## **Supplementary information for**

## Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein

Wei-Hung Tan<sup>1</sup>, Shu-Chun Cheng<sup>1</sup>, Yu-Tung Liu<sup>1</sup>, Cheng-Guo Wu<sup>1</sup>, Min-Han Lin,

Chiao-Che Chen, Chao-Hsiung Lin, and Chi-Yuan Chou\*

Department of Life Sciences and Institute of Genome Sciences

National Yang-Ming University

Taipei 112, Taiwan

E-mail: cychou@ym.edu.tw

<sup>&</sup>lt;sup>1</sup> These authors contributed equally to this work.

<sup>\*</sup> Correspondence information for Chi-Yuan Chou

Phone: +886-2-28267168, FAX: +886-2-28202449

## References

- 1 Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. *Bioinformatics* **15**, 305-308, (1999).
- 2 Wu, C. G. *et al.* Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease. *Acta Crystallogr D Biol Crystallogr* 69, 747-755, (2013).
- 3 Lin, M. H. *et al.* Structural and functional characterization of MERS coronavirus papain-like protease. *J. Biomed. Sci.* **21**, 54, (2014).
- 4 Chou, C. Y. *et al.* Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease. *Acta Crystallogr D Biol Crystallogr* **70**, 572-581, (2014).
- 5 Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. *Biophys. J.* **78**, 1606-1619, (2000).
- 6 Ji, X. *et al.* Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. *Biochemistry* **34**, 5317-5328, (1995).

| Data Collection                        |                     |  |  |
|----------------------------------------|---------------------|--|--|
| Space group                            | P6422               |  |  |
| Cell dimensions                        |                     |  |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)     | 114.3, 114.3, 63.9  |  |  |
| α, β, γ (°)                            | 90, 90, 120         |  |  |
| Resolution <sup>a</sup> (Å)            | 30-2.35 (2.43-2.35) |  |  |
| $R_{\rm merge}^{\rm b}$ (%)            | 16.4 (53.2)         |  |  |
| Ι / σΙ                                 | 13.3 (4.0)          |  |  |
| Completeness (%)                       | 99.9 (100.0)        |  |  |
| Redundancy                             | 7.1 (7.2)           |  |  |
| Refinement                             |                     |  |  |
| Number of reflections                  | 10,177 (1,251)      |  |  |
| $R 	ext{ factor}^{c} (\%)$             | 19.5                |  |  |
| Free R factor <sup>d</sup> (%)         | 25.0                |  |  |
| Number of atoms                        | 1,782               |  |  |
| Protein                                | 1,713               |  |  |
| Ligand/ion                             | 20/5                |  |  |
| Water                                  | 44                  |  |  |
| <i>B</i> -factors                      |                     |  |  |
| Protein                                | 24.7                |  |  |
| Ligand/ion                             | 23.5/28.7           |  |  |
| Water                                  | 26.6                |  |  |
| rmsd                                   |                     |  |  |
| Bond length (Å)                        | 0.009               |  |  |
| Bond angles (°)                        | 1.3                 |  |  |
| Ramachandran analysis <sup>e</sup> (%) |                     |  |  |
| Favored                                | 91.4                |  |  |
| Allowed                                | 8.6                 |  |  |
| Disallowed                             | 0                   |  |  |

**Extended Data Table 1** Summary of crystallographic information for octopus S-crystallin Q108F mutant

<sup>a</sup> The numbers in parentheses are for the highest-resolution shell.

<sup>b</sup> $R_{merge} = \sum_{h} \sum_{i} |I_{hi} - \langle I_{h} \rangle| / \sum_{h} \sum_{i} I_{hi}$ , where  $I_{hi}$  is the integrated intensity of a given reflection and  $\langle I_h \rangle$  is the mean intensity of multiple corresponding symmetry-related reflections.

$${}^{c}R = \sum_{h} \left| F_{h}^{o} - F_{h}^{c} \right| / \sum_{h} F_{h}^{o}$$
, where  $F_{h}^{o}$  and  $F_{h}^{c}$  are the observed and calculated

structure factors, respectively.

