# Substituent Effects in CH Hydrogen Bond Interactions: Linear Free Energy Relationships and Influence of Anions

Blakely W. Tresca, Ryan J. Hansen, Calvin V. Chau, Benjamin P. Hay, Lev N. Zakharov, Michael M. Haley\* and Darren W. Johnson\*

Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States

| TABLE OF CONTENTS                                     | Page |
|-------------------------------------------------------|------|
| Part I: Experimental Procedures                       | S2   |
| Part II: X-Ray Crystallography                        |      |
| Part III: Titrations                                  |      |
| <sup>1</sup> H NMR Titrations                         |      |
| UV-Vis Titrations                                     |      |
| Job Plots                                             |      |
| Part IV: Fitting Data and Results                     |      |
| Part V: References                                    |      |
| Part VI: NMR Spectra                                  |      |
| <sup>1</sup> H and <sup>13</sup> C NMR of <b>2a-g</b> |      |
| <sup>1</sup> H and <sup>13</sup> C NMR of <b>1a-g</b> |      |

## **Part I: Experimental Procedures**

**General Comments**. <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a Varian 300 MHz (<sup>1</sup>H 299.95 MHz, <sup>13</sup>C 75.43 MHz), Inova 500 MHz (<sup>1</sup>H 500.10 MHz, <sup>13</sup>C 125.75 MHz) or Bruker Avance-III-HD 600 MHz (<sup>1</sup>H 599.98 MHz, <sup>13</sup>C 150.87 MHz) spectrometer with a Prodigy multinuclear broadband BBO CryoProbe. Chemical shifts ( $\delta$ ) are expressed in ppm relative to tetramethylsilane (TMS) using residual non-deuterated solvent (CDCl<sub>3</sub>: <sup>1</sup>H 7.26 ppm, <sup>13</sup>C 77.0 ppm; CD<sub>2</sub>Cl<sub>2</sub>: <sup>1</sup>H 5.32 ppm, <sup>13</sup>C 54.0 ppm; DMSO–*d*<sub>6</sub>: <sup>1</sup>H 2.50 ppm, <sup>13</sup>C 39.51 ppm). UV-Vis spectra were recorded on an HP 8453 UV-Vis spectrophotometer using a 265 nm high-pass filter. Dry solvents were obtained from distillation using published literature procedures directly before use. 2-(Trimethylsilyl)ethynyl-4-*t*-butylaniline (**3**),<sup>1</sup> 1,3-dibromo-5-nitrobenzene (**4b**),<sup>2</sup> 1-*t*-butyl-3,5-diiodobenzene (**4e**),<sup>3</sup> and *N*,*N*-dimethyl-3,5-diiodoaniline (**4g**)<sup>4</sup> were synthesized as previously reported. All other reagents were purchased and used as received.

**Dianiline 2a (R=H).** A suspension of ethynylaniline **3** (2.262 g, 9.22 mmol) and K<sub>2</sub>CO<sub>3</sub> (6.37 g, 46.1 mmol) in Et<sub>2</sub>O (15 mL) and MeOH (30 mL) was stirred at 25 °C and monitored by TLC until completion (30 min). The solution was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water and brine. The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The residue was dissolved in minimal THF and added to an N<sub>2</sub>-purged solution of 1,3-diiodobenzene (**4a**, 1.39 g, 4.20 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.49 g, 0.42 mmol) and CuI (0.16 g, 0.84 mmol) in dry THF (45 mL) and *i*-Pr<sub>2</sub>NH (45 mL). After stirring at 50 °C for 8 h, the cooled reaction was concentrated *in vacuo* and the residue was taken up into CH<sub>2</sub>Cl<sub>2</sub>. The solution was filtered through a 3 cm silica gel plug and washed with additional CH<sub>2</sub>Cl<sub>2</sub>. The combined organics were concentrated *in vacuo* and the product was purified by column chromatography (2:1 hexanes/CH<sub>2</sub>Cl<sub>2</sub>) to afford **2a** (1.01 g, 57%) as a pale brown solid. <sup>1</sup>H NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.71 (t, *J* = 1.7 Hz, 1H), 7.50 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.34-7.40 (m, 3H), 7.21 (dd, *J* = 8.5, 2.4

Hz, 2H), 6.69 (d, J = 8.5 Hz, 2H), 4.22 (br s, 4H), 1.28 (s, 18H). <sup>13</sup>C NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$ 146.37, 141.29, 134.56, 131.37, 129.26, 129.22, 128.00, 124.40, 114.73, 107.30, 93.69, 87.78, 34.35, 31.68. HRMS (ESI) for C<sub>30</sub>H<sub>33</sub>N<sub>2</sub> [M+H]<sup>+</sup>: calcd 421.2625, found 421.2644.

Dianiline 2b (R=NO<sub>2</sub>). A suspension of ethynylaniline 3 (2.07 g, 8.43 mmol) and K<sub>2</sub>CO<sub>3</sub> (5.3 g, 38.3 mmol) in Et<sub>2</sub>O (15 mL) and MeOH (30 mL) was stirred at 25 °C and monitored by TLC until completion (30 min). The solution was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water and brine. The organic layer was dried (MgSO<sub>4</sub>) and concentrated in vacuo. The residue was dissolved in minimal THF and added to an N<sub>2</sub>-purged solution of 1-nitro-1,3dibromo-5-nitrobenzene<sup>2</sup> (4b, 1.067 g, 3.8 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.22 g, 0.19 mmol) and CuI (0.156 g, 0.82 mmol) in dry THF (40 mL) and *i*-Pr<sub>2</sub>NH (40 mL). After stirring at 50 °C for 24 h, the cooled reaction was concentrated in vacuo and the residue was taken up into CH<sub>2</sub>Cl<sub>2</sub>. The solution was filtered through a 3 cm silica gel plug and washed with additional CH<sub>2</sub>Cl<sub>2</sub>. The combined organics were concentrated *in vacuo* and the product was purified by column chromatography (2:1 hexanes:CH<sub>2</sub>Cl<sub>2</sub>) to afford **2b** (1.7 g, 95%) as an orange solid. <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  8.46 (d, J = 1.5 Hz, 2H), 8.32 (t, J = 1.4 Hz, 1H), 7.27 (d, J = 2.4 Hz, 2H), 7.19 (dd, J = 8.6, 2.4 Hz, 2H), 6.69 (d, J = 8.6 Hz, 2H), 5.61 (s, 4H), 1.23 (s, 18H). <sup>13</sup>C NMR (151 MHz, DMSO- $d_6$ )  $\delta$  148.16 (overlapping peaks), 138.94, 137.86, 128.29, 128.07, 125.21, 124.46, 114.06, 103.56, 90.86, 90.84, 33.47, 31.23. HRMS (ESI) for  $C_{30}H_{32}N_{3}O_{2}$  $[M+H]^+$ : calcd 466.2495, found 466.2515.

**Dianiline 2c (R=Cl).** A suspension of ethynylaniline **5** (2.701 g, 10.98 mmol) and  $K_2CO_3$  (7.554 g, 54.7 mmol) in Et<sub>2</sub>O (20 mL) and MeOH (40 mL) was stirred at 25 °C and monitored by TLC until completion (30 min). The solution was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water and brine. The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The residue was dissolved in minimal THF and added to an N<sub>2</sub>-purged solution of 1,3-dibromo-5-

chlorobenzene (**4c**, 1.615 g, 5.97 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.245 g, 0.21 mmol) and CuI (0.025 g, 0.13 mmol) in dry THF (50 mL) and *i*-Pr<sub>2</sub>NH (50 mL). After stirring at 50 °C for 8 h, the cooled reaction was concentrated *in vacuo* and the residue was taken up into CH<sub>2</sub>Cl<sub>2</sub>. The solution was filtered through a 3 cm silica gel plug and washed with additional CH<sub>2</sub>Cl<sub>2</sub>. The combined organics were concentrated *in vacuo* and the product was purified by column chromatography (2:1 hexanes/CH<sub>2</sub>Cl<sub>2</sub>) to afford **2c** (1.440 g, 53%) as a brown oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (s, 1H), 7.46 (d, *J* = 1.5 Hz, 2H), 7.37 (d, *J* = 2.0 Hz, 2H), 7.22 (dd, *J* = 8.5, 2.1 Hz, 2H), 6.69 (d, *J* = 8.5 Hz, 2H), 4.16 (s, 4H), 1.29 (s, 18H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  147.85, 137.89, 133.26, 132.04, 129.83, 128.08, 127.75, 125.36, 114.02, 103.96, 91.35, 89.78, 33.44, 31.22. HRMS (ESI) for C<sub>30</sub>H<sub>32</sub>N<sub>2</sub>Cl [M+H]<sup>+</sup>: calcd 455.2254, found 455.2242.

**Dianiline 2d (R=F).** A suspension of ethynylaniline **3** (1.231 g, 5.018 mmol) and K<sub>2</sub>CO<sub>3</sub> (3.468 g, 25.09 mmol) in Et<sub>2</sub>O (15 mL) and MeOH (30 mL) was stirred at 25 °C and monitored by TLC until completion (30 min). The solution was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water and brine. The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The residue was dissolved in minimal THF and added to an N<sub>2</sub>-purged solution of 1,3-dibromo-5-fluorobenzene (**4d**, 0.637 g, 2.509 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.100 g, 0.0865 mmol) and CuI (0.014 g, 0.735 mmol) in dry THF (20 mL) and *i*-Pr<sub>2</sub>NH (20 mL). After stirring at 50 °C for 8 h the cooled reaction was concentrated *in vacuo* and the residue was taken up into CH<sub>2</sub>Cl<sub>2</sub>. The solution was filtered through a 3 cm silica gel plug and washed with additional CH<sub>2</sub>Cl<sub>2</sub>. The combined organics were concentrated *in vacuo* and the product was purified by column chromatography (2:1 hexanes/CH<sub>2</sub>Cl<sub>2</sub>) to afford **2d** (0.715 g, 65%) as a brown oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (t, *J* = 1.4 Hz, 1H), 7.38 (d, *J* = 2.3 Hz, 2H), 7.22 (dd, *J* = 8.5, 2.3 Hz, 2H), 7.19 (dd, *J* = 9.1, 1.4 Hz, 2H), 6.70 (d, *J* = 8.5 Hz, 2H), 4.16 (s, 4H), 1.30 (s, 18H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  163.05 (d, *J* = 244 Hz), 145.76, 141.13, 130.49, 130.47, 128.98, 127.85, 125.61 (d, *J* =

10.5 Hz), 118.05 (d, J = 22.9 Hz), 114.57, 106.79, 92.44 (d, J = 3.5 Hz), 88.33, 34.09, 31.53. HRMS (ESI) for C<sub>30</sub>H<sub>32</sub>N<sub>2</sub>F [M+H]<sup>+</sup>: calcd 439.2550, found 439.2531.

**Dianiline 2e (R=t-Bu).** A suspension of ethynylaniline **3** (2.0 g, 8.15 mmol) and  $K_2CO_3$ (5.63 g, 40.74 mmol) in Et<sub>2</sub>O (20 mL) and MeOH (40 mL) was stirred at 25 °C and monitored by TLC until completion (30 min). The solution was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water and brine. The organic layer was dried (MgSO<sub>4</sub>) and concentrated in vacuo. The residue was dissolved in minimal THF and added to an N<sub>2</sub>-purged solution of 1-t-butyl-3,5diiodobenzene<sup>3</sup> (1.19 g, 3.08 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.178 g, 0.15 mmol) and CuI (0.12 g, 0.62 mmol) in dry THF (10 mL) and *i*-Pr<sub>2</sub>NH (10 mL). After stirring at 50 °C for 23 h, the cooled reaction was concentrated in vacuo and the residue was taken up into CH<sub>2</sub>Cl<sub>2</sub>. The solution was filtered through a 3 cm silica gel plug and washed with additional CH<sub>2</sub>Cl<sub>2</sub>. The combined organics were concentrated *in vacuo* and the product was purified by column chromatography (3:2 hexanes/EtOAc) to afford 2e (0.903 g, 61%) as a pale brown solid. <sup>1</sup>H NMR (500 MHz,  $CD_2Cl_2$ )  $\delta$  7.63–7.52 (m, 3H), 7.39 (d, J = 2.3 Hz, 2H), 7.21 (dd, J = 8.5, 2.3 Hz, 2H), 6.70 (d, J= 8.5 Hz, 2H), 4.23 (s, 4H), 1.37 (s, 9H), 1.29 (s, 18H). <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  152.51, 146.34, 141.29, 131.77, 129.27, 128.90, 127.89, 123.96, 114.73, 107.47, 94.26, 87.10, 35.24, 34.36, 31.71, 31.45. HRMS (ESI) for  $C_{34}H_{41}N_2$  [M+H]<sup>+</sup>: calcd 477.3270, found 477.3263.

**Dianiline 2f (R=OMe).** A suspension of ethynylaniline **3** (0.808 g, 4.27 mmol) and K<sub>2</sub>CO<sub>3</sub> (2.95 g, 21.33 mmol) in Et<sub>2</sub>O (15 mL) and MeOH (30 mL) was stirred at at 25 °C and monitored by TLC until completion (30 min). The solution was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water and brine. The organic layer was dried over MgSO<sub>4</sub> and concentrated *in vacuo*. The residue was dissolved in minimal THF and added to an N<sub>2</sub>-purged solution of 3,5-dibromoanisole (0.250 g, 0.940 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.100 g, 0.0865 mmol) and CuI (0.010 g, 0.0525 mmol) in dry THF (50 mL) and *i*-Pr<sub>2</sub>NH (50 mL). After stirring at 50 °C for 8 h, the

cooled reaction was concentrated *in vacuo* and the residue was taken up into CH<sub>2</sub>Cl<sub>2</sub>. The solution was filtered through a 3 cm silica gel plug and washed with additional CH<sub>2</sub>Cl<sub>2</sub>. The combined organics were concentrated *in vacuo* and the product was purified by column chromatography (CH<sub>2</sub>Cl<sub>2</sub>) to afford **2f** (0.182 g, 43%) as a brown oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, *J* = 1.9 Hz, 2H), 7.33 (s, 1H), 7.20 (dd, *J* = 8.4, 2.1 Hz, 2H), 7.04 (s, 2H), 6.69 (d, *J* = 8.5 Hz, 2H), 4.17 (s, 4H), 3.85 (s, 3H), 1.29 (s, 18H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.45, 145.68, 141.07, 128.92, 127.50, 127.24, 124.82, 116.92, 114.50, 107.25, 93.50, 87.10, 55.66, 34.07, 31.54. HRMS (ESI) for C<sub>31</sub>H<sub>35</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: calcd 451.2749, found 451.2729.

