Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura)

Yasunori Kano¹, Bastian Brenzinger^{2,3}, Alexander Nützel⁴, Nerida G. Wilson⁵ & Michael Schrödl^{2,3}

¹Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. ²SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247 München, Germany. ³Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Großhadernerstr. 2, 82152 Planegg-Martinsried, Germany; ⁴SNSB-Bavarian State Collection of Paleontology and Geology, Geobio Center LMU, Richard-Wagner-Str. 10, 80333 München, Germany; ⁵Western Australian Museum, Locked Bag 49, Welshpool DC, Perth, WA 6986, Australia. Correspondence and requests for materials should be addressed to Y.K. (email: kano@aori.utokyo.ac.jp)

Supplementary information:

Table S1. Nucleotide sequences of primers used for amplification and sequencing

Table S2. Gastropod species and sequences used in the phylogenetic reconstruction of euthyneuran clades includingRingiculoidea

Figure S1. RAxML trees based on four-gene dataset without one of two major nudipleuran subclades: (a) Nudibranchia (*Bathydoris* and *Felimida*) and (b) Pleurobranchoidea (*Pleurobranchus* and *Tomthompsonia*).

Figure S2. Time-calibrated BEAST trees without one of four calibration priors: (a) first split within Euopisthobranchia and (b) splits between *Carychium* and *Smeagol* and (c) between *Ringiculopsis* and three other ringiculids.

Figure S3. MrBayes tree based on four-gene dataset.

Figure S4. RAxML trees inferred from independent gene fragments: (a) 18S rDNA, (b) 28S rDNA, (c) 16S rDNA and (d) COI.

Figure S5. RAxML trees inferred from combined nuclear or mitochondrial gene dataset: (a) nuclear 18S and 28S; (b) mitochondrial 16S and COI.

Locus	Primer	Sequence	Direction	Position ^{*1}	Reference
18S	18A1	CCTACCTGGTTGATCCTGCCAG	Forward	-21 to 0	Steiner and Dreyer (2003)
	188f	GGATCTATTGGAGGGCAAGT	Forward	554-573	Nakamura et al. (2007)
	$NS2^{*2}$	GGCTGCTGGCACCAGACTTGC	Reverse	568-588	White et al. (1990)
	NS5	AACTTAAAGGAATTGACGGAAG	Forward	1168–1189	White et al. (1990)
	189r	TCGGAATTAACCAGACAAATC	Reverse	1335–1355	Nakamura et al. (2007)
	1800r	ATGATCCTTCCGCAGGTTCACC	Reverse	1957–1978	Steiner and Dreyer (2003)
28S	LSU5	TAGGTCGACCCGCTGAAYTTAAGCA	Forward	-33 to -9	Littlewood et al. (2000)
	900F	CCGTCTTGAAACACGGACCAAG	Forward	636–657	Lockyer et al. (2003)
	ECD2S	CTTGGTCCGTGTTTCAAGACGG	Reverse	636–657	Williams and Ozawa (2006)
	LSU1600R	AGCGCCATCCATTTTCAGG	Reverse	1024–1042	Williams et al. (2003)
COI–16S	LCO1490	GGTCAACAAATCATAAAGATATTGG	Forward	-24 to 0	Folmer et al. (1994)
	COIf^{*2}	CCTGCAGGAGGAGGAGAYCC	Forward	617–636	This study
	COIf-A ^{*2}	CCTGCTGGTGGAGGTGAYCC	Forward	617–636	This study
	COIf-B ^{*2}	CCTGCTGGTGGTGGAGAYCC	Forward	617–636	This study
	COIf-G ^{*2}	CCAGCTGGWGGGGGGTGATCC	Forward	617–636	This study
	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	Reverse	659–684	Folmer et al. (1994)
	Opis COI-Fm	ACTTTTTTTCCTCAACATTTYTT	Forward	1220-1242	Modified from Grande et al. (2002)
	COIa-NER	CATTTAGTGTAGCAATCAGGRTARTC	Reverse	1274–1299	Kano and Kase (2004)
	16Sar-L	CGCCTGTTTATCAAAAACAT	Forward	2017-2036	Palumbi et al. (1991)
	Opis1-R	ATTAYGCTACCTTAGCACRGTCA	Reverse	2098-2120	Grande et al. (2002)
	16Sbr-H	CCGGTCTGAACTCAGATCAYGT	Reverse	2458-2479	Modified from Palumbi et al. (1991)

Kano et al. Table S1. Nucleotide sequences of primers used for amplification and sequencing.