<sup>d</sup> Free *R* is *R* calculated using a random 5% of data excluded from the refinement.

| Primer           | Sequence (5' to 3')                         |
|------------------|---------------------------------------------|
| R43K-F           | CAGAATGGGACAGCATGAAAAACAAGATGCCATGTCA       |
| R43F-R           | TGACATGGCATCTTGTTTTTCATGCTGTCCCATTCTG       |
| H49N-F           | ATGAGAAACAAGATGCCATGTAACATGATGCCAATGTTGG    |
| H49N-R           | CCAACATTGGCATCATGTTACATGGCATCTTGTTTCTCAT    |
| Q64A-F           | AACAGAACCCAAATTCCCGCGAGTATGGCTATGGCCAG      |
| Q64A-R           | TGGCCATAGCCATACTCGCGGGGAATTTGGGTTCTGTTG     |
| L100F-F          | CAGACTGCTTCTATGACATCTTTGACGATTACATGAGAA     |
| L100F-R          | TTCTCATGTAATCGTCAAAGATGTCATAGAAGCAGTCTG     |
| D101A-F          | TGCTTCTATGACATCTTGGCTGATTACATGAGAATGTAC     |
| D101A-R          | GTACATTCTCATGTAATCAGCCAAGATGTCATAGAAGCA     |
| D101N-F          | GCTTCTATGACATCTTGAACGATTACATGAGAATG         |
| D101N-R          | CATTCTCATGTAATCGTTCAAGATGTCATAGAAGC         |
| M104V-F          | GACATGTTGGACGATTACGTGAGAATGTACCAGGATG       |
| M104V-R          | CATCCTGGTACATTCTCACGTAATCGTCCAAGATGTC       |
| Q108F-F          | GACGATTACATGAGAATGTACTTCGATGGTAACTGCAGAATG  |
|                  | ATG                                         |
| Q108F-R          | CATCATTCTGCAGTTACCATCGAAGTACATTCTCATGTAATCG |
|                  | TC                                          |
| C112G-F          | ATGTACCAGGATGGTAACGGCAGAATGATGTTCCAGCGA     |
| C112G-R          | TCGCTGGAACATCATTCTGCCGTTACCATCCTGGTACAT     |
| L100F/D101N-F    | GACTGCTTCTATGACATCTTCAACGATTACATGAGAATGTAC  |
| L100F/D101N-R    | GTACATTCTCATGTAATCGTTGAAGATGTCATAGAAGCAGTC  |
| M104V/Q108F-F    | GACATCTTGGACGATTACGTGAGAATGTACTTCGATGGT     |
| M104V/Q108F-R    | ACCATCGAAGTACATTCTCACGTAATCGTCCAAGATGTC     |
| L100F/D101N/M    | GACTGCTTCTATGACATCTTCAACGATTACGTGAGAATGTAC  |
| 104V-F           |                                             |
| L100F/D101N/M    | GTACATTCTCACGTAATCGTTGAAGATGTCATAGAAGCAGTC  |
| 104V-R           |                                             |
| Δloop(112-122)-F | ATGTACCAGGATGGTAACAGCAGCTCCTCTGAGAAG        |
| Δloop(112-122)-R | CTTCTCAGAGGAGCTGCTGTTACCATCCTGGTACAT        |
| Δloop(112-122)/Q | GATTACATGAGAATGTACTTCGATGGTAACAGCAGCTCC     |
| 108F-F           |                                             |
| Δloop(112-122)/Q | GGAGCTGCTGTTACCATCGAAGTACATTCTCATGTAATC     |
| 108F-R           |                                             |