Dianiline 2g (R=NMe<sub>2</sub>). A suspension of ethynylaniline 3 (0.312 g, 1.24 mmol) and K<sub>2</sub>CO<sub>3</sub> (0.856 g, 6.195 mmol) in Et<sub>2</sub>O (10 mL) and MeOH (20 mL) was stirred at 25 °C and monitored by TLC until completion (30 min). The solution was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water and brine. The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The residue was dissolved in minimal THF and added to an N<sub>2</sub>-purged solution of N,N-dimethyl-3,5diiodoaniline<sup>4</sup> (0.20 g, 0.59 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.014 g, 0.012 mmol) and CuI (0.005 g, 0.02 mmol) in dry THF (15 mL) and i-Pr<sub>2</sub>NH (5 mL). After stirring at 50 °C for 8 h, the cooled reaction was concentrated in vacuo and the residue was taken up into CH<sub>2</sub>Cl<sub>2</sub>. The solution was filtered through a 3 cm silica gel plug and washed with additional CH<sub>2</sub>Cl<sub>2</sub>. The combined organics were concentrated *in vacuo* and the product was purified by column chromatography (3:1 hexanes/EtOAc followed by 100% EtOAc) to afford 2g (0.111 g, 41%) as a pale brown solid. <sup>1</sup>H NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.37 (d, J = 2.4 Hz, 2H), 7.19 (dd, J = 8.5, 2.4 Hz, 2H), 7.05 (t, J = 1.3 Hz, 1H), 6.86 (d, J = 1.3 Hz, 2H), 6.69 (d, J=8.5, 2H), 4.22 (s, 4H), 3.00 (s, 4H), 1.28 (s, 18H). <sup>13</sup>C NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 150.94, 146.30, 141.24, 129.23, 127.76, 124.60, 122.69, 115.30, 114.67, 107.57, 94.74, 86.39, 40.78, 34.34, 31.69. HRMS (ESI) for C<sub>32</sub>H<sub>38</sub>N<sub>3</sub>  $[M+H]^+$ : calcd 464.3066, found 464.3055.

**Bisurea 1a (R=H).** All glassware was dried in a 150 °C oven for at least 1 h. Dianiline **2a** (200 mg, 0.5 mmol) and *p*-methoxyphenyl isocyanate (177 mg, 1.2 mmol) in toluene (50 mL) were stirred at 50 °C for 8 h. The reaction became cloudy upon completion and acetone was added until the turbidity was removed. Hexanes was added until a slight turbidity returned and the suspension was left to precipitate overnight in the refrigerator. Filtration afforded **1a** (320 mg, 93%) as a fine white powder. <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.28 (s, 2H), 8.11 (s, 2H), 8.02 (d, *J* = 8.8 Hz, 2H), 7.99 (t, *J* = 1.7 Hz, 1H), 7.72 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.50 (d, *J* = 2.4 Hz, 2H), 7.42 (dd, *J* = 8.8, 2.4 Hz, 2H), 7.37 (d, *J* = 8.9 Hz, 4H), 6.86 (d, *J* = 8.9 Hz, 4H), 3.70 (s, 6H), 1.29 (s, 18H). <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  154.61, 152.40, 144.38, 138.04, 134.33, 132.43, 131.77, 129.16, 128.69, 126.96, 122.94, 120.22, 119.64, 114.03, 110.73, 93.69, 86.75, 55.13, 33.94, 31.02. HRMS (ESI) for C<sub>46</sub>H<sub>47</sub>N<sub>4</sub>O<sub>4</sub> [M+H]<sup>+</sup>: calcd 719.3563, found 719.3597.

**Bisurea 1b** (**R**=**NO**<sub>2</sub>). All glassware was dried in a 150 °C oven for at least 1 h. Dianiline 1b (0.100 g, 0.215 mmol) and *p*-methoxyphenyl isocyanate (0.08 mg, 0.536 mmol) in toluene (50 mL) were stirred at 80 °C for 8 h. The reaction became cloudy upon completion and filtration afforded **1b** (100 mg, 47%) as a fine yellow powder. <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.25 (s, 2H), 8.55 (s, 2H), 8.40 (s, 1H), 8.19 (s, 2H), 8.05 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 2.3 Hz, 2H), 7.47 (dd, *J* = 8.8, 2.4 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 4H), 6.87 (d, *J* = 8.7 Hz, 4H), 3.70 (s, 6H), 1.30 (s, 18H). <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  154.65, 152.36, 148.18, 144.47, 139.77, 138.41, 132.35, 129.03, 127.63, 125.72, 124.55, 120.25, 119.71, 114.06, 110.03, 91.79, 89.11, 55.14, 33.99, 31.01. HRMS (ESI) for C<sub>46</sub>H<sub>46</sub>N<sub>5</sub>O<sub>6</sub> [M+H]<sup>+</sup>: calcd 764.3448, found 764.3412.

**Bisurea 1c (R=Cl).** All glassware was dried in a 150 °C oven for at least 1 h. Dianiline **2c** (125 mg, 0.274 mmol) and *p*-methoxyphenyl isocyanate (94 mg, 0.632 mmol) in toluene (50 mL) were stirred at 50 °C for 8 h. The reaction became cloudy upon completion and filtration

afforded **1c** (186 mg, 90%) as a fine white powder. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.25 (s, 2H), 8.11 (s, 2H), 8.04 (d, *J* = 8.6 Hz, 2H), 7.95 (s, 1H), 7.84 (s, 2H), 7.53 (s, 2H), 7.44 (d, *J* = 8.8 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 4H), 6.86 (d, *J* = 8.3 Hz, 4H), 3.71 (s, 6H), 1.29 (s, 18H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  154.64, 152.36, 144.41, 138.25, 133.52, 132.85, 132.38, 131.07, 128.83, 127.34, 124.77, 120.26, 119.67, 114.04, 110.29, 92.34, 88.16, 55.13, 33.95, 30.99. HRMS (ESI) for C<sub>46</sub>H<sub>46</sub>N<sub>4</sub>O<sub>4</sub>Cl [M+H]<sup>+</sup>: calcd 753.3208, found 753.3215.

**Bisurea 1d (R=F).** All glassware was dried in a 150 °C oven for at least 1 h. Dianiline 2d (250 mg, 0.570 mmol) and *p*-methoxyphenyl isocyanate (177 mg, 1.2 mmol) in toluene (50 mL) were stirred at 50 °C for 8 h. The reaction became cloudy upon completion and filtration afforded 1d (400 mg, 95%) as a fine white powder. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.25 (s, 2H), 8.11 (s, 2H), 8.03 (d, *J* = 9.0 Hz, 2H), 7.85 (s, 1H), 7.63 (d, *J* = 9.2 Hz, 2H), 7.52 (s, 2H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.38 (d, *J* = 8.8 Hz, 4H), 6.86 (d, *J* = 8.8 Hz, 4H), 3.70 (s, 6H), 1.29 (s, 18H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  161.6 (d, *J* = 245.2), 155.12, 152.85, 144.90, 138.71, 132.86, 131.34, 129.26, 127.80, 124.83 (d, *J* = 11.0 Hz), 120.75, 120.17, 119.00, 114.51, 110.78, 92.55 (d, *J* = 3.8 Hz), 88.32, 55.61, 34.43, 31.48. HRMS (ESI) for C<sub>46</sub>H<sub>46</sub>N<sub>4</sub>O<sub>4</sub>F [M+H]<sup>+</sup>: calcd 737.3503, found 737.3487.

**Bisurea 1e (R=***t***-Bu).** Dianiline **2e** (300 mg, 0.63 mmol) and *p*-methoxyphenyl isocyanate (235 mg, 1.57 mmol) in dry toluene (50 mL) were stirred at 50 °C for 48 h. The reaction was evaporated to dryness in vacuo and purified by column chromatography (3:2 hexanes:EtOAc, 410 mg, 84%). Trituration with EtOH afforded analytically pure **1e** (40 mg, 10%) as a fine white powder. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.29 (s, 2H), 8.13 (s, 2H), 8.02 (d, *J* = 8.8 Hz, 2H), 7.84 (t, *J* = 1.4 Hz, 1H), 7.73 (d, *J* = 1.5 Hz, 2H), 7.52 (d, *J* = 2.3 Hz, 2H), 7.42 (dd, *J* = 8.9, 2.4 Hz, 2H), 7.38 (d, *J* = 8.7 Hz, 4H), 6.86 (d, *J* = 8.6 Hz, 4H), 3.70 (s, 6H), 1.35 (s, 9H), 1.29 (s, 18H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  155.06, 152.90, 152.24, 144.89, 138.49, 132.97,

132.21, 129.37, 129.18, 127.32, 123.18, 120.58, 120.23, 114.52, 111.48, 94.64, 86.76, 55.60, 35.11, 34.42, 31.50, 31.29. HRMS (ESI) for  $C_{50}H_{55}N_4O_4$  [M+H]<sup>+</sup>: calcd 775.4223, found 775.4191.

**Bisurea 1f (R=OMe).** Dianiline **2f** (150 mg, 0.33 mmol) and *p*-methoxyphenyl isocyanate (105 mg, 0.70 mmol) in dry toluene (40 mL) were stirred at 50 °C for 8 h. The reaction became cloudy upon completion and acetone was added until the turbidity was removed. Hexanes was added until a slight turbidity returned and the suspension was left to precipitate overnight in the refrigerator. Filtration afforded **1f** (215 mg, 87%) as a fine white powder. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.28 (s, 2H), 8.09 (s, 2H), 8.02 (d, *J* = 8.8 Hz, 2H), 7.59 (s, 1H), 7.50 (d, *J* = 2.4 Hz, 2H), 7.42 (dd, *J* = 8.7, 2.4 Hz, 2H), 7.37 (d, *J* = 8.9 Hz, 4H), 7.32 (s, 2H), 6.85 (d, *J* = 8.9 Hz, 4H), 3.86 (s, 3H), 3.70 (s, 6H), 1.29 (s, 18H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  159.19, 154.60, 152.39, 144.37, 138.06, 132.44, 128.87, 128.70, 126.97, 123.94, 120.19, 119.68, 117.45, 114.02, 110.71, 93.68, 86.56, 55.64, 55.12, 33.93, 31.01. HRMS (ESI) for C<sub>46</sub>H<sub>46</sub>N<sub>4</sub>O<sub>4</sub>F [M+H]<sup>+</sup>: calcd 737.3503, found 737.3487.

**Bisurea 1g (R=NMe<sub>2</sub>).** Dianiline **2g** (50 mg, 0.11 mmol) and *p*-methoxyphenyl isocyanate (37 mg, 0.25 mmol) in toluene (20 mL) were stirred at 50 °C for 48 h. The reaction became cloudy upon completion and was cooled overnight at -20 °C. Filtration afforded **1g** (47 mg, 57%) as a fine white powder.<sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.30 (s, 2H), 8.08 (s, 2H), 8.00 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 2.4 Hz, 2H), 7.41 (dd, *J* = 8.8, 2.4 Hz, 2H), 7.37 (d, *J* = 9.0 Hz, 4H), 7.28 (s, 1H), 7.04 (d, *J* = 1.3 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 4H), 3.70 (s, 6H), 2.98 (s, 6H), 1.29 (s, 18H). <sup>13</sup>C NMR (151 MHz, DMSO)  $\delta$  154.57, 152.43, 150.20, 144.40, 137.93, 132.50, 128.67, 126.72, 123.25, 122.16, 120.12, 119.73, 115.28, 114.04, 111.13, 94.82, 85.46, 55.14, 39.97, 33.95, 31.04. HRMS (ESI) for C<sub>48</sub>H<sub>52</sub>N<sub>5</sub>O<sub>4</sub> [M+H]<sup>+</sup>: calcd 762.4019, found 762.3986.

#### Part II: X-Ray Crystallography

Diffraction intensities were collected at 173(2) K on a Bruker Apex2 CCD diffractometer using CuK $\alpha$  radiation  $\lambda$ = 1.54178 Å. The space group was determined based on systematic absences. Absorption corrections were applied by SADABS.<sup>5</sup> The structure was solved by direct methods and Fourier techniques and refined on  $F^2$  using full matrix least-squares procedures. All non-H atoms were refined with anisotropic thermal parameters. All H atoms were treated in calculated positions, except those at the N atoms involved in H-bonds, which were found from the residual density map and refined with restrictions on their N-H distances; the value of 1 Å was used in the refinement as a target for the corresponding N-H bonds. In addition to 1b the crystal structure includes solvent acetonitrile molecules. The refinement showed that position of the acetonitrile is not fully occupied; in the structure there is a half of acetonitrile molecule per one main molecule. Crystals of the investigated compound were very small needles and diffraction at high angles was very weak. Even using a strong Incoatec IµS Cu source we could collect visible diffraction data only up to  $\theta_{max} = 100.0^{\circ}$ . While the final structure is not very precise, it clearly represents all chemical results. All calculations were performed by the Bruker SHELXTL (v. 6.10)<sup>6</sup> and SHELXL-2013 packages.<sup>7</sup> The crystal structure of TBA<sup>+</sup> ( $1a \subset Cl$ )<sup>-</sup> has been reported previously<sup>8</sup> and the data deposited with the CCDC as structure #929532.

Crystallographic data for **1b**: C<sub>46</sub>H<sub>46.5</sub>N<sub>5.5</sub>O<sub>6</sub> [C<sub>46</sub>H<sub>45</sub>N<sub>5</sub>O<sub>6</sub>·0.5(CH<sub>3</sub>CN)], M = 784.39, 0.14 x 0.04 x 0.03 mm, T = 173(2) K, Monoclinic, space group *P*2/*c*, *a* = 16.7165(16) Å, *b* = 9.0824(8) Å, *c* = 29.495(3) Å,  $\beta$  = 101.756(7)°, *V* = 4384.2(8) Å<sup>3</sup>, *Z* = 4, *D*<sub>c</sub> = 1.188 Mg/m<sup>3</sup>,  $\mu$  = 0.642 mm<sup>-1</sup>, *F*(000) = 1660,  $2\theta_{max}$  = 100.0°, 15027 reflections, 4362 independent reflections [R<sub>int</sub> = 0.0699], R1 = 0.1023, wR2 = 0.2840 and GOF = 1.083 for 4362 reflections (557 parameters) with I>2 $\sigma$ (I), R1 = 0.1270, wR2 = 0.3018 and GOF = 1.083 for all reflections, max/min residual electron density +0.432/-0.298 eÅ<sup>3</sup>.

