somewhat troubling. Future work should compare these re-
sults to results from a stand-alone MRI scanner to determine
whether this might be an artifact within the center of the
image (where white matter is located) due to the differing
hardware setups.

While all forms of FCD and ALFF showed a similar state
change as CMRglc, performing the regression step of prepro-
cessing eliminated this (Supplementary Figs. S3 and S4).
The regression of signals before calculating broadband vari-
ance and FALFF produced results that were very similar to
results without the regression step, including statistical sig-
nificance (Table 1).

There has been controversy regarding whether to regress
the global signal (Fox et al., 2009; Murphy et al., 2009).
The antiregression argument is correct about the massive
changes global regression creates (e.g., Supplementary
Fig. S3), whereas the anticorrelated networks it reveals
in human brains do not appear to be a mere artifact, for ex-
ample, giving subjects caffeine produces similar effects to
performing regression (Wong et al., 2012). Instead of a
general suggestion to regress or not regress, perhaps the
decision should be made based on what is being measured.
Work by Xu et al. (2014) and Yuan et al. (2014) suggested
that measurement of ALFF and FALFF in specific brain



regions may be improved by using regression, whereas
this study suggests that measurement of global or meta-
bolic changes (also in ALFF, Table 1) should be done
without regression.

Section S8: Numerical Verification of Multimodal
Image Registration

Methods

To quantify the quality of registration of the three modal-
ities (BOLD, fluoro-deoxyglucose [FDG], and anatomical
MRI) the overlap between the whole-brain masks were cal-
culated. Separate whole-brain masks for each modality
were calculated by taking anywhere the sum of the gray mat-
ter, white matter, and CSF probability maps (from SPM8)
were greater than 0.1. To avoid slices outside the brain
(and as the cerebellum was not fully imaged in some sub-
jects) only the 30th through 64th (of 91) slices were taken.
The percentage overlap between each pair of modalities
was calculated as the number of voxels present in both mo-
dalities’ masks divided by the number of voxels present in
one modality’s mask (taking the smaller if the two masks
had different numbers of voxels in them).

Results

Overlap was very high in all cases ( p values are from two-
tailed T tests with equal variance between conditions). Ana-
tomical MRI and BOLD overlap ranged from 97.3% to
*100% and had p = 0.98. Anatomical MRI and FDG over-
lap ranged from 98.6% to *100% and had p = 0.0036.
BOLD and FDG overlap ranged from 97.0% to 99.9% and
had p = 0.74. These results are shown in Supplementary
Figure S6.

Discussion

There is a small (0.45%) but significant difference in over-
lap between the eyes closed and eyes open groups only when
comparing anatomical MRI and FDG whole-brain maps.
This should not have affected the results of our study as
we only compared BOLD and FDG-derived metrics
(whose registration did not show a significant difference be-
tween conditions).

The significant difference in anatomical MRI/FDG over-
lap may result may occur due to FDG values being globally
higher in the eyes open condition (Figs. 2 and 3), which
could hypothetically obscure the underlying anatomy and
thus decrease the accuracy of the registration (in particular
relative to the registration of the anatomy).

While we did not examine any anatomical metrics here,
researchers comparing FDG-PET to anatomical metrics
(e.g., voxel-based morphometry or cortical thickness) should
take this into account in the future.

Section S9: Effect of Gray Matter Normalization
on FDG Data

Methods

Data analysis and processing was identical to the main
study, except that before calculating means in networks,
the FDG data were divided by the mean value from all voxels
from gray matter.

Results

Results are shown in Supplementary Figure S9. For data
with gray matter normalization, there was no longer a signif-
icant eyes open versus eyes closed difference ( p = 0.80), how-
ever, there was a highly significant network versus network
difference ( p = 2.5 · 10�132). There was a nonsignificant
(using the p cutoff from the main study) but much lower p
value for interaction between state and network ( p = 0.017).