Extended Data Table 2 Primer used for making the S-crystallin mutants

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | source minorite pu |                     | , , , , , , , , , , , , , , , , , , , , |                       |
|-----------------------------------------|--------------------|---------------------|-----------------------------------------|-----------------------|
| Protein <sup>a</sup>                    | [Protein] (µM)     | $K_{m,GSH}  (mM)^c$ | K <sub>m,CDNB</sub> (mM) <sup>c</sup>   | $k_{cat}(s^{-1})^{c}$ |
| R43K                                    | 0.3                | $0.23\pm0.07$       | $1.3\pm0.1$                             | $0.40\pm0.01$         |
| H49N                                    | 0.5                | $0.13\pm0.02$       | $5.1\pm1.8$                             | $0.60\pm0.14$         |
| Q64A                                    | 5.4                | $6.3\pm0.5$         | unsaturated                             | $0.03\pm0.003$        |
| L100F                                   | 0.07               | $2.5\pm0.3$         | $2.8\pm0.4$                             | $3.7\pm 0.3$          |
| D101A                                   | 0.4                | $2.6\pm0.5$         | $2.2\pm0.6$                             | $1.2\pm0.2$           |
| D101N                                   | 0.5                | $0.4\pm0.04$        | $2.5\pm0.6$                             | $0.41\pm0.05$         |
| M104V                                   | 0.09               | $1.1\pm0.1$         | $0.65\pm0.07$                           | $2.3\pm0.1$           |
| Q108F                                   | 0.02               | $8.2\pm0.8$         | unsaturated                             | $10.6\pm0.6$          |
| C112G                                   | 1.7                | $0.02\pm0.002$      | unsaturated                             | $0.08\pm0.002$        |
| L100F/Q108F                             | 0.02               | $3.7\pm0.5$         | $1.4\pm0.2$                             | $10.8\pm0.5$          |
| D101A/Q108F                             | 0.03               | $4.1\pm0.5$         | $5.3 \pm 1.2$                           | $24.3\pm3.5$          |
| D101N/Q108F                             | 0.01               | $5.1\pm0.5$         | $0.67\pm0.11$                           | $13.4\pm0.6$          |
| M104V/Q108F                             | 0.02               | $10.0\pm1.6$        | $4.1\pm0.7$                             | $11.6\pm1.1$          |
| L100F/M104V/Q108F                       | 0.02               | $3.7\pm 0.4$        | $2.4\pm0.3$                             | $8.5\pm0.5$           |
| $\Delta loop^{b}$                       | 0.6                | $2.2\pm0.2$         | $3.3\pm0.6$                             | $0.38\pm0.04$         |
| $\Delta loop/L100F$                     | 0.07               | $5.7\pm0.9$         | $4.5\pm1.0$                             | $2.0\pm0.3$           |
| Δloop/D101N                             | 1.1                | $5.3\pm0.6$         | $3.9\pm 0.7$                            | $0.4\pm0.04$          |
| $\Delta$ loop/M104V                     | 0.7                | $6.1\pm1.3$         | $2.3\pm0.5$                             | $0.32\pm0.02$         |
| Δloop/Q108F                             | 0.05               | $6.2 \pm 0.9$       | $1.9\pm0.5$                             | $5.2\pm0.4$           |

Extended Data Table 3 Steady-state kinetic parameters of S-crystallin mutants

<sup>a</sup> For GSH titration, the concentration of CDNB was 3.5 mM. For CDNB titration, the concentration of GSH was 10 mM.

<sup>b</sup> The loop between  $\alpha 4$  and  $\alpha 5$  helices (residue 112-122) was deleted and is designated as  $\Delta loop$ .

<sup>c</sup> Data were fitted to the Michaelis-Menten equation and the  $R_{sqr}$  values were 0.980 to 0.999, respectively. All the assays were repeated at least twice to ensure reproducibility.

|                      | J                   |                |                |                  |
|----------------------|---------------------|----------------|----------------|------------------|
| Protein <sup>a</sup> | T <sub>m</sub> (°C) | $T_m$ in GSH   | $\Delta T_m 1$ | $\Delta T_m 2$   |
|                      |                     | (°C)           | (mutant-WT)    | (in GSH-apoform) |
| L100F                | $42.8\pm1.7$        | $48.1\pm2.6$   | -5.4           | 5.3              |
| D101N                | $45.5\pm1.1$        | $48.8 \pm 1.4$ | -2.7           | 3.3              |
| M104V                | $45.1\pm1.2$        | $47.4\pm1.9$   | -3.1           | 2.3              |
| Q108F                | $49.1\pm0.7$        | $48.8 \pm 1.4$ | 0.9            | -0.3             |
| C112G                | $50.7\pm0.7$        | $58.2\pm2.2$   | 2.5            | 7.5              |
| L100F/Q108F          | $43.7\pm0.9$        | $43.6\pm1.3$   | -4.5           | -0.1             |
| D101N/Q108F          | $45.2\pm1.3$        | $46.3\pm1.4$   | -3.0           | 1.1              |
| M104V/Q108F          | $44.1\pm1.7$        | $44.8 \pm 1.7$ | -4.1           | 0.7              |
| L100F/M104V/Q108F    | $41.1\pm0.6$        | $43.3\pm1.8$   | -7.1           | 2.1              |
| Δloop                | $46.9\pm0.9$        | $46.5\pm1.4$   | -1.3           | -0.4             |
| $\Delta loop/L100F$  | $45.5\pm1.3$        | $45.2\pm1.5$   | -2.7           | -0.3             |
| Δloop/D101N          | $43.1\pm1.2$        | $45.4\pm1.5$   | -5.1           | 2.3              |
| $\Delta loop/M104V$  | $45.9\pm0.8$        | $46.7\pm1.9$   | -2.3           | 0.8              |
| Δloop/Q108F          | $43.5\pm0.9$        | $43.1\pm1.8$   | -4.7           | -0.4             |

**Extended Data Table 4** Thermal stability of S-crystallin mutants with or without 1 mM GSH

<sup>a</sup> The protein concentration was at 7.2  $\mu$ M. The ellipticity at 222 nm was monitored at varying temperature ranging from 25 to 85°C. The results were fitted to the two-state unfolding model to calculate T<sub>m</sub> of S-crystallin.