#### **Part III: Titrations**

# <sup>1</sup>H NMR Titrations

**NMR Titration Conditions.** <sup>1</sup>H NMR titrations were carried out on an Inova 500 MHz spectrometer (<sup>1</sup>H 500.10 MHz). Chemical shifts ( $\delta$ ) are expressed in ppm relative to tetramethylsilane (TMS) using residual non-deuterated solvent (CDCl<sub>3</sub>: <sup>1</sup>H 7.26 ppm, <sup>13</sup>C 77.0 ppm). CDCl<sub>3</sub> was prepared by passing over activated alumina. 1:1 v/v CDCl<sub>3</sub> and deionized water was mixed in a separatory funnel and the organic layer was collected. Association constants were determined using non-linear regression fitting in MatLab.<sup>9</sup> Titration data for **1a** with halides has been previously reported.<sup>8</sup>

A stock solution of **1a-g** in CDCl<sub>3</sub> (3 mL) was prepared and used in the preparation of a TBA salt solution (2.4 mL). The remaining stock solution (0.6 mL) was used as the starting volume in an NMR tube. Spectra were recorded after each addition of TBA salt on a 500 MHz spectrometer and the  $\Delta\delta$  of urea proton H<sub>g</sub> was used to follow the progress of the titration.

|    | Guest (µL) | <b>[1a]</b> (M) | $[NO_{3}^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-----------------|-------------------|--------|---------|
| 0  | 0          | 7.42E-04        | 0.00E+00          | 0.00   | 7.443   |
| 1  | 5          | 7.42E-04        | 1.01E-07          | 0.22   | 7.570   |
| 2  | 10         | 7.42E-04        | 2.01E-07          | 0.44   | 7.688   |
| 3  | 15         | 7.42E-04        | 3.02E-07          | 0.66   | 7.770   |
| 4  | 20         | 7.42E-04        | 4.02E-07          | 0.87   | 7.853   |
| 5  | 25         | 7.42E-04        | 5.03E-07          | 1.08   | 7.919   |
| 6  | 35         | 7.42E-04        | 7.04E-07          | 1.49   | 8.005   |
| 7  | 45         | 7.42E-04        | 9.05E-07          | 1.89   | 8.068   |
| 8  | 55         | 7.42E-04        | 1.11E-06          | 2.28   | 8.109   |
| 9  | 65         | 7.42E-04        | 1.31E-06          | 2.65   | 8.137   |
| 10 | 75         | 7.42E-04        | 1.51E-06          | 3.01   | 8.158   |
| 11 | 85         | 7.42E-04        | 1.71E-06          | 3.36   | 8.172   |
| 12 | 100        | 7.42E-04        | 2.01E-06          | 3.87   | 8.190   |
| 13 | 125        | 7.42E-04        | 2.51E-06          | 4.67   | 8.208   |
| 14 | 150        | 7.42E-04        | 3.02E-06          | 5.42   | 8.221   |
| 15 | 200        | 7.42E-04        | 4.02E-06          | 6.78   | 8.235   |
| 16 | 250        | 7.42E-04        | 5.03E-06          | 7.97   | 8.244   |
| 17 | 350        | 7.42E-04        | 7.04E-06          | 9.98   | 8.257   |
| 18 | 450        | 7.42E-04        | 9.05E-06          | 11.61  | 8.265   |

**Table S1.** Titration of **1a** with  $NO_3^-$ . (Stock  $[NO_3^-] = 20.1 \text{ mM}$ )



**Figure S1.** Binding isotherm for  $NO_3^-$  titration of **1a** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1a** (0.742 mM) titrated with TBA  $NO_3^-$  (0-11.6 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1b</b> ] (M) | [Cl <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|------------------------|--------|---------|
| 0  | 0          | 3.77E-04          | 0.00E+00               | 0.00   | 7.467   |
| 1  | 4          | 3.77E-04          | 7.99E-05               | 0.21   | 7.550   |
| 2  | 8          | 3.77E-04          | 1.59E-04               | 0.42   | 7.655   |
| 3  | 12         | 3.77E-04          | 2.37E-04               | 0.63   | 7.832   |
| 4  | 16         | 3.77E-04          | 3.13E-04               | 0.83   | 7.940   |
| 5  | 20         | 3.77E-04          | 3.89E-04               | 1.03   | 8.000   |
| 6  | 24         | 3.77E-04          | 4.64E-04               | 1.23   | 8.033   |
| 7  | 28         | 3.77E-04          | 5.38E-04               | 1.43   | 8.053   |
| 8  | 32         | 3.77E-04          | 6.11E-04               | 1.62   | 8.066   |
| 9  | 37         | 3.77E-04          | 7.01E-04               | 1.86   | 8.076   |
| 10 | 45         | 3.77E-04          | 8.42E-04               | 2.23   | 8.086   |
| 11 | 55         | 3.77E-04          | 1.01E-03               | 2.69   | 8.093   |
| 12 | 65         | 3.77E-04          | 1.18E-03               | 3.13   | 8.098   |
| 13 | 80         | 3.77E-04          | 1.42E-03               | 3.76   | 8.102   |
| 14 | 100        | 3.77E-04          | 1.72E-03               | 4.57   | 8.106   |
| 15 | 125        | 3.77E-04          | 2.08E-03               | 5.52   | 8.108   |
| 16 | 150        | 3.77E-04          | 2.41E-03               | 6.40   | 8.110   |
| 17 | 200        | 3.77E-04          | 3.02E-03               | 8.00   | 8.112   |
| 18 | 250        | 3.77E-04          | 3.55E-03               | 9.41   | 8.113   |
| 19 | 350        | 3.77E-04          | 4.44E-03               | 11.79  | 8.115   |
| 20 | 450        | 3.77E-04          | 5.17E-03               | 13.71  | 8.116   |

**Table S2.** Titration of **1b** with  $Cl^-$ . (Stock  $[Cl^-] = 12.1 \text{ mM}$ )



**Figure S2.** Binding isotherm for Cl<sup>-</sup> titration of **1b** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1b** (0.377 mM) titrated with TBA Cl<sup>-</sup> (0-13.7 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1b</b> ] (M) | $[Cl^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-------------------|---------------|--------|---------|
| 0  | 0          | 4.76E-04          | 0.00E+00      | 0.00   | 7.486   |
| 1  | 5          | 4.76E-04          | 9.39E-08      | 0.33   | 7.524   |
| 2  | 10         | 4.76E-04          | 1.88E-07      | 0.65   | 7.683   |
| 3  | 15         | 4.76E-04          | 2.82E-07      | 0.96   | 7.769   |
| 4  | 20         | 4.76E-04          | 3.76E-07      | 1.27   | 7.820   |
| 5  | 30         | 4.76E-04          | 5.64E-07      | 1.88   | 7.877   |
| 6  | 40         | 4.76E-04          | 7.51E-07      | 2.47   | 7.906   |
| 7  | 50         | 4.76E-04          | 9.39E-07      | 3.04   | 7.924   |
| 8  | 60         | 4.76E-04          | 1.13E-06      | 3.59   | 7.935   |
| 9  | 80         | 4.76E-04          | 1.50E-06      | 4.65   | 7.949   |
| 10 | 100        | 4.76E-04          | 1.88E-06      | 5.64   | 7.958   |
| 11 | 125        | 4.76E-04          | 2.35E-06      | 6.81   | 7.965   |
| 12 | 150        | 4.76E-04          | 2.82E-06      | 7.90   | 7.969   |
| 13 | 200        | 4.76E-04          | 3.76E-06      | 9.87   | 7.975   |
| 14 | 300        | 4.76E-04          | 5.64E-06      | 13.17  | 7.981   |
| 15 | 400        | 4.76E-04          | 7.51E-06      | 15.80  | 7.984   |
| 16 | 600        | 4.76E-04          | 1.13E-05      | 19.75  | 7.988   |
| 17 | 800        | 4.76E-04          | 1.50E-05      | 22.57  | 7.989   |
| 18 | 1000       | 4.76E-04          | 1.88E-05      | 24.69  | 7.990   |

**Table S3.** Titration of **1b** with  $Br^-$ . (Stock  $[Br^-] = 18.8 \text{ mM}$ )



**Figure S3.** Binding isotherm for Br<sup>-</sup> titration of **1b** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1b** (0.476 mM) titrated with TBA Br<sup>-</sup> (0-24.7 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1b</b> ] (M) | [I <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|-----------------------|--------|---------|
| 0  | 0          | 1.27E-03          | 0.00E+00              | 0.00   | 8.062   |
| 1  | 5          | 1.27E-03          | 3.13E-07              | 0.41   | 8.094   |
| 2  | 10         | 1.27E-03          | 6.25E-07              | 0.81   | 8.115   |
| 3  | 15         | 1.27E-03          | 9.38E-07              | 1.20   | 8.133   |
| 4  | 20         | 1.27E-03          | 1.25E-06              | 1.59   | 8.147   |
| 5  | 30         | 1.27E-03          | 1.88E-06              | 2.35   | 8.169   |
| 6  | 40         | 1.27E-03          | 2.50E-06              | 3.09   | 8.184   |
| 7  | 50         | 1.27E-03          | 3.13E-06              | 3.80   | 8.196   |
| 8  | 65         | 1.27E-03          | 4.06E-06              | 4.83   | 8.209   |
| 9  | 80         | 1.27E-03          | 5.00E-06              | 5.81   | 8.218   |
| 10 | 100        | 1.27E-03          | 6.25E-06              | 7.06   | 8.227   |
| 11 | 120        | 1.27E-03          | 7.50E-06              | 8.23   | 8.234   |
| 12 | 160        | 1.27E-03          | 1.00E-05              | 10.40  | 8.243   |
| 13 | 200        | 1.27E-03          | 1.25E-05              | 12.35  | 8.248   |
| 14 | 250        | 1.27E-03          | 1.56E-05              | 14.53  | 8.252   |
| 15 | 300        | 1.27E-03          | 1.88E-05              | 16.47  | 8.255   |
| 16 | 400        | 1.27E-03          | 2.50E-05              | 19.76  | 8.259   |
| 17 | 600        | 1.27E-03          | 3.75E-05              | 24.70  | 8.262   |
| 18 | 800        | 1.27E-03          | 5.00E-05              | 28.23  | 8.263   |
| 19 | 1200       | 1.27E-03          | 7.50E-05              | 32.93  | 8.264   |

**Table S4.** Titration of **1b** with  $I^-$ . (Stock  $[I^-] = 62.5 \text{ mM}$ )



**Figure S4.** Binding isotherm for  $\Gamma$  titration of **1b** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1b** (1.27 mM) titrated with TBA  $\Gamma$  (0-32.9 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1b</b> ] (M) | $[NO_{3}^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-------------------|-------------------|--------|---------|
| 0  | 0          | 4.45E-04          | 0.00E+00          | 0.00   | 7.284   |
| 1  | 5          | 4.45E-04          | 1.35E-07          | 0.50   | 7.719   |
| 2  | 10         | 4.45E-04          | 2.71E-07          | 1.00   | 7.997   |
| 3  | 15         | 4.45E-04          | 4.06E-07          | 1.48   | 8.105   |
| 4  | 20         | 4.45E-04          | 5.42E-07          | 1.96   | 8.15    |
| 5  | 25         | 4.45E-04          | 6.77E-07          | 2.43   | 8.174   |
| 6  | 30         | 4.45E-04          | 8.13E-07          | 2.90   | 8.188   |
| 7  | 35         | 4.45E-04          | 9.48E-07          | 3.35   | 8.197   |
| 8  | 40         | 4.45E-04          | 1.08E-06          | 3.80   | 8.204   |
| 9  | 50         | 4.45E-04          | 1.35E-06          | 4.68   | 8.213   |
| 10 | 60         | 4.45E-04          | 1.63E-06          | 5.53   | 8.219   |
| 11 | 80         | 4.45E-04          | 2.17E-06          | 7.16   | 8.228   |
| 12 | 100        | 4.45E-04          | 2.71E-06          | 8.69   | 8.231   |
| 13 | 150        | 4.45E-04          | 4.06E-06          | 12.17  | 8.238   |
| 14 | 200        | 4.45E-04          | 5.42E-06          | 15.22  | 8.244   |
| 15 | 300        | 4.45E-04          | 8.13E-06          | 20.29  | 8.248   |
| 16 | 400        | 4.45E-04          | 1.08E-05          | 24.34  | 8.251   |
| 17 | 600        | 4.45E-04          | 1.63E-05          | 30.43  | 8.254   |

**Table S5.** Titration of **1b** with  $NO_3^-$ . (Stock  $[NO_3^-] = 27.1 \text{ mM}$ )



**Figure S5.** Binding isotherm for  $NO_3^-$  titration of **1b** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1b** (0.445 mM) titrated with TBA  $NO_3^-$  (0-30.4 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [1c] (M) | [Cl <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|----------|------------------------|--------|---------|
| 0  | 0          | 7.43E-04 | 0.00E+00               | 0.00   | 7.027   |
| 1  | 5          | 7.43E-04 | 2.26E-04               | 0.30   | 7.573   |
| 2  | 10         | 7.43E-04 | 4.49E-04               | 0.60   | 7.791   |
| 3  | 15         | 7.43E-04 | 6.68E-04               | 0.90   | 7.92    |
| 4  | 20         | 7.43E-04 | 8.83E-04               | 1.19   | 7.989   |
| 5  | 25         | 7.43E-04 | 1.10E-03               | 1.47   | 8.02    |
| 6  | 30         | 7.43E-04 | 1.30E-03               | 1.75   | 8.037   |
| 7  | 40         | 7.43E-04 | 1.71E-03               | 2.30   | 8.053   |
| 8  | 50         | 7.43E-04 | 2.11E-03               | 2.83   | 8.062   |
| 9  | 60         | 7.43E-04 | 2.49E-03               | 3.35   | 8.067   |
| 10 | 80         | 7.43E-04 | 3.22E-03               | 4.33   | 8.073   |
| 11 | 100        | 7.43E-04 | 3.91E-03               | 5.26   | 8.077   |
| 12 | 150        | 7.43E-04 | 5.48E-03               | 7.37   | 8.084   |
| 13 | 200        | 7.43E-04 | 6.84E-03               | 9.21   | 8.087   |
| 14 | 300        | 7.43E-04 | 9.13E-03               | 12.28  | 8.093   |
| 15 | 400        | 7.43E-04 | 1.10E-02               | 14.73  | 8.097   |
| 16 | 600        | 7.43E-04 | 1.37E-02               | 18.41  | 8.102   |
| 17 | 1100       | 7.43E-04 | 1.77E-02               | 23.83  | 8.106   |
| 18 | 1600       | 7.43E-04 | 1.99E-02               | 26.78  | 8.106   |