^{*1}Position of primers on amplified sequences of '*Microglyphis*' sp. (AORI YK#1460; 18S: LC150579) or *Ringicula doliaris* (#901; 28S: LC150580; COI–16S: LC150582)

*2Sequencing primers

References

- Folmer, O., Black, M., Hoeh, W., Luts, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299.
- Grande, C., Templado, J., Lucas Cervera, J., Zardoya, R. 2004. The complete mitochondrial genome of the nudibranch Roboastra europaea (Mollusca: Gastropoda) supports the monophyly of opisthobranchs. Mol. Biol. Evol. 21, 303–313.
- Kano, Y., Kase, T. 2004. Genetic exchange between anchialine cave populations by means of larval dispersal: the case of a new gastropod species *Neritilia cavernicola*. Zool. Scr. 33, 423–437.
- Littlewood, D.T.J., Curini-Galletti, M., Herniou, A., 2000. The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol. Phylogenet. Evol. 16, 449–466.
- Lockyer, A.E., Olson, P.D., Østergaard, P., Rollinson, D., Johnston, D.A., Attwood, S.W., Southgate, V.R., Horak, P., Snyder, S.D., Le, T.H., Agatsuma, T., McManus, D.P., Carmichael, A.C., Naem, S., Littlewood, D.T.J., 2003. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of *Schistosoma* Weinland, 1858. Parasitology 126, 203–224.
- Nakamura, K., Kano, Y., Suzuki, N., Namatame, T., Kosaku, A. 2007. 18S rRNA phylogeny of sea spiders with emphasis on the position of Rhynchothoracidae. Mar. Biol., 153, 213–223.
- Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L., Grabowski, G., 1991. The Simple Fool's Guide to PCR, Version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu.
- Steiner, G., Dreyer, H., 2003. Molecular phylogeny of Scaphopoda (Mollusca) inferred from 18S rRNA sequences—support for a Scaphopoda–Cephalopoda clade. Zool. Scr. 32, 343–356.
- White, T.J., Bruns, T., Lee, S., Taylor, J.W., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: a Guide to Methods and Applications. Academic Press, New York, pp. 315–322.
- Williams, S.T., Ozawa, T., 2006. Molecular phylogeny suggests polyphyly of both the turban shells (family Turbinidae) and the superfamily Trochoidea (Mollusca: Vetigastropoda). Mol. Phylogenet. Evol. 39, 33–51.
- Williams, S.T., Reid, D.G., Littlewood, D.T.J., 2003. A molecular phylogeny of the Littorininae (Gastropoda: Littorinidae): unequal evolutionary rates, morphological parallelism, and biogeography of the southern ocean. Mol. Phylogenet. Evol. 28, 60–86.

Kano et al. Table S2. Gastropod species and sequences used in the phylogenetic reconstruction of euthyneuran clades including Ringiculoidea. DDBJ/EMBL/GenBank accession number and length of sequences are shown along with the voucher of sequenced specimens.

Clade	Family	Species	18S	length	28S	length	16S	length	COI	length	Voucher
Caenogastropoda	Cyclophoridae	Aperostoma palmeri	DQ093435	1791	DQ279983	1951	DQ093479	519	DQ093523	657	
	Abyssochrysidae	Abyssochrysos melanioides	AB930376	1765	AB930325	2127	AB930403	475	AB930459	630	AORI YK#1482
	Littorinidae	Littorina littorea	X91970	1831	AJ488672	1443	DQ093481	519	AJ622946	1199	
Orbitestelloidea	Orbitestellidae	Orbitestella vera	FJ917207	1793	FJ917239	1032	FJ917250	479	FJ917268	580	EED-Phy-518
Rissoelloidea	Rissoellidae	Rissoella rissoaformis	FJ917214	1418	FJ917226	3681	FJ917252	403	FJ917271	577	EED-Phy-502
		Rissoella elongatospira	FJ917203	2175	FJ917232	1106	_		FJ917270	577	EED-Phy-501
Acteonoidea	Acteonidae	Pupa solidula	AY427516	1842	AY427481	1065	EF489319*	429	DQ238006	593	*EED-Phy-35
		Rictaxis punctocaelatus	EF489346	1387	FJ917243	2536	EF489318	365	EF489393	624	EED-Phy-454
					/EF489370	1071					
	Hydatinidae	Hydatina physis	AY427515	1804	AY427480	1087	EF489320*	420	DQ991932	14153	*EED-Phy-37
Ringiculoidea	Ringiculidae	Ringicula doliaris	LC150577	1304	LC150580	1014	LC150582	2457	LC150582	2457	AORI YK#901
		<i>Ringiculia</i> sp. cf. <i>pilula</i>	-		-		LC150583	2462	LC150583	2462	AORI YK#1463
		Ringiculopsis foveolata	LC150578	1315	LC150581	929	LC150584	2520	LC150584	2520	AORI YK#1461
		Microglyphis japonica	-		-		LC150587	425	LC150586	658	AORI YK#2528
		Microglyphis sp.	-		-		LC150589	441	LC150588	658	ZSM Mol 20140700
		'Microglyphis' sp.	LC150579	1956	-		LC150585	2470	LC150585	2470	AORI YK#1460
		Ringiculoides kurilensis	-		-		LC150591	438	LC150590	1273	AORI YK#2531
			-		-		LC150593	440	LC150592	658	ZSM Mol 20130355
Nudipleura	Bathydorididae	Bathydoris clavigera	AY165754	2064	AY427444	1383	AF249222	445	AF249808	599	
	Chromodorididae	Felimida krohni	AJ224774	1887	AY427445	1064	AY345036	2647	AY345036	2647	
	Pleurobranchidae	Pleurobranchus peroni	AY427494	2022	AY427455	1120	EF489331*	443	DQ237993	593	*EED-Phy-436