If individual T-tests are performed for each network’s eyes
open versus eyes closed states, there are no significant results
(using the p cutoff from the main study, 0.012>p > 0.97). How-
ever, the p value for only one network is less than 0.05, IC#18
corresponding to the posterior cingulate cortex ( p = 0.012).

Discussion

As the main study focused on a change in mean FDG
across the brain differing between states, the gray matter nor-
malization step was not performed because it would have
eliminated the ability to measure this result. If gray matter
normalization of FDG is performed, it amplifies network ver-
sus network differences at the cost of not observing eyes
open versus eyes closed differences on a global level.

Individual tests of eyes open versus eyes closed for each net-
work show a nonsignificant but low p value difference between
states in the posterior cingulate cortex. Thus, this particular re-
gion’s state difference between states is still present to a greater
degree than other regions. This illustrates how gray matter nor-
malization highlights local differences in FDG.

Section S10: Variance of Motion Parameters

In addition to the maximum deviation used in the main study,
the variance of motion parameters was tested as well. For trans-
lation the p values were 0.0065 for direction versus direction,
0.13 for eyes open versus eyes closed, and 0.22 for interaction.
For rotation the p values were 4.4 · 10�4 for direction versus di-
rection, 0.98 for eyes open versus eyes closed, and 0.91 for in-
teraction. These results are very similar to the reported results
for maximum deviation in the main study.

Section S11: Frequency Profile of Detrending

Introduction

The Fourier transformation of a linear or quadratic trend is
a complicated function, dominated by a negative exponential
(e�x for frequency x) that decays quickly, but is still nonzero
at any frequency. Therefore, to determine which frequencies
are affected by the quadratic detrend in this study (and com-
pare to a linear detrend which is also commonly used), the
actual trends must be examined in the frequency domain.

Methods

The quadratic trend that was removed from the whole-brain
signal before correlation with voxels was saved for each sub-
ject (see Nuisance signal-based metric: whole-brain correlation
Section in the main text), and an equivalent linear trend was
also calculated and saved for each subject. The quadratic
trend that was removed from each voxel before variance calcu-
lation (see Section S6 above) was also saved for all voxels and
all subjects, and equivalent linear trends were also calculated



and saved for all voxels and all subjects. The absolute value of
the fast Fourier transformation (FFT) was calculated for each
trend, and was converted into relative units by dividing by
the frequency at 0 Hz (the ‘‘direct current (DC)’’ frequency)
and multiplying by 100%. Mean and standard deviation was
calculated for each group of trends’ FFTs at each frequency.
Note that, as we are taking the mean of the FFT results of
trends that differ for every voxel, the whole-brain signal’s
trend’s FFT will not necessarily be similar to the mean of in-
dividual voxels’ trends’ FFTs.

Results

Results are shown in Supplementary Figure S1. There is
little difference between linear and quadratic detrends except
at the very lowest frequencies (<0.005 Hz) where the linear
trend has slightly greater amplitude, indicating that linear
detrend has a slightly greater impact on these frequencies
than quadratic detrend. Otherwise, linear and quadratic are
very similar. The whole-brain signal’s trend decays very
quickly as frequency increases, as does the trend for individ-
ual voxels, which have had regression performed on them.
The decay is much more slow if whole-brain regression
was not performed, indicating that detrending has a greater
effect if regression is not done. All amplitudes are small,
dropping to *1% of the DC amplitude almost immediately
(0.0017 Hz is the lowest frequency shown) and then dropping
further to 0.1% of the DC amplitude and decaying quickly.

Discussion

As expected, the frequencies affected by the trends appear
visually similar to negative exponentials and, while all fre-
quencies are affected, the greatest effect is at the lowest fre-
quencies. Little difference (in particular in the pass-band of
0.01–0.08 Hz) is visible between quadratic and linear
detrends, so it is unlikely our choice here had any effect.
Interestingly, the global signal itself, despite being averaged
across many voxels, still has a sufficient trend to impact the
low frequencies and thus regressing it reduces the effect of
any detrend (linear or quadratic) done postfiltering.
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