**Table S6.** Titration of **1c** with  $Cl^-$ . (Stock  $[Cl^-] = 27.4 \text{ mM}$ )



**Figure S6.** Binding isotherm for Cl<sup>-</sup> titration of **1c** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1c** (0.743 mM) titrated with TBA Cl<sup>-</sup> (0-26.78 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1c</b> ] (M) | [Br <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|------------------------|--------|---------|
| 0  | 0          | 5.18E-04          | 0.00E+00               | 0.00   | 7.042   |
| 1  | 5          | 5.18E-04          | 2.03E-04               | 0.39   | 7.479   |
| 2  | 10         | 5.18E-04          | 4.02E-04               | 0.78   | 7.592   |
| 3  | 15         | 5.18E-04          | 5.98E-04               | 1.16   | 7.672   |
| 4  | 20         | 5.18E-04          | 7.91E-04               | 1.53   | 7.722   |
| 5  | 25         | 5.18E-04          | 9.81E-04               | 1.89   | 7.761   |
| 6  | 30         | 5.18E-04          | 1.17E-03               | 2.26   | 7.79    |
| 7  | 40         | 5.18E-04          | 1.53E-03               | 2.96   | 7.828   |
| 8  | 50         | 5.18E-04          | 1.89E-03               | 3.64   | 7.852   |
| 9  | 60         | 5.18E-04          | 2.23E-03               | 4.31   | 7.87    |
| 10 | 80         | 5.18E-04          | 2.88E-03               | 5.57   | 7.891   |
| 11 | 150        | 5.18E-04          | 4.90E-03               | 9.47   | 7.905   |
| 12 | 200        | 5.18E-04          | 6.13E-03               | 11.84  | 7.924   |
| 13 | 300        | 5.18E-04          | 8.17E-03               | 15.79  | 7.935   |
| 14 | 400        | 5.18E-04          | 9.81E-03               | 18.95  | 7.946   |
| 15 | 600        | 5.18E-04          | 1.23E-02               | 23.68  | 7.952   |
| 16 | 1000       | 5.18E-04          | 1.53E-02               | 29.60  | 7.958   |
| 17 | 1500       | 5.18E-04          | 1.75E-02               | 33.83  | 7.962   |

**Table S7.** Titration of 1c with  $Br^{-}$ . (Stock  $[Br^{-}] = 24.5 \text{ mM}$ )



**Figure S7.** Binding isotherm for Br<sup>-</sup> titration of **1c** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1c** (0.518 mM) titrated with TBA Br<sup>-</sup> (0-33.83 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1c</b> ] (M) | [I <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|-----------------------|--------|---------|
| 0  | 0          | 7.35E-04          | 0.00E+00              | 0      | 7.339   |
| 1  | 5          | 7.35E-04          | 5.81E-04              | 0.79   | 7.41    |
| 2  | 10         | 7.35E-04          | 1.15E-03              | 1.57   | 7.463   |
| 3  | 15         | 7.35E-04          | 1.72E-03              | 2.34   | 7.506   |
| 4  | 20         | 7.35E-04          | 2.27E-03              | 3.09   | 7.537   |
| 5  | 25         | 7.35E-04          | 2.81E-03              | 3.83   | 7.567   |
| 6  | 30         | 7.35E-04          | 3.35E-03              | 4.56   | 7.592   |
| 7  | 40         | 7.35E-04          | 4.40E-03              | 5.98   | 7.627   |
| 8  | 50         | 7.35E-04          | 5.41E-03              | 7.37   | 7.654   |
| 9  | 60         | 7.35E-04          | 6.39E-03              | 8.70   | 7.673   |
| 10 | 80         | 7.35E-04          | 8.27E-03              | 11.26  | 7.703   |
| 11 | 100        | 7.35E-04          | 1.00E-02              | 13.68  | 7.723   |
| 12 | 150        | 7.35E-04          | 1.41E-02              | 19.15  | 7.754   |
| 13 | 200        | 7.35E-04          | 1.76E-02              | 23.94  | 7.774   |
| 14 | 300        | 7.35E-04          | 2.34E-02              | 31.92  | 7.789   |
| 15 | 400        | 7.35E-04          | 2.81E-02              | 38.30  | 7.809   |
| 16 | 600        | 7.35E-04          | 3.52E-02              | 47.88  | 7.813   |
| 17 | 900        | 7.35E-04          | 4.22E-02              | 57.45  | 7.817   |

**Table S8.** Titration of **1c** with  $I^-$ . (Stock  $[I^-] = 70.3 \text{ mM}$ )



**Figure S8.** Binding isotherm for  $\Gamma$  titration of **1c** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1c** (0.734 mM) titrated with TBA  $\Gamma$  (0-57.45 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1d</b> ] (M) | $[Cl^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-------------------|---------------|--------|---------|
| 0  | 0          | 6.65E-04          | 0.00E+00      | 0      | 7.342   |
| 1  | 5          | 6.65E-04          | 2.19E-04      | 0.33   | 7.586   |
| 2  | 10         | 6.65E-04          | 4.33E-04      | 0.65   | 7.78    |
| 3  | 15         | 6.65E-04          | 6.45E-04      | 0.97   | 7.904   |
| 4  | 20         | 6.65E-04          | 8.53E-04      | 1.28   | 7.971   |
| 5  | 25         | 6.65E-04          | 1.06E-03      | 1.59   | 8.013   |
| 6  | 30         | 6.65E-04          | 1.26E-03      | 1.89   | 8.034   |
| 7  | 40         | 6.65E-04          | 1.65E-03      | 2.48   | 8.055   |
| 8  | 50         | 6.65E-04          | 2.03E-03      | 3.06   | 8.071   |
| 9  | 60         | 6.65E-04          | 2.40E-03      | 3.61   | 8.079   |
| 10 | 80         | 6.65E-04          | 3.11E-03      | 4.68   | 8.089   |
| 11 | 100        | 6.65E-04          | 3.78E-03      | 5.68   | 8.095   |
| 12 | 150        | 6.65E-04          | 5.29E-03      | 7.95   | 8.104   |
| 13 | 200        | 6.65E-04          | 6.61E-03      | 9.94   | 8.11    |
| 14 | 300        | 6.65E-04          | 8.81E-03      | 13.25  | 8.117   |
| 15 | 400        | 6.65E-04          | 1.06E-02      | 15.90  | 8.121   |
| 16 | 600        | 6.65E-04          | 1.32E-02      | 19.88  | 8.126   |
| 17 | 900        | 6.65E-04          | 1.59E-02      | 23.86  | 8.127   |

**Table S9.** Titration of **1d** with  $Cl^{-}$ . (Stock  $[Cl^{-}] = 26.4 \text{ mM}$ )



**Figure S9.** Binding isotherm for Cl<sup>-</sup> titration of **1d** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1d** (0.665 mM) titrated with TBA Cl<sup>-</sup> (0-23.86 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [1d] (M) | [Br](M)  | Equiv. | δ (ppm) |
|----|------------|----------|----------|--------|---------|
| 0  | 0          | 9.32E-04 | 0.00E+00 | 0      | 7.338   |
| 1  | 5          | 9.32E-04 | 2.63E-04 | 0.28   | 7.473   |
| 2  | 10         | 9.32E-04 | 5.22E-04 | 0.56   | 7.58    |
| 3  | 15         | 9.32E-04 | 7.77E-04 | 0.83   | 7.669   |
| 4  | 20         | 9.32E-04 | 1.03E-03 | 1.10   | 7.726   |
| 5  | 25         | 9.32E-04 | 1.27E-03 | 1.37   | 7.768   |
| 6  | 30         | 9.32E-04 | 1.52E-03 | 1.63   | 7.806   |
| 7  | 40         | 9.32E-04 | 1.99E-03 | 2.14   | 7.841   |
| 8  | 50         | 9.32E-04 | 2.45E-03 | 2.63   | 7.869   |
| 9  | 60         | 9.32E-04 | 2.90E-03 | 3.11   | 7.886   |
| 10 | 80         | 9.32E-04 | 3.75E-03 | 4.02   | 7.91    |
| 11 | 100        | 9.32E-04 | 4.55E-03 | 4.89   | 7.924   |
| 12 | 150        | 9.32E-04 | 6.37E-03 | 6.84   | 7.944   |
| 13 | 200        | 9.32E-04 | 7.97E-03 | 8.55   | 7.955   |
| 14 | 300        | 9.32E-04 | 1.06E-02 | 11.40  | 7.97    |
| 15 | 400        | 9.32E-04 | 1.27E-02 | 13.68  | 7.975   |
| 16 | 600        | 9.32E-04 | 1.59E-02 | 17.10  | 7.982   |
| 17 | 900        | 9.32E-04 | 1.91E-02 | 20.52  | 7.987   |
| 18 | 1300       | 9.32E-04 | 2.18E-02 | 23.40  | 7.989   |
| 19 | 1800       | 9.32E-04 | 2.40E-02 | 25.65  | 7,991   |

**Table S10.** Titration of 1d with  $Br^{-}$ . (Stock  $[Br^{-}] = 31.8 \text{ mM}$ )



**Figure S10.** Binding isotherm for  $Br^-$  titration of **1d** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1d** (0.932 mM) titrated with TBA  $Br^-$  (0-25.65 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1d</b> ] (M) | [I <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|-----------------------|--------|---------|
| 0  | 0          | 8.73E-04          | 0.00E+00              | 0      | 7.342   |
| 1  | 5          | 8.73E-04          | 7.46E-04              | 0.85   | 7.421   |
| 2  | 10         | 8.73E-04          | 1.48E-03              | 1.69   | 7.477   |
| 3  | 15         | 8.73E-04          | 2.20E-03              | 2.52   | 7.519   |
| 4  | 20         | 8.73E-04          | 2.91E-03              | 3.33   | 7.556   |
| 5  | 25         | 8.73E-04          | 3.61E-03              | 4.13   | 7.583   |
| 6  | 30         | 8.73E-04          | 4.30E-03              | 4.92   | 7.609   |
| 7  | 40         | 8.73E-04          | 5.64E-03              | 6.46   | 7.642   |
| 8  | 50         | 8.73E-04          | 6.94E-03              | 7.95   | 7.669   |
| 9  | 60         | 8.73E-04          | 8.20E-03              | 9.40   | 7.689   |
| 10 | 80         | 8.73E-04          | 1.06E-02              | 12.16  | 7.721   |
| 11 | 110        | 8.73E-04          | 1.40E-02              | 16.01  | 7.742   |
| 12 | 150        | 8.73E-04          | 1.80E-02              | 20.67  | 7.773   |
| 13 | 200        | 8.73E-04          | 2.26E-02              | 25.84  | 7.79    |
| 14 | 300        | 8.73E-04          | 3.01E-02              | 34.45  | 7.808   |
| 15 | 400        | 8.73E-04          | 3.61E-02              | 41.34  | 7.817   |
| 16 | 600        | 8.73E-04          | 4.51E-02              | 51.68  | 7.825   |
| 17 | 900        | 8.73E-04          | 5.41E-02              | 62.01  | 7.83    |
| 18 | 1300       | 8.73E-04          | 6.17E-02              | 70.72  | 7.832   |
| 19 | 1650       | 8.73E-04          | 6.62E-02              | 75.79  | 7.832   |

**Table S11.** Titration of 1d with  $I^-$ . (Stock  $[I^-] = 90.2 \text{ mM}$ )



**Figure S11.** Binding isotherm for  $\Gamma$  titration of **1d** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1d** (0.873 mM) titrated with TBA  $\Gamma$  (0-75.79 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1e</b> ] (M) | $[Cl^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-------------------|---------------|--------|---------|
| 0  | 0          | 7.74E-04          | 7.74E-04      | 0.00   | 7.453   |
| 1  | 5          | 7.74E-04          | 7.74E-04      | 0.42   | 7.743   |
| 2  | 10         | 7.74E-04          | 7.74E-04      | 0.83   | 7.911   |
| 3  | 15         | 7.74E-04          | 7.74E-04      | 1.23   | 7.988   |
| 4  | 20         | 7.74E-04          | 7.74E-04      | 1.63   | 8.021   |
| 5  | 25         | 7.74E-04          | 7.74E-04      | 2.02   | 8.039   |
| 6  | 30         | 7.74E-04          | 7.74E-04      | 2.40   | 8.050   |
| 7  | 40         | 7.74E-04          | 7.74E-04      | 3.16   | 8.064   |
| 8  | 50         | 7.74E-04          | 7.74E-04      | 3.88   | 8.072   |
| 9  | 60         | 7.74E-04          | 7.74E-04      | 4.59   | 8.077   |
| 10 | 80         | 7.74E-04          | 7.74E-04      | 5.94   | 8.083   |
| 11 | 100        | 7.74E-04          | 7.74E-04      | 7.21   | 8.087   |
| 12 | 150        | 7.74E-04          | 7.74E-04      | 10.10  | 8.092   |
| 13 | 200        | 7.74E-04          | 7.74E-04      | 12.62  | 8.095   |
| 14 | 300        | 7.74E-04          | 7.74E-04      | 16.83  | 8.098   |
| 15 | 400        | 7.74E-04          | 7.74E-04      | 20.20  | 8.100   |
| 16 | 600        | 7.74E-04          | 7.74E-04      | 25.25  | 8.103   |
|    |            |                   |               |        |         |

**Table S12.** Titration of **1e** with  $Cl^-$ . (Stock  $[Cl^-] = 39.1 \text{ mM}$ )



**Figure S12.** Binding isotherm for Cl<sup>-</sup> titration of **1e** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1e** (0.774 mM) titrated with TBA Cl<sup>-</sup> (0-25 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1e</b> ] (M) | [Br <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|------------------------|--------|---------|
| 0  | 0          | 1.08E-03          | 0.00E+00               | 0.00   | 7.473   |
| 1  | 5          | 1.08E-03          | 3.67E-04               | 0.34   | 7.588   |
| 2  | 10         | 1.08E-03          | 7.28E-04               | 0.67   | 7.676   |
| 3  | 15         | 1.08E-03          | 1.08E-03               | 1.00   | 7.739   |
| 4  | 20         | 1.08E-03          | 1.43E-03               | 1.32   | 7.785   |
| 5  | 25         | 1.08E-03          | 1.78E-03               | 1.64   | 7.821   |
| 6  | 30         | 1.08E-03          | 2.11E-03               | 1.95   | 7.847   |
| 7  | 40         | 1.08E-03          | 2.77E-03               | 2.56   | 7.884   |
| 8  | 50         | 1.08E-03          | 3.42E-03               | 3.15   | 7.907   |
| 9  | 60         | 1.08E-03          | 4.04E-03               | 3.72   | 7.925   |
| 10 | 80         | 1.08E-03          | 5.22E-03               | 4.82   | 7.946   |
| 11 | 100        | 1.08E-03          | 6.34E-03               | 5.85   | 7.961   |
| 12 | 150        | 1.08E-03          | 8.88E-03               | 8.19   | 7.978   |
| 13 | 200        | 1.08E-03          | 1.11E-02               | 10.24  | 7.994   |
| 14 | 300        | 1.08E-03          | 1.48E-02               | 13.65  | 8.001   |
| 15 | 400        | 1.08E-03          | 1.78E-02               | 16.39  | 8.005   |
| 16 | 600        | 1.08E-03          | 2.22E-02               | 20.48  | 8.008   |
| 17 | 800        | 1.08E-03          | 2.54E-02               | 23.41  | 8.009   |
| 18 | 1000       | 1.08E-03          | 2.77E-02               | 25.60  | 8.01    |