		Tomthompsonia antarctica	AY427492	2105	AY427452	1156	EF489330*	440	DQ237992	593	*EED-Phy-435
Umbraculoidea	Umbraculidae	Umbraculum umbraculum	AY165753	1843	FJ917246*	2375	EF489322*	439	AY345023	1360	*EED-Phy-51
		(U. mediterraneum)			/AY427457	1069					
Anaspidea	Akeridae	Akera bullata	AY427502	1789	AY427466	1047	AF156127	418	AF156143	658	
	Aplysiidae	Aplysia californica	AY039804	1802	AY026366	3951	AF192295	422	AF077759	658	
Cephalaspidea	Philinidae	Philine exigua	HQ168425	1798	HQ168438	1036	HQ168412	420	HQ168450	624	ZSM Mol 20080752
	Scaphandridae	Scaphander lignarius	EF489348*	1788	KC351544	1488	EF489324*	441	DQ974663	698	*EED-Phy-442
	Haminoeidae	Haminoea hydatis	AY427504	1847	AY427468	1037	EF489323*	425	DQ238004	593	*EED-Phy-421
Sacoglossa	Oxynoidae	Oxynoe antillarum	FJ917441	1998	FJ917247*	2411	FJ917425	487	FJ917483	593	*EED-Phy-723
					/FJ917466	1085					
	Volvatellidae	Volvatella viridis	HQ168426	1930	HQ168439	1074	HQ168413	435	HQ168451	657	AORI YK#890
	Caliphyllidae	Cyerce nigricans	AY427500	1847	AY427463	1063	EU140843	441	DQ237995	593	
	Plakobranchidae	Thuridilla bayeri	AF249220	1847	AY427461	1058	DQ480206	434	DQ471271	618	
Siphonarioidea	Siphonariidae	Siphonaria pectinata	HQ659934	1785	DQ256744	2931	AY377627	438	AF120638	669	
Glacidorboidea	Glacidorbidae	Glacidorbis rusticus	FJ917211	1879	FJ917227	3493	FJ917264	454	FJ917284	577	EED-Phy-881
Pyramidelloidea	Pyramidellidae	Turbonilla sp.	EF489351	1838	EF489376	1004	EF489332	473	EF489396	621	EED-Phy-526
Amphiboloidea	Phallomedusidae	Phallomedusa solida	DQ093440	1816	DQ279991	2081	DQ093484	442	DQ093528	654	
Hygrophila	Physidae	Physella acuta	AY282600	1708	EF489368*	1011	AY651241	494	JQ390525	14490	*SMF 325459
	Planorbinae	Ancylus fluviatilis	AY282593	1707	EF489365*	1042	EF489312*	427	AY282582	959	*SMF 325462
Acochlidia	Parhedylidae	Microhedyle glandulifera	HQ168437	1796	HQ168449	1046	HQ168424	441	HQ168461	655	ZSM Mol 20081019
	Pseudunelidae	Pseudunela marteli	HQ168431	1795	HQ168444	1032	HQ168418	438	HQ168456	655	ZSM Mol 20080393
Eupulmonata	Discidae	Discus rotundatus	FJ917212	1854	FJ917240	1052	FJ917265	425	FJ917285	577	EED-Phy-607
	Onchidiidae	Onchidium verruculatum	Y427522	1791	AY427487	1050	EF489316*	486	EF489391*	626	*EED-Phy-38
		Onchidella floridana	AY427521	1790	AY427486	1049	EF489317*	492	EF489392*	619	*EED-Phy-462
	Ellobiidae	Smeagol phillipensis	FJ917210	1840	FJ917229	3399	FJ917263	425	FJ917283	577	EED-Phy-878
		Carychium minimum	EF489341	1739	EF489361	1061	EF489308	465	EF489386	663	