**Extended Data Fig. 1.** Sequence alignment of S-crystallins and GST- $\sigma$  from cephalopods. Modified from an output from ESPript<sup>1</sup>. For comparison, Octvu\_S4 shares 52-82% amino acid sequence identity with Octvu\_S2 (accession number: P27014), S3 (Q25626), S1 (P27013), Notsl\_SL20-1 (P18425), Lolop\_S5 (Q25359), Lolop\_S20 (Q25371), Idipa\_Cry5 (A0A0H5ANU6), Lolop\_S4 (Q25357), Notsl\_SL18 (P27016; residues 1-120 and 214-308 were used), Idipa\_Cry9 (A0A0H5ARE1), Notsl\_SL11 (P18426) and 38% amino acid sequence identity with Notsl\_GST (1GSQ\_A), respectively. Orange ovals indicate some important residues in the active site that have been mutated in the present studies.



Extended Data Fig. 2. The octopus S-crystallin forms a stable dimer. (a) Overlay of

the dimeric S-crystallin and GST- $\sigma$ . The dimers show similar orientation. (b) Traces of absorbance at 280 nm of the S-crystallin in 100 mM phosphate buffer (pH 6.5) during the sedimentation-velocity experiment<sup>2-4</sup> by analytical ultracentrifugation. The protein concentration was 1 mg/ml. For clarity, only every two scan is shown. The circles represent experimental data and the lines are the results after fitting to the Lamm equation using SEDFIT<sup>5</sup>. (c-f) The continuous c(M) distribution of S-crystallin and its mutants, L100F/D101N,  $\Delta$ Loop/L100F/D101N and L100F/D101N/M104V/Q108F, all show a major species located at ~60 kDa. It indicates that it is a dimer as the molar mass of monomeric S-crystallin is 28 kDa. The residual bitmaps of the raw data and the best-fit result are shown as the gray bar. The protein concentration for the distribution analysis was 0.025 mg/ml (0.9  $\mu$ M).



**Extended Data Fig. 3.** Overlay of the active sites of octopus S-crystallin Q108F mutant in complex with GSH (colored by green) and GST- $\sigma$  in complex with S-(3-iodobenzyl) glutathione (GSBzI) (colored by salmon)<sup>6</sup>. The iodobenzyl ring of GSBzI is located in the hydrophobic pocket consisted by the residues Phe98, Val102 and Phe106 of GST- $\sigma$ , while the equivalent residues in S-crystallin are Leu100, Met104 and Gln108, respectively.



**Extended Data Fig. 4.** The GST activity of various S-crystallin mutants. Plots of the initial velocity as a function of the concentration of the two substrates GSH (a, c, e, g) and CDNB (b, d, f, h) for S-crystallin mutants and nonenzymatic reactions (i, j) were

shown, respectively. The solid lines are the best-fit by the Michaelis-Menten equation. The kinetic parameters such as  $K_m$  and  $k_{cat}$  from the best fit were shown in Table 1 and Extended data Table 3.



**Extended Data Fig. 5.** Thermal stability of S-crystallin mutants without (a-c) and with (d-f) 1 mM GSH by circular dichroism spectroscopy. Plot of the relative CD signal from the ellipticity at 222 nm as a function of the temperature for the S-crystallin mutants, respectively. The protein concentration was at 7.2  $\mu$ M. The results were fitted to calculate the T<sub>m</sub>, which are shown in Table 2. For comparison, the blue and red lines showed the T<sub>m</sub> of wild-type S-crystallin without and with 1 mM GSH, respectively.



**Extended Data Fig. 6.** Expression and purification of recombinant "S-crystallin"-like GST. (a) Protein identification by SDS-PAGE. M: molecular marker. Lane 1-3: cytoplasmic fraction, flow through, elution from the nickel affinity column. (b-c) Protein sequence identification by mass spectrometry. The protein was digested by trypsin and then analyzed by LC-MS/MS spectrometry. There are 19 matched peptides observed (b) and 61% sequence coverage are shown in bold red (c). Underlines show the point mutations and loop insertion.