**Table S13.** Titration of **1e** with  $Br^{-}$  (Stock [ $Br^{-}$ ] = 44.4 mM).



**Figure S13.** Binding isotherm for  $Br^-$  titration of **1e** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1e** (1.08 mM) titrated with TBA  $Br^-$  (0-26 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1e</b> ] (M) | [I <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|-----------------------|--------|---------|
| 0  | 0          | 1.15E-03          | 0.00E+00              | 0.00   | 7.445   |
| 1  | 5          | 1.15E-03          | 8.19E-04              | 0.71   | 7.493   |
| 2  | 10         | 1.15E-03          | 1.62E-03              | 1.41   | 7.523   |
| 3  | 20         | 1.15E-03          | 3.20E-03              | 2.78   | 7.573   |
| 4  | 30         | 1.15E-03          | 4.72E-03              | 4.11   | 7.612   |
| 5  | 40         | 1.15E-03          | 6.19E-03              | 5.39   | 7.641   |
| 6  | 50         | 1.15E-03          | 7.62E-03              | 6.64   | 7.665   |
| 7  | 60         | 1.15E-03          | 9.01E-03              | 7.85   | 7.684   |
| 8  | 80         | 1.15E-03          | 1.17E-02              | 10.15  | 7.713   |
| 9  | 100        | 1.15E-03          | 1.42E-02              | 12.33  | 7.733   |
| 10 | 150        | 1.15E-03          | 1.98E-02              | 17.26  | 7.764   |
| 11 | 200        | 1.15E-03          | 2.48E-02              | 21.58  | 7.782   |
| 12 | 300        | 1.15E-03          | 3.30E-02              | 28.77  | 7.799   |
| 13 | 400        | 1.15E-03          | 3.96E-02              | 34.52  | 7.808   |
| 14 | 500        | 1.15E-03          | 4.51E-02              | 39.23  | 7.813   |
| 15 | 600        | 1.15E-03          | 4.96E-02              | 43.15  | 7.816   |
| 16 | 800        | 1.15E-03          | 5.66E-02              | 49.32  | 7.819   |
| 17 | 1000       | 1.15E-03          | 6.19E-02              | 53.94  | 7.820   |
| 18 | 1500       | 1.15E-03          | 7.08E-02              | 61.65  | 7.821   |

**Table S14.** Titration of **1e** with  $I^-$ . (Stock  $[I^-] = 99.1 \text{ mM}$ )



**Figure S4.** Binding isotherm for  $\Gamma$  titration of **1e** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1b** (1.15 mM) titrated with TBA  $\Gamma$  (0-62 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1e</b> ] (M) | $[NO_3^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-------------------|-----------------|--------|---------|
| 0  | 0          | 9.46E-04          | 0.00E+00        | 0.00   | 7.495   |
| 1  | 5          | 9.46E-04          | 3.36E-04        | 0.35   | 7.692   |
| 2  | 10         | 9.46E-04          | 6.66E-04        | 0.70   | 7.864   |
| 3  | 15         | 9.46E-04          | 9.91E-04        | 1.05   | 7.977   |
| 4  | 20         | 9.46E-04          | 1.31E-03        | 1.38   | 8.05    |
| 5  | 25         | 9.46E-04          | 1.63E-03        | 1.72   | 8.099   |
| 6  | 30         | 9.46E-04          | 1.93E-03        | 2.04   | 8.131   |
| 7  | 40         | 9.46E-04          | 2.54E-03        | 2.68   | 8.172   |
| 8  | 50         | 9.46E-04          | 3.13E-03        | 3.30   | 8.194   |
| 9  | 60         | 9.46E-04          | 3.69E-03        | 3.90   | 8.211   |
| 10 | 80         | 9.46E-04          | 4.78E-03        | 5.05   | 8.229   |
| 11 | 100        | 9.46E-04          | 5.80E-03        | 6.13   | 8.243   |
| 12 | 150        | 9.46E-04          | 8.13E-03        | 8.59   | 8.256   |
| 13 | 200        | 9.46E-04          | 1.02E-02        | 10.73  | 8.264   |
| 14 | 300        | 9.46E-04          | 1.35E-02        | 14.31  | 8.272   |
| 15 | 400        | 9.46E-04          | 1.63E-02        | 17.17  | 8.275   |
| 16 | 600        | 9.46E-04          | 2.03E-02        | 21.47  | 8.28    |
| 17 | 800        | 9.46E-04          | 2.32E-02        | 24.53  | 8.282   |
| 18 | 1000       | 9.46E-04          | 2.54E-02        | 26.83  | 8.283   |

**Table S15.** Titration of **1e** with  $NO_3^-$ . (Stock  $[NO_3^-] = 40.6 \text{ mM}$ )



Figure S15. Binding isotherm for  $NO_3^-$  titration of 1e in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of 1e (0.946 mM) titrated with TBA  $NO_3^-$  (0-27 equiv., bottom to top) in CDCl<sub>3</sub>.

|                                                                                                               | Guest (µL)                             | [ <b>1f</b> ] (M) | [Cl <sup>-</sup> ] (M) | Equiv.            | δ (ppm) |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|------------------------|-------------------|---------|
| 0                                                                                                             | 0                                      | 7.12E-04          | 0.00E+00               | 0                 | 7.399   |
| 1                                                                                                             | 5                                      | 7.12E-04          | 3.41E-04               | 0.48              | 7.676   |
| 2                                                                                                             | 10                                     | 7.12E-04          | 6.76E-04               | 0.95              | 7.859   |
| 3                                                                                                             | 15                                     | 7.12E-04          | 1.01E-03               | 1.41              | 7.955   |
| 4                                                                                                             | 20                                     | 7.12E-04          | 1.33E-03               | 1.87              | 8.004   |
| 5                                                                                                             | 25                                     | 7.12E-04          | 1.65E-03               | 2.32              | 8.032   |
| 6                                                                                                             | 30                                     | 7.12E-04          | 1.96E-03               | 2.76              | 8.048   |
| 7                                                                                                             | 40                                     | 7.12E-04          | 2.58E-03               | 3.62              | 8.068   |
| 8                                                                                                             | 50                                     | 7.12E-04          | 3.17E-03               | 4.45              | 8.078   |
| 9                                                                                                             | 60                                     | 7.12E-04          | 3.75E-03               | 5.26              | 8.086   |
| 10                                                                                                            | 80                                     | 7.12E-04          | 4.85E-03               | 6.81              | 8.095   |
| 11                                                                                                            | 100                                    | 7.12E-04          | 5.89E-03               | 8.27              | 8.103   |
| 12                                                                                                            | 150                                    | 7.12E-04          | 8.24E-03               | 11.58             | 8.114   |
| 13                                                                                                            | 200                                    | 7.12E-04          | 1.03E-02               | 14.47             | 8.123   |
| 14                                                                                                            | 300                                    | 7.12E-04          | 1.37E-02               | 19.29             | 8.134   |
| 15                                                                                                            | 400                                    | 7.12E-04          | 1.65E-02               | 23.15             | 8.14    |
| 16                                                                                                            | 600                                    | 7.12E-04          | 2.06E-02               | 28.94             | 8.148   |
| 17                                                                                                            | 800                                    | 7.12E-04          | 2.36E-02               | 33.08             | 8.15    |
| 18                                                                                                            | 1100                                   | 7.12E-04          | 2.67E-02               | 37.45             | 8.151   |
| 19                                                                                                            | 1500                                   | 7.12E-04          | 2.94E-02               | 41.34             | 8.151   |
|                                                                                                               |                                        |                   |                        |                   | 1 W     |
|                                                                                                               |                                        |                   |                        |                   |         |
|                                                                                                               |                                        |                   | ^                      |                   |         |
|                                                                                                               |                                        |                   |                        |                   |         |
|                                                                                                               |                                        |                   |                        |                   |         |
| E                                                                                                             | Binding Isotherm of [CI <sup>-</sup> ] |                   | ~                      |                   |         |
| Ê 0.6                                                                                                         | *******                                | * '*              |                        |                   |         |
| d 0.4                                                                                                         | *                                      | Experiment        |                        |                   |         |
| <i>γ</i> - |                                        | Predicted         |                        |                   |         |
| 0 5                                                                                                           | IO 15 20 25 30 35<br>[G]/[H]           | 40 45             |                        |                   |         |
| ه <sup>2</sup>                                                                                                | · · · · · · ·                          |                   |                        |                   |         |
| dual<br>**                                                                                                    | * * *<br>*<br>*                        | *                 |                        |                   | M       |
|                                                                                                               | * * Exp                                | periment          |                        |                   | n       |
| -2                                                                                                            | 0 20 30 40                             | 50 10 5 10 0      | 0.5 0.0 2              |                   | 70 6    |
|                                                                                                               |                                        | 10.5 10.0         | 9.5 9.0 8<br>f1 (pr    | .5 0.0 7.5<br>pm) | 7.U D.  |

**Table S16.** Titration of **1f** with  $Cl^-$ . (Stock  $[Cl^-] = 41.2 \text{ mM}$ )

**Figure S16.** Binding isotherm for Cl<sup>-</sup> titration of **1f** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1f** (0.712 mM) titrated with TBA Cl<sup>-</sup> (0-41.34 equiv., bottom to top) in CDCl<sub>3</sub>.

|                                                                       | Guest (µL)       | [ <b>1f</b> ] (M)                       | [Br <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|-----------------------------------------------------------------------|------------------|-----------------------------------------|------------------------|--------|---------|
| 0                                                                     | 0                | 7.34E-04                                | 0.00E+00               | 0      | 7.399   |
| 1                                                                     | 5                | 7.34E-04                                | 2.91E-04               | 0.40   | 7.514   |
| 2                                                                     | 10               | 7.34E-04                                | 5.78E-04               | 0.79   | 7.599   |
| 3                                                                     | 15               | 7.34E-04                                | 8.60E-04               | 1.17   | 7.663   |
| 4                                                                     | 20               | 7.34E-04                                | 1.14E-03               | 1.55   | 7.711   |
| 5                                                                     | 25               | 7.34E-04                                | 1.41E-03               | 1.92   | 7.75    |
| 6                                                                     | 30               | 7.34E-04                                | 1.68E-03               | 2.29   | 7.779   |
| 7                                                                     | 40               | 7.34E-04                                | 2.20E-03               | 3.00   | 7.819   |
| 8                                                                     | 50               | 7.34E-04                                | 2.71E-03               | 3.69   | 7.846   |
| 9                                                                     | 60               | 7.34E-04                                | 3.20E-03               | 4.36   | 7.871   |
| 10                                                                    | 80               | 7.34E-04                                | 4.15E-03               | 5.65   | 7.897   |
| 11                                                                    | 100              | 7.34E-04                                | 5.03E-03               | 6.86   | 7.912   |
| 12                                                                    | 150              | 7.34E-04                                | 7.05E-03               | 9.60   | 7.94    |
| 13                                                                    | 200              | 7.34E-04                                | 8.81E-03               | 12.00  | 7.955   |
| 14                                                                    | 300              | 7.34E-04                                | 1.17E-02               | 16.00  | 7.972   |
| 15                                                                    | 400              | 7.34E-04                                | 1.41E-02               | 19.19  | 7.981   |
| 16                                                                    | 600              | 7.34E-04                                | 1.76E-02               | 23.99  | 7.99    |
| 17                                                                    | 800              | 7.34E-04                                | 2.01E-02               | 27.42  | 7.994   |
| 18                                                                    | 1100             | 7.34E-04                                | 2.28E-02               | 31.05  | 7.994   |
| 19                                                                    | 1500             | 7.34E-04                                | 0.025173               | 34.27  | 7.994   |
|                                                                       |                  |                                         |                        |        |         |
| 0.8 E                                                                 | Binding Isothern | n of [Br]                               |                        |        |         |
| udd) <sup>0,6</sup><br>0,4<br>0,2<br>0,2<br>0,2<br>0,5                | 10 15<br>[G]/[H] | * * * * • • • • • • • • • • • • • • • • |                        |        |         |
| Sesiduals<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | * * * *          | * * * *<br>• Experiment<br>20 25 30     | 9.5 9.0                |        | 7.5 7.0 |

**Table S17.** Titration of **1f** with  $Br^{-}$ . (Stock  $[Br^{-}] = 35.2 \text{ mM}$ )

**Figure S17.** Binding isotherm for Br<sup>-</sup> titration of **1f** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1f** (0.734 mM) titrated with TBA Br<sup>-</sup> (0-34.27 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1f</b> ] (M) | [I <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|-----------------------|--------|---------|
| 0  | 0          | 6.54E-04          | 0.00E+00              | 0      | 7.394   |
| 1  | 5          | 6.54E-04          | 6.71E-04              | 1.03   | 7.44    |
| 2  | 10         | 6.54E-04          | 1.33E-03              | 2.03   | 7.478   |
| 3  | 15         | 6.54E-04          | 1.98E-03              | 3.03   | 7.508   |
| 4  | 20         | 6.54E-04          | 2.62E-03              | 4.00   | 7.535   |
| 5  | 25         | 6.54E-04          | 3.25E-03              | 4.96   | 7.556   |
| 6  | 30         | 6.54E-04          | 3.86E-03              | 5.91   | 7.575   |
| 7  | 40         | 6.54E-04          | 5.07E-03              | 7.75   | 7.608   |
| 8  | 50         | 6.54E-04          | 6.24E-03              | 9.54   | 7.635   |
| 9  | 60         | 6.54E-04          | 7.38E-03              | 11.28  | 7.658   |
| 10 | 80         | 6.54E-04          | 9.55E-03              | 14.59  | 7.689   |
| 11 | 100        | 6.54E-04          | 1.16E-02              | 17.72  | 7.711   |
| 12 | 150        | 6.54E-04          | 1.62E-02              | 24.81  | 7.748   |
| 13 | 200        | 6.54E-04          | 2.03E-02              | 31.01  | 7.771   |
| 14 | 300        | 6.54E-04          | 2.71E-02              | 41.35  | 7.797   |
| 15 | 400        | 6.54E-04          | 3.25E-02              | 49.62  | 7.811   |
| 16 | 600        | 6.54E-04          | 4.06E-02              | 62.02  | 7.821   |
| 17 | 800        | 6.54E-04          | 4.64E-02              | 70.88  | 7.826   |
| 18 | 1100       | 6.54E-04          | 5.25E-02              | 80.26  | 7.827   |
| 19 | 1500       | 6.54E-04          | 5.80E-02              | 88.6   | 7.825   |

