Smartphone-enabled optofluidic exosome diagnostic for concussion recovery

Jina Ko¹, Matthew A. Hemphill¹, David Gabrieli¹, Leon Wu¹, Venkata Yelleswarapu¹, Gladys Lawerence¹, Wesley Pennycooke¹, Anup Singh¹, Dave Meaney^{1*}, David Issadore^{1,2*}

- 1. Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania. Philadelphia, Pennsylvania, United States.
- 2. Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania. Philadelphia, Pennsylvania, United States.
- * equal contribution

Disposable microchip

Figure S1. Computer Assisted Design (CAD) drawings of our μ MED device.

Figure S2. Validation of antibody specific capture and labeling. a. We validated the specificity of our antibody based capture and labeling using V = 1 mL of cultured media from our cortical neuron *in vitro* model. To test if the CD81 microbead capture of exosomes is specific, we replaced the CD81 pan exosome antibody with a control antibody (purified rabbit polyclonal Isotype control antibody) and saw a significant reduction in μ MED's signal (MFI). To test if the labeling of our exosomes with GluR2 is specific, we replaced the GluR2 antibody with a control antibody (purified rabbit polyclonal Isotype control antiboty polyclonal Isotype control antiboly to for exosomes with GluR2 is specific, we replaced the GluR2 antibody with a control antibody (purified rabbit polyclonal Isotype control antibody) and saw a significant reduction in signal in μ MED's signal (MFI). **b.** We performed the same experiment, and saw similar results validating the specificity of our capture and labeling, using 100 μ L of serum from our *in-vivo* murine model.

Figure S3. Characterization of isolated exosomes. a. A cryological Transmission Electron Microscope (cryo-TEM) micrograph of individual exosomes bound to the CD-81 functionalized 2.2 μ m polystyrene bead used to capture it. The exosomes were captured from cultured cortical neuron cultured media. **b.** cryo-TEM imaging on exosomes eluted from those microbeads onto a TEM grid. **c.**Nanoparticle Tracking Analysis (NTA) data of exosomes from unprocessed cortical cell culture media. **d.** NTA data of the exosomes captured by our microbead system and then eluted for NTA measurement.

Figure S4. Measurement of GluR2+ exosomes after injury using conventional methods. a. To validate the results of μ MED, exosomes were isolated using a conventional size-based method and their protein content was profiled using Western Blotting. **b.** Quantification of the Flotillin level (total exosome) for (N=6) injured and (N=6) uninjured controls, showing no significant difference. **c.** Quantification of the GluR2 level normalized by the total exosome level (Flotillin-1) for (N=6) injured and (N=6) uninjured controls, showing significant difference.

Figure S5. Western blotting on exosomes eluted from anti-CD45/CD61 beads and anti-CD81 beads. Western blotting was performed on exosomes isolated using both positive selection beads (CD81) and negative selection beads (CD45/CD61)from mouse serum. Exosomes eluted from the two bead populations were analyzed for CD45 and CD61, as well as the pan-exosome marker CD81.