**Table S18.** Titration of **1f** with  $I^-$ . (Stock  $[I^-] = 81.2 \text{ mM}$ )



**Figure S18.** Binding isotherm for  $\Gamma$  titration of **1f** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1f** (0.654 mM) titrated with TBA  $\Gamma$  (0-88.60 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1g</b> ] (M) | $[Cl^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-------------------|---------------|--------|---------|
| 0  | 0          | 8.27E-04          | 0.00E+00      | 0.00   | 7.468   |
| 1  | 5          | 8.27E-04          | 4.00E-04      | 0.48   | 7.720   |
| 2  | 10         | 8.27E-04          | 7.92E-04      | 0.96   | 7.870   |
| 3  | 20         | 8.27E-04          | 1.56E-03      | 1.89   | 7.946   |
| 4  | 30         | 8.27E-04          | 2.30E-03      | 2.78   | 7.988   |
| 5  | 50         | 8.27E-04          | 3.72E-03      | 4.50   | 8.014   |
| 6  | 70         | 8.27E-04          | 5.05E-03      | 6.11   | 8.032   |
| 7  | 90         | 8.27E-04          | 6.31E-03      | 7.63   | 8.054   |
| 8  | 110        | 8.27E-04          | 7.49E-03      | 9.06   | 8.068   |
| 9  | 130        | 8.27E-04          | 8.61E-03      | 10.41  | 8.078   |
| 10 | 150        | 8.27E-04          | 9.67E-03      | 11.69  | 8.091   |
| 11 | 190        | 8.27E-04          | 1.16E-02      | 14.06  | 8.100   |
| 12 | 240        | 8.27E-04          | 1.38E-02      | 16.70  | 8.114   |
| 13 | 300        | 8.27E-04          | 1.61E-02      | 19.49  | 8.123   |
| 14 | 400        | 8.27E-04          | 1.93E-02      | 23.39  | 8.135   |
| 15 | 500        | 8.27E-04          | 2.20E-02      | 26.58  | 8.143   |

**Table S19.** Titration of **1g** with  $Cl^-$ . (Stock  $[Cl^-] = 48.3 \text{ mM}$ ).



**Figure S19.** Binding isotherm for Cl<sup>-</sup> titration of **1g** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1g** (0.827 mM) titrated with TBA Cl<sup>-</sup> (0-27 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1g</b> ] (M) | [Br <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|------------------------|--------|---------|
| 0  | 0          | 1.17E-03          | 0.00E+00               | 0.00   | 7.466   |
| 1  | 5          | 1.17E-03          | 3.87E-04               | 0.33   | 7.557   |
| 2  | 10         | 1.17E-03          | 7.68E-04               | 0.66   | 7.629   |
| 3  | 15         | 1.17E-03          | 1.14E-03               | 0.97   | 7.685   |
| 4  | 20         | 1.17E-03          | 1.51E-03               | 1.29   | 7.730   |
| 5  | 30         | 1.17E-03          | 2.23E-03               | 1.90   | 7.792   |
| 6  | 40         | 1.17E-03          | 2.93E-03               | 2.50   | 7.832   |
| 7  | 50         | 1.17E-03          | 3.61E-03               | 3.07   | 7.861   |
| 8  | 60         | 1.17E-03          | 4.26E-03               | 3.63   | 7.882   |
| 9  | 80         | 1.17E-03          | 5.51E-03               | 4.70   | 7.910   |
| 10 | 100        | 1.17E-03          | 6.70E-03               | 5.71   | 7.930   |
| 11 | 125        | 1.17E-03          | 8.08E-03               | 6.89   | 7.947   |
| 12 | 150        | 1.17E-03          | 9.37E-03               | 7.99   | 7.959   |
| 13 | 200        | 1.17E-03          | 1.17E-02               | 9.99   | 7.975   |
| 14 | 300        | 1.17E-03          | 1.56E-02               | 13.32  | 7.994   |
| 15 | 400        | 1.17E-03          | 1.87E-02               | 15.99  | 8.005   |
| 16 | 600        | 1.17E-03          | 2.34E-02               | 19.99  | 8.013   |
| 17 | 800        | 1.17E-03          | 2.68E-02               | 22.84  | 8.022   |
| 18 | 1000       | 1.17E-03          | 2.93E-02               | 24.98  | 8.036   |

**Table S20.** Titration of **1g** with  $Br^-$ . (Stock  $[Br^-] = 46.9 \text{ mM}$ )



**Figure S20.** Binding isotherm for Br<sup>-</sup> titration of **1g** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1g** (1.17 mM) titrated with TBA Br<sup>-</sup> (0-25 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1g</b> ] (M) | [I <sup>-</sup> ] (M) | Equiv. | δ (ppm) |
|----|------------|-------------------|-----------------------|--------|---------|
| 0  | 0          | 1.21E-03          | 0.00E+00              | 0.00   | 7.466   |
| 1  | 5          | 1.21E-03          | 9.38E-04              | 0.78   | 7.498   |
| 2  | 10         | 1.21E-03          | 1.86E-03              | 1.54   | 7.524   |
| 3  | 20         | 1.21E-03          | 3.66E-03              | 3.03   | 7.565   |
| 4  | 30         | 1.21E-03          | 5.40E-03              | 4.48   | 7.6     |
| 5  | 40         | 1.21E-03          | 7.09E-03              | 5.87   | 7.628   |
| 6  | 50         | 1.21E-03          | 8.73E-03              | 7.23   | 7.651   |
| 7  | 60         | 1.21E-03          | 1.03E-02              | 8.54   | 7.671   |
| 8  | 80         | 1.21E-03          | 1.33E-02              | 11.06  | 7.701   |
| 9  | 100        | 1.21E-03          | 1.62E-02              | 13.43  | 7.724   |
| 10 | 150        | 1.21E-03          | 2.27E-02              | 18.80  | 7.761   |
| 11 | 200        | 1.21E-03          | 2.84E-02              | 23.49  | 7.782   |
| 12 | 300        | 1.21E-03          | 3.78E-02              | 31.33  | 7.804   |
| 13 | 400        | 1.21E-03          | 4.54E-02              | 37.59  | 7.815   |
| 14 | 500        | 1.21E-03          | 5.16E-02              | 42.72  | 7.822   |
| 15 | 600        | 1.21E-03          | 5.67E-02              | 46.99  | 7.826   |
| 16 | 800        | 1.21E-03          | 6.48E-02              | 53.70  | 7.83    |
| 17 | 1000       | 1.21E-03          | 7.09E-02              | 58.74  | 7.831   |

**Table S21.** Titration of **1g** with  $I^-$ . (Stock  $[I^-] = 113 \text{ mM}$ )



**Figure S21.** Binding isotherm for I<sup>-</sup> titration of **1g** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1g** (1.21 mM) titrated with TBA I<sup>-</sup> (0-59 equiv., bottom to top) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1g</b> ] (M) | $[NO_{3}^{-}](M)$ | Equiv. | δ (ppm) |
|----|------------|-------------------|-------------------|--------|---------|
| 0  | 0          | 9.19E-04          | 0.00E+00          | 0.00   | 7.467   |
| 1  | 5          | 9.19E-04          | 3.09E-04          | 0.34   | 7.638   |
| 2  | 10         | 9.19E-04          | 6.12E-04          | 0.67   | 7.772   |
| 3  | 15         | 9.19E-04          | 9.11E-04          | 0.99   | 7.877   |
| 4  | 20         | 9.19E-04          | 1.21E-03          | 1.31   | 7.946   |
| 5  | 30         | 9.19E-04          | 1.78E-03          | 1.94   | 8.034   |
| 6  | 40         | 9.19E-04          | 2.33E-03          | 2.54   | 8.084   |
| 7  | 50         | 9.19E-04          | 2.87E-03          | 3.13   | 8.117   |
| 8  | 60         | 9.19E-04          | 3.40E-03          | 3.70   | 8.139   |
| 9  | 80         | 9.19E-04          | 4.39E-03          | 4.78   | 8.167   |
| 10 | 100        | 9.19E-04          | 5.34E-03          | 5.81   | 8.185   |
| 11 | 125        | 9.19E-04          | 6.44E-03          | 7.01   | 8.2     |
| 12 | 150        | 9.19E-04          | 7.47E-03          | 8.13   | 8.209   |
| 13 | 200        | 9.19E-04          | 9.34E-03          | 10.17  | 8.221   |
| 14 | 300        | 9.19E-04          | 1.25E-02          | 13.55  | 8.234   |
| 15 | 400        | 9.19E-04          | 1.49E-02          | 16.26  | 8.241   |
| 16 | 600        | 9.19E-04          | 1.87E-02          | 20.33  | 8.248   |
| 17 | 800        | 9.19E-04          | 2.13E-02          | 23.24  | 8.251   |
| 18 | 1000       | 9.19E-04          | 2.33E-02          | 25.41  | 8.253   |

**Table S22.** Titration of **1g** with  $NO_3^-$ . (Stock  $[NO_3^-] = 37.3 \text{ mM}$ )



**Figure S22.** Binding isotherm for  $NO_3^-$  titration of **1g** in CDCl<sub>3</sub> by <sup>1</sup>H NMR. <sup>1</sup>H NMR stacked plot of **1g** (0.919 mM) titrated with TBA  $NO_3^-$  (0-25 equiv., bottom to top) in CDCl<sub>3</sub>.

## **UV-VIS Titrations**

**UV-Vis Titration Conditions**. UV-Vis titrations were carried out on an HP 8453 UV-Vis spectrometer equipped with a 265 nm high-pass filter. Water-saturated CHCl<sub>3</sub> was prepared in the same manner as for <sup>1</sup>H titrations. Association constants were determined by non-linear regression in HYPERquad fitting the complete spectrum simultaneously.<sup>10</sup> Hamilton gas-tight micro-syringes were used during serial dilutions and titrations. The reported association constants and errors were obtained from the average and standard deviation of three repeated titrations. Single representative titrations for each host/anion pair are included below. Titration data for **1a** with halides has been previously reported.<sup>8</sup>

A stock solution of **1a-g** was prepared by serial dilution from 1 mL to a final volume of 5 mL in CHCl<sub>3</sub>. An aliquot (2.0 mL) of the stock host solution was transferred to a quartz cuvette with septum cap as the starting volume. Guest solutions were prepared by taking a TBA salt up in the host stock solution (1 mL) then serial diluting to the final concentration (2.0 mL) using the host stock solution. Aliquots of guest solution were added to the cuvette and a spectrum recorded after each addition.

|    | Guest (µL) | [ <b>1a</b> ] (M) | $[NO_{3}^{-}](M)$ | Equiv. |
|----|------------|-------------------|-------------------|--------|
| 0  | 0          | 1.14E-05          | 0.00E+00          | 0.00   |
| 1  | 5          | 1.14E-05          | 7.41E-06          | 0.65   |
| 2  | 20         | 1.14E-05          | 2.94E-05          | 2.59   |
| 3  | 30         | 1.14E-05          | 4.39E-05          | 3.87   |
| 4  | 50         | 1.14E-05          | 7.25E-05          | 6.39   |
| 5  | 70         | 1.14E-05          | 1.01E-04          | 8.86   |
| 6  | 90         | 1.14E-05          | 1.28E-04          | 11.28  |
| 7  | 110        | 1.14E-05          | 1.55E-04          | 13.65  |
| 8  | 130        | 1.14E-05          | 1.81E-04          | 15.98  |
| 9  | 150        | 1.14E-05          | 2.07E-04          | 18.27  |
| 10 | 190        | 1.14E-05          | 2.58E-04          | 22.72  |
| 11 | 230        | 1.14E-05          | 3.07E-04          | 27.01  |
| 12 | 270        | 1.14E-05          | 3.54E-04          | 31.15  |
| 13 | 310        | 1.14E-05          | 3.99E-04          | 35.14  |
| 14 | 360        | 1.14E-05          | 4.53E-04          | 39.94  |
| 15 | 410        | 1.14E-05          | 5.06E-04          | 44.55  |
| 16 | 510        | 1.14E-05          | 6.04E-04          | 53.21  |
| 17 | 710        | 1.14E-05          | 7.79E-04          | 68.61  |
| 18 | 910        | 1.14E-05          | 9.30E-04          | 81.89  |
| 19 | 1110       | 1.14E-05          | 1.06E-03          | 93.46  |

**Table S23.** Titration of **1a** with  $NO_3^-$ . (Stock  $[NO_3^-] = 2.97 \text{ mM}$ ).



**Figure S23.** Binding isotherm for  $NO_3^-$  titration of **1a** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1a** (11.4  $\mu$ M) titrated with TBA  $NO_3^-$  (0-93 equiv., increasing abs.) in CDCl<sub>3</sub>.

| Guest (µL) | [1b] (M)                                                                                                                        | $[Cl^{-}](M)$                                                                                                                                                                                                                               | Equiv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | 1.04E-05                                                                                                                        | 0.00E+00                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5          | 1.04E-05                                                                                                                        | 6.03E-06                                                                                                                                                                                                                                    | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10         | 1.04E-05                                                                                                                        | 1.20E-05                                                                                                                                                                                                                                    | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25         | 1.04E-05                                                                                                                        | 2.99E-05                                                                                                                                                                                                                                    | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40         | 1.04E-05                                                                                                                        | 4.74E-05                                                                                                                                                                                                                                    | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55         | 1.04E-05                                                                                                                        | 6.47E-05                                                                                                                                                                                                                                    | 6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 70         | 1.04E-05                                                                                                                        | 8.18E-05                                                                                                                                                                                                                                    | 7.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 85         | 1.04E-05                                                                                                                        | 9.86E-05                                                                                                                                                                                                                                    | 9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100        | 1.04E-05                                                                                                                        | 1.15E-04                                                                                                                                                                                                                                    | 11.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 120        | 1.04E-05                                                                                                                        | 1.37E-04                                                                                                                                                                                                                                    | 13.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 140        | 1.04E-05                                                                                                                        | 1.58E-04                                                                                                                                                                                                                                    | 15.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 160        | 1.04E-05                                                                                                                        | 1.79E-04                                                                                                                                                                                                                                    | 17.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 180        | 1.04E-05                                                                                                                        | 2.00E-04                                                                                                                                                                                                                                    | 19.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 200        | 1.04E-05                                                                                                                        | 2.20E-04                                                                                                                                                                                                                                    | 21.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 250        | 1.04E-05                                                                                                                        | 2.69E-04                                                                                                                                                                                                                                    | 25.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 300        | 1.04E-05                                                                                                                        | 3.15E-04                                                                                                                                                                                                                                    | 30.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 400        | 1.04E-05                                                                                                                        | 4.03E-04                                                                                                                                                                                                                                    | 38.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 500        | 1.04E-05                                                                                                                        | 4.84E-04                                                                                                                                                                                                                                    | 46.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 700        | 1.04E-05                                                                                                                        | 6.27E-04                                                                                                                                                                                                                                    | 60.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 900        | 1.04E-05                                                                                                                        | 7.50E-04                                                                                                                                                                                                                                    | 72.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1100       | 1.04E-05                                                                                                                        | 8.58E-04                                                                                                                                                                                                                                    | 82.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Guest (μL)   0   5   10   25   40   55   70   85   100   120   140   160   180   200   250   300   400   500   700   900   1100 | Guest ( $\mu$ L)[1b] (M)01.04E-0551.04E-05101.04E-05251.04E-05401.04E-05551.04E-05701.04E-05851.04E-051001.04E-051201.04E-051401.04E-051601.04E-051801.04E-052001.04E-053001.04E-055001.04E-055001.04E-055001.04E-059001.04E-0511001.04E-05 | Guest ( $\mu$ L)[1b] (M)[CF] (M)01.04E-050.00E+0051.04E-056.03E-06101.04E-051.20E-05251.04E-052.99E-05401.04E-054.74E-05551.04E-056.47E-05701.04E-058.18E-05851.04E-059.86E-051001.04E-051.15E-041201.04E-051.37E-041401.04E-051.58E-041601.04E-052.20E-042001.04E-052.20E-042001.04E-053.15E-044001.04E-053.15E-044001.04E-054.03E-045001.04E-054.03E-045001.04E-054.03E-045001.04E-055.501.04E-055.505.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.501.04E-055.50 |

**Table S24.** Titration of **1b** with  $Cl^-$ . (Stock  $[Cl^-] = 2.42 \text{ mM}$ )



**Figure S24.** Binding isotherm for Cl<sup>-</sup> titration of **1b** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1b** (10.4  $\mu$ M) titrated with TBA Cl<sup>-</sup> (0-83 equiv., increasing abs.) in CDCl<sub>3</sub>.
|    | Guest (µL) | [ <b>1b</b> ] (M) | $[Br^{-}](M)$ | Equiv. |
|----|------------|-------------------|---------------|--------|
| 0  | 0          | 9.72E-06          | 0.00E+00      | 0.00   |
| 1  | 5          | 9.72E-06          | 6.52E-06      | 0.67   |
| 2  | 10         | 9.72E-06          | 1.30E-05      | 1.34   |
| 3  | 25         | 9.72E-06          | 3.23E-05      | 3.32   |
| 4  | 40         | 9.72E-06          | 5.12E-05      | 5.27   |
| 5  | 55         | 9.72E-06          | 6.99E-05      | 7.20   |
| 6  | 70         | 9.72E-06          | 8.84E-05      | 9.09   |
| 7  | 85         | 9.72E-06          | 1.07E-04      | 10.96  |
| 8  | 100        | 9.72E-06          | 1.24E-04      | 12.81  |
| 9  | 120        | 9.72E-06          | 1.48E-04      | 15.22  |
| 10 | 140        | 9.72E-06          | 1.71E-04      | 17.59  |
| 11 | 160        | 9.72E-06          | 1.94E-04      | 19.92  |
| 12 | 180        | 9.72E-06          | 2.16E-04      | 22.21  |
| 13 | 200        | 9.72E-06          | 2.38E-04      | 24.45  |
| 14 | 250        | 9.72E-06          | 2.90E-04      | 29.88  |
| 15 | 300        | 9.72E-06          | 3.41E-04      | 35.08  |
| 16 | 400        | 9.72E-06          | 4.36E-04      | 44.82  |
| 17 | 500        | 9.72E-06          | 5.23E-04      | 53.79  |
| 18 | 700        | 9.72E-06          | 6.78E-04      | 69.72  |
| 19 | 900        | 9.72E-06          | 8.11E-04      | 83.46  |
| 20 | 1100       | 9.72E-06          | 9.27E-04      | 95.43  |
| 21 | 1300       | 9.72E-06          | 1.03E-03      | 105.94 |
|    |            |                   |               |        |

**Table S25.** Titration of **1b** with  $Br^{-}$ . (Stock  $[Br^{-}] = 2.61 \text{ mM}$ )



**Figure S25.** Binding isotherm for Br<sup>-</sup> titration of **1b** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1b** (9.72  $\mu$ M) titrated with TBA Br<sup>-</sup> (0-105 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1b</b> ] (M) | $[NO_{3}^{-}](M)$ | Equiv. |
|----|------------|-------------------|-------------------|--------|
| 00 | 0          | 1.02E-05          | 0.00E+00          | 0.00   |
| 01 | 5          | 1.02E-05          | 5.87E-06          | 0.58   |
| 02 | 10         | 1.02E-05          | 1.17E-05          | 1.15   |
| 03 | 25         | 1.02E-05          | 2.91E-05          | 2.85   |
| 04 | 40         | 1.02E-05          | 4.62E-05          | 4.52   |
| 05 | 55         | 1.02E-05          | 6.30E-05          | 6.17   |
| 06 | 70         | 1.02E-05          | 7.96E-05          | 7.80   |
| 07 | 85         | 1.02E-05          | 9.60E-05          | 9.40   |
| 08 | 100        | 1.02E-05          | 1.12E-04          | 10.98  |
| 09 | 130        | 1.02E-05          | 1.44E-04          | 14.08  |
| 10 | 160        | 1.02E-05          | 1.74E-04          | 17.08  |
| 11 | 190        | 1.02E-05          | 2.04E-04          | 20.01  |
| 12 | 220        | 1.02E-05          | 2.33E-04          | 22.86  |
| 13 | 250        | 1.02E-05          | 2.62E-04          | 25.63  |
| 14 | 300        | 1.02E-05          | 3.07E-04          | 30.08  |
| 15 | 400        | 1.02E-05          | 3.92E-04          | 38.44  |
| 16 | 500        | 1.02E-05          | 4.71E-04          | 46.13  |
| 17 | 700        | 1.02E-05          | 6.11E-04          | 59.79  |
| 18 | 900        | 1.02E-05          | 7.31E-04          | 71.58  |
| 19 | 1100       | 1.02E-05          | 8.36E-04          | 81.84  |

**Table S26.** Titration of **1b** with  $NO_3^-$ . (Stock  $[NO_3^-] = 2.35 \text{ mM}$ ).



**Figure S26.** Binding isotherm for  $NO_3^-$  titration of **1b** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1b** (10.2  $\mu$ M) titrated with TBA  $NO_3^-$  (0-82 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1c</b> ] (M) | [Cl <sup>-</sup> ] (M) | Equiv. |
|----|------------|-------------------|------------------------|--------|
| 00 | 0          | 1.02E-05          | 0.00E+00               | 0.00   |
| 01 | 5          | 1.02E-05          | 5.97E-06               | 0.59   |
| 02 | 10         | 1.02E-05          | 1.19E-05               | 1.17   |
| 03 | 25         | 1.02E-05          | 2.95E-05               | 2.90   |
| 04 | 40         | 1.02E-05          | 4.69E-05               | 4.61   |
| 05 | 55         | 1.02E-05          | 6.40E-05               | 6.29   |
| 06 | 70         | 1.02E-05          | 8.09E-05               | 7.95   |
| 07 | 85         | 1.02E-05          | 9.75E-05               | 9.58   |
| 08 | 100        | 1.02E-05          | 1.14E-04               | 11.19  |
| 09 | 130        | 1.02E-05          | 1.46E-04               | 14.34  |
| 10 | 160        | 1.02E-05          | 1.77E-04               | 17.41  |
| 11 | 190        | 1.02E-05          | 2.08E-04               | 20.39  |
| 12 | 220        | 1.02E-05          | 2.37E-04               | 23.29  |
| 13 | 250        | 1.02E-05          | 2.66E-04               | 26.11  |
| 14 | 300        | 1.02E-05          | 3.12E-04               | 30.65  |
| 15 | 400        | 1.02E-05          | 3.99E-04               | 39.17  |
| 16 | 500        | 1.02E-05          | 4.79E-04               | 47.00  |
| 17 | 700        | 1.02E-05          | 6.20E-04               | 60.93  |
| 18 | 900        | 1.02E-05          | 7.43E-04               | 72.94  |
| 19 | 1100       | 1.02E-05          | 8.49E-04               | 83.39  |
|    |            |                   |                        |        |

**Table S27.** Titration of **1c** with  $Cl^{-}$ . (Stock  $[Cl^{-}] = 2.39 \text{ mM}$ ).



**Figure S27.** Binding isotherm for Cl<sup>-</sup> titration of **1c** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1c** (10.2  $\mu$ M) titrated with TBA Cl<sup>-</sup> (0-83 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1c</b> ] (M) | [Br–] (M) | Equiv. |
|----|------------|-------------------|-----------|--------|
| 00 | 0          | 1.02E-05          | 0.00E+00  | 0.00   |
| 01 | 5          | 1.02E-05          | 5.88E-06  | 0.58   |
| 02 | 10         | 1.02E-05          | 1.17E-05  | 1.15   |
| 03 | 25         | 1.02E-05          | 2.91E-05  | 2.87   |
| 04 | 40         | 1.02E-05          | 4.62E-05  | 4.55   |
| 05 | 55         | 1.02E-05          | 6.31E-05  | 6.21   |
| 06 | 70         | 1.02E-05          | 7.97E-05  | 7.85   |
| 07 | 85         | 1.02E-05          | 9.61E-05  | 9.46   |
| 08 | 100        | 1.02E-05          | 1.12E-04  | 11.05  |
| 09 | 130        | 1.02E-05          | 1.44E-04  | 14.16  |
| 10 | 160        | 1.02E-05          | 1.75E-04  | 17.19  |
| 11 | 190        | 1.02E-05          | 2.04E-04  | 20.13  |
| 12 | 220        | 1.02E-05          | 2.34E-04  | 23.00  |
| 13 | 250        | 1.02E-05          | 2.62E-04  | 25.79  |
| 14 | 300        | 1.02E-05          | 3.07E-04  | 30.27  |
| 15 | 400        | 1.02E-05          | 3.93E-04  | 38.68  |
| 16 | 500        | 1.02E-05          | 4.71E-04  | 46.41  |
| 17 | 700        | 1.02E-05          | 6.11E-04  | 60.17  |
| 18 | 900        | 1.02E-05          | 7.31E-04  | 72.02  |
| 19 | 1100       | 1.02E-05          | 8.36E-04  | 82.35  |

**Table S28.** Titration of 1c with  $Br^-$ . (Stock  $[Br^-] = 2.36 \text{ mM}$ ).



**Figure S28.** Binding isotherm for Br<sup>-</sup> titration of 1c in CHCl<sub>3</sub> by UV-vis. Stacked spectra of 1c (10.2  $\mu$ M) titrated with TBA Br<sup>-</sup> (0-82 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1c</b> ] (M) | $[NO_{3}^{-}](M)$ | Equiv. |
|----|------------|-------------------|-------------------|--------|
| 00 | 0          | 1.02E-05          | 0.00E+00          | 0.00   |
| 01 | 5          | 1.02E-05          | 5.85E-06          | 0.57   |
| 02 | 10         | 1.02E-05          | 1.17E-05          | 1.14   |
| 03 | 25         | 1.02E-05          | 2.90E-05          | 2.83   |
| 04 | 40         | 1.02E-05          | 4.60E-05          | 4.49   |
| 05 | 55         | 1.02E-05          | 6.28E-05          | 6.13   |
| 06 | 70         | 1.02E-05          | 7.94E-05          | 7.75   |
| 07 | 85         | 1.02E-05          | 9.57E-05          | 9.34   |
| 08 | 100        | 1.02E-05          | 1.12E-04          | 10.91  |
| 09 | 130        | 1.02E-05          | 1.43E-04          | 13.98  |
| 10 | 160        | 1.02E-05          | 1.74E-04          | 16.97  |
| 11 | 190        | 1.02E-05          | 2.04E-04          | 19.87  |
| 12 | 220        | 1.02E-05          | 2.33E-04          | 22.70  |
| 13 | 250        | 1.02E-05          | 2.61E-04          | 25.45  |
| 14 | 300        | 1.02E-05          | 3.06E-04          | 29.88  |
| 15 | 400        | 1.02E-05          | 3.91E-04          | 38.18  |
| 16 | 500        | 1.02E-05          | 4.69E-04          | 45.81  |
| 17 | 700        | 1.02E-05          | 6.09E-04          | 59.39  |
| 18 | 900        | 1.02E-05          | 7.28E-04          | 71.09  |
| 19 | 1100       | 1.02E-05          | 8.33E-04          | 81.28  |

**Table S29.** Titration of 1c with  $NO_3^-$ . (Stock  $[NO_3^-] = 2.35 \text{ mM}$ ).



**Figure S29.** Binding isotherm for  $NO_3^-$  titration of **1c** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1c** (10.2  $\mu$ M) titrated with TBA  $NO_3^-$  (0-81 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1d</b> ] (M) | [Cl <sup>-</sup> ] (M) | Equiv. |
|----|------------|-------------------|------------------------|--------|
| 00 | 0          | 1.08E-05          | 0.00E+00               | 0.00   |
| 01 | 5          | 1.08E-05          | 6.13E-06               | 0.57   |
| 02 | 10         | 1.08E-05          | 1.22E-05               | 1.13   |
| 03 | 25         | 1.08E-05          | 3.03E-05               | 2.81   |
| 04 | 40         | 1.08E-05          | 4.82E-05               | 4.46   |
| 05 | 55         | 1.08E-05          | 6.58E-05               | 6.09   |
| 06 | 70         | 1.08E-05          | 8.31E-05               | 7.69   |
| 07 | 85         | 1.08E-05          | 1.00E-04               | 9.28   |
| 08 | 100        | 1.08E-05          | 1.17E-04               | 10.83  |
| 09 | 130        | 1.08E-05          | 1.50E-04               | 13.89  |
| 10 | 160        | 1.08E-05          | 1.82E-04               | 16.85  |
| 11 | 190        | 1.08E-05          | 2.13E-04               | 19.74  |
| 12 | 220        | 1.08E-05          | 2.44E-04               | 22.55  |
| 13 | 250        | 1.08E-05          | 2.73E-04               | 25.28  |
| 14 | 300        | 1.08E-05          | 3.21E-04               | 29.68  |
| 15 | 400        | 1.08E-05          | 4.10E-04               | 37.92  |
| 16 | 500        | 1.08E-05          | 4.92E-04               | 45.50  |
| 17 | 700        | 1.08E-05          | 6.37E-04               | 58.99  |
| 18 | 900        | 1.08E-05          | 7.63E-04               | 70.61  |
| 19 | 1100       | 1.08E-05          | 8.72E-04               | 80.73  |

**Table S30.** Titration of 1d with Cl<sup>-</sup>. (Stock  $[Cl^-] = 2.46 \text{ mM}$ ).



**Figure S30.** Binding isotherm for Cl<sup>-</sup> titration of 1d in CHCl<sub>3</sub> by UV-vis. Stacked spectra of 1d (10.8  $\mu$ M) titrated with TBA Cl<sup>-</sup> (0-81 equiv., increasing abs.) in CDCl<sub>3</sub>.

| Ouest (µL) |          |          | Lquiv. |
|------------|----------|----------|--------|
| 00 0       | 1.26E-05 | 0.00E+00 | 0.00   |
| 01 5       | 1.26E-05 | 5.96E-06 | 0.47   |
| 02 10      | 1.26E-05 | 1.19E-05 | 0.94   |
| 03 25      | 1.26E-05 | 2.95E-05 | 2.34   |
| 04 40      | 1.26E-05 | 4.68E-05 | 3.71   |
| 05 55      | 1.26E-05 | 6.39E-05 | 5.07   |
| 06 70      | 1.26E-05 | 8.08E-05 | 6.40   |
| 07 85      | 1.26E-05 | 9.74E-05 | 7.72   |
| 08 100     | 1.26E-05 | 1.14E-04 | 9.01   |
| 09 130     | 1.26E-05 | 1.46E-04 | 11.55  |
| 10 160     | 1.26E-05 | 1.77E-04 | 14.02  |
| 11 190     | 1.26E-05 | 2.07E-04 | 16.42  |
| 12 220     | 1.26E-05 | 2.37E-04 | 18.76  |
| 13 250     | 1.26E-05 | 2.65E-04 | 21.03  |
| 14 300     | 1.26E-05 | 3.12E-04 | 24.69  |
| 15 400     | 1.26E-05 | 3.98E-04 | 31.55  |
| 16 500     | 1.26E-05 | 4.78E-04 | 37.86  |
| 17 700     | 1.26E-05 | 6.19E-04 | 49.08  |
| 18 900     | 1.26E-05 | 7.42E-04 | 58.75  |
| 19 1100    | 1.26E-05 | 8.48E-04 | 67.18  |
| 20 1300    | 1.26E-05 | 9.41E-04 | 74.58  |

**Table S31.** Titration of 1d with  $Br^-$ . (Stock  $[Br^-] = 2.39 \text{ mM}$ ).



**Figure S31.** Binding isotherm for Br<sup>-</sup> titration of 1d in CHCl<sub>3</sub> by UV-vis. Stacked spectra of 1d (12.6  $\mu$ M) titrated with TBA Br<sup>-</sup> (0-75 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1d</b> ] (M) | $[NO_{3}^{-}](M)$ | Equiv. |
|----|------------|-------------------|-------------------|--------|
| 00 | 0          | 1.03E-05          | 0.00E+00          | 0.00   |
| 01 | 5          | 1.03E-05          | 5.86E-06          | 0.57   |
| 02 | 10         | 1.03E-05          | 1.17E-05          | 1.14   |
| 03 | 25         | 1.03E-05          | 2.90E-05          | 2.83   |
| 04 | 40         | 1.03E-05          | 4.60E-05          | 4.49   |
| 05 | 55         | 1.03E-05          | 6.29E-05          | 6.13   |
| 06 | 70         | 1.03E-05          | 7.94E-05          | 7.74   |
| 07 | 85         | 1.03E-05          | 9.57E-05          | 9.33   |
| 08 | 100        | 1.03E-05          | 1.12E-04          | 10.90  |
| 09 | 130        | 1.03E-05          | 1.43E-04          | 13.97  |
| 10 | 160        | 1.03E-05          | 1.74E-04          | 16.96  |
| 11 | 190        | 1.03E-05          | 2.04E-04          | 19.86  |
| 12 | 220        | 1.03E-05          | 2.33E-04          | 22.68  |
| 13 | 250        | 1.03E-05          | 2.61E-04          | 25.43  |
| 14 | 300        | 1.03E-05          | 3.06E-04          | 29.86  |
| 15 | 400        | 1.03E-05          | 3.91E-04          | 38.15  |
| 16 | 500        | 1.03E-05          | 4.70E-04          | 45.78  |
| 17 | 700        | 1.03E-05          | 6.09E-04          | 59.35  |
| 18 | 900        | 1.03E-05          | 7.29E-04          | 71.04  |
| 19 | 1100       | 1.03E-05          | 8.33E-04          | 81.22  |

**Table S32.** Titration of 1d with  $NO_3^-$ . (Stock  $[NO_3^-] = 2.35 \text{ mM}$ ).



**Figure S32.** Binding isotherm for  $NO_3^-$  titration of **1d** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1d** (10.3  $\mu$ M) titrated with TBA  $NO_3^-$  (0-81 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1e</b> ] (M) | $[Cl^{-}](M)$ | Equiv. |
|----|------------|-------------------|---------------|--------|
| 0  | 0          | 2.26E-05          | 0.00E+00      | 0.00   |
| 1  | 5          | 2.26E-05          | 1.27E-05      | 0.56   |
| 2  | 10         | 2.26E-05          | 2.54E-05      | 1.12   |
| 3  | 15         | 2.26E-05          | 3.80E-05      | 1.68   |
| 4  | 25         | 2.26E-05          | 6.31E-05      | 2.79   |
| 5  | 50         | 2.26E-05          | 1.25E-04      | 5.50   |
| 6  | 80         | 2.26E-05          | 1.97E-04      | 8.68   |
| 7  | 110        | 2.26E-05          | 2.66E-04      | 11.76  |
| 8  | 150        | 2.26E-05          | 3.56E-04      | 15.74  |
| 9  | 200        | 2.26E-05          | 4.64E-04      | 20.51  |
| 10 | 250        | 2.26E-05          | 5.68E-04      | 25.07  |
| 11 | 300        | 2.26E-05          | 6.66E-04      | 29.43  |
| 12 | 400        | 2.26E-05          | 8.52E-04      | 37.60  |
| 13 | 500        | 2.26E-05          | 1.02E-03      | 45.13  |
| 14 | 700        | 2.26E-05          | 1.32E-03      | 58.50  |
| 15 | 900        | 2.26E-05          | 1.59E-03      | 70.02  |
| 16 | 1300       | 2.26E-05          | 2.01E-03      | 88.88  |
| 17 | 1700       | 2.26E-05          | 2.35E-03      | 103.67 |

**Table S33.** Titration of **1e** with  $Cl^-$ . (Stock  $[Cl^-] = 5.11 \text{ mM}$ )



**Figure S33.** Binding isotherm for Cl<sup>-</sup> titration of **1e** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1e** (22.6  $\mu$ M) titrated with TBA Cl<sup>-</sup> (0-104 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1e</b> ] (M) | [Br <sup>-</sup> ] (M) | Equiv. |
|----|------------|-------------------|------------------------|--------|
| 0  | 0          | 2.28E-05          | 0.00E+00               | 0.00   |
| 1  | 5          | 2.28E-05          | 1.16E-05               | 0.51   |
| 2  | 20         | 2.28E-05          | 4.60E-05               | 2.02   |
| 3  | 30         | 2.28E-05          | 6.87E-05               | 3.01   |
| 4  | 50         | 2.28E-05          | 1.13E-04               | 4.97   |
| 5  | 70         | 2.28E-05          | 1.57E-04               | 6.89   |
| 6  | 90         | 2.28E-05          | 2.00E-04               | 8.77   |
| 7  | 110        | 2.28E-05          | 2.42E-04               | 10.62  |
| 8  | 130        | 2.28E-05          | 2.84E-04               | 12.44  |
| 9  | 150        | 2.28E-05          | 3.24E-04               | 14.22  |
| 10 | 190        | 2.28E-05          | 4.03E-04               | 17.68  |
| 11 | 230        | 2.28E-05          | 4.79E-04               | 21.02  |
| 12 | 270        | 2.28E-05          | 5.53E-04               | 24.24  |
| 13 | 310        | 2.28E-05          | 6.24E-04               | 27.35  |
| 14 | 360        | 2.28E-05          | 7.09E-04               | 31.08  |
| 15 | 410        | 2.28E-05          | 7.91E-04               | 34.67  |
| 16 | 510        | 2.28E-05          | 9.45E-04               | 41.40  |
| 17 | 710        | 2.28E-05          | 1.22E-03               | 53.39  |
| 18 | 910        | 2.28E-05          | 1.45E-03               | 63.72  |
| 19 | 1110       | 2.28E-05          | 1.66E-03               | 72.73  |

**Table S34.** Titration of **1e** with  $Br^-$ . (Stock  $[Br^-] = 4.65 \text{ mM}$ ).



**Figure S34.** Binding isotherm for Br<sup>-</sup> titration of **1e** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1e** (22.8  $\mu$ M) titrated with TBA Br<sup>-</sup> (0-72 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1e</b> ] (M) | $[NO_3^{-}](M)$ | Equiv. |
|----|------------|-------------------|-----------------|--------|
| 0  | 0          | 2.13E-05          | 0.00E+00        | 0.00   |
| 1  | 5          | 2.13E-05          | 1.26E-05        | 0.59   |
| 2  | 20         | 2.13E-05          | 5.00E-05        | 2.35   |
| 3  | 30         | 2.13E-05          | 7.47E-05        | 3.50   |
| 4  | 50         | 2.13E-05          | 1.23E-04        | 5.78   |
| 5  | 70         | 2.13E-05          | 1.71E-04        | 8.01   |
| 6  | 90         | 2.13E-05          | 2.18E-04        | 10.20  |
| 7  | 110        | 2.13E-05          | 2.63E-04        | 12.35  |
| 8  | 130        | 2.13E-05          | 3.08E-04        | 14.46  |
| 9  | 150        | 2.13E-05          | 3.52E-04        | 16.53  |
| 10 | 190        | 2.13E-05          | 4.38E-04        | 20.56  |
| 11 | 230        | 2.13E-05          | 5.21E-04        | 24.44  |
| 12 | 270        | 2.13E-05          | 6.01E-04        | 28.19  |
| 13 | 310        | 2.13E-05          | 6.78E-04        | 31.80  |
| 14 | 360        | 2.13E-05          | 7.71E-04        | 36.15  |
| 15 | 410        | 2.13E-05          | 8.59E-04        | 40.31  |
| 16 | 510        | 2.13E-05          | 1.03E-03        | 48.15  |
| 17 | 710        | 2.13E-05          | 1.32E-03        | 62.08  |
| 18 | 910        | 2.13E-05          | 1.58E-03        | 74.10  |
| 19 | 1110       | 2.13E-05          | 1.80E-03        | 84.58  |

**Table S35.** Titration of 1e with  $NO_3^-$ . (Stock  $[NO_3^-] = 5.05 \text{ mM}$ ).



**Figure S35.** Binding isotherm for  $NO_3^-$  titration of 1e in CHCl<sub>3</sub> by UV-vis. Stacked spectra of 1e (21.3  $\mu$ M) titrated with TBA  $NO_3^-$  (0-85 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1f</b> ] (M) | [Cl–] (M) | Equiv. |
|----|------------|-------------------|-----------|--------|
| 00 | 0          | 1.03E-05          | 0.00E+00  | 0.00   |
| 01 | 5          | 1.03E-05          | 6.01E-06  | 0.58   |
| 02 | 10         | 1.03E-05          | 1.20E-05  | 1.16   |
| 03 | 25         | 1.03E-05          | 2.97E-05  | 2.88   |
| 04 | 40         | 1.03E-05          | 4.72E-05  | 4.57   |
| 05 | 55         | 1.03E-05          | 6.45E-05  | 6.24   |
| 06 | 70         | 1.03E-05          | 8.15E-05  | 7.88   |
| 07 | 85         | 1.03E-05          | 9.82E-05  | 9.50   |
| 08 | 100        | 1.03E-05          | 1.15E-04  | 11.10  |
| 09 | 130        | 1.03E-05          | 1.47E-04  | 14.23  |
| 10 | 160        | 1.03E-05          | 1.78E-04  | 17.27  |
| 11 | 190        | 1.03E-05          | 2.09E-04  | 20.23  |
| 12 | 220        | 1.03E-05          | 2.39E-04  | 23.10  |
| 13 | 250        | 1.03E-05          | 2.68E-04  | 25.90  |
| 14 | 300        | 1.03E-05          | 3.14E-04  | 30.41  |
| 15 | 400        | 1.03E-05          | 4.02E-04  | 38.85  |
| 16 | 500        | 1.03E-05          | 4.82E-04  | 46.62  |
| 17 | 700        | 1.03E-05          | 6.25E-04  | 60.44  |
| 18 | 900        | 1.03E-05          | 7.48E-04  | 72.35  |
| 19 | 1100       | 1.03E-05          | 8.55E-04  | 82.72  |
|    |            |                   |           |        |

**Table S36.** Titration of **1f** with  $Cl^-$ . (Stock  $[Cl^-] = 2.41 \text{ mM}$ )



**Figure S36.** Binding isotherm for Cl<sup>-</sup> titration of **1f** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1f** (10.34  $\mu$ M) titrated with TBA Cl<sup>-</sup> (0-83 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1f</b> ] (M) | [Br–] (M)         | Equiv. |
|----|------------|-------------------|-------------------|--------|
| 00 | 0          | 1.05E-05          | 0.00E+00          | 0.00   |
| 01 | 5          | 1.05E-05          | 2.79E-05          | 2.65   |
| 02 | 10         | 1.05E-05          | 5.57E-05          | 5.29   |
| 03 | 25         | 1.05E-05          | 1.38E-04          | 13.12  |
| 04 | 40         | 1.05E-05          | 2.19E-04          | 20.84  |
| 05 | 55         | 1.05E-05          | 3.00E-04          | 28.44  |
| 06 | 70         | 1.05E-05          | 3.78E-04          | 35.94  |
| 07 | 85         | 1.05E-05          | 4.56E-04          | 43.33  |
| 08 | 100        | 1.05E-05          | 5.33E-04          | 50.61  |
| 09 | 130        | 1.05E-05          | 6.83E-04          | 64.87  |
| 10 | 160        | 1.05E-05          | 8.29E-04          | 78.73  |
| 11 | 190        | 1.05E-05          | 9.71E-04          | 92.21  |
| 12 | 220        | 1.05E-05          | 1.11E <b>-</b> 03 | 105.32 |
| 13 | 250        | 1.05E-05          | 1.24E-03          | 118.09 |
| 14 | 300        | 1.05E-05          | 1.46E-03          | 138.62 |
| 15 | 350        | 1.05E-05          | 1.67E-03          | 158.29 |
| 16 | 400        | 1.05E-05          | 1.87E-03          | 177.13 |
| 17 | 500        | 1.05E-05          | 2.24E-03          | 212.56 |
| 18 | 600        | 1.05E-05          | 2.58E-03          | 245.26 |
| 19 | 800        | 1.05E-05          | 3.20E-03          | 303.65 |
| 20 | 1000       | 1.05E-05          | 3.73E-03          | 354.26 |
| 21 | 1200       | 1.05E-05          | 4.20E-03          | 398.55 |
| 22 | 1400       | 1.05E-05          | 4.61E-03          | 437.62 |
| 23 | 1600       | 1.05E-05          | 4.97E-03          | 472.35 |

**Table S37.** Titration of **1f** with Br<sup>-</sup>. (Stock [Br<sup>-</sup>] = 11.19 mM).



**Figure S37.** Binding isotherm for Br<sup>-</sup> titration of **1f** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1f** (10.53  $\mu$ M) titrated with TBA Br<sup>-</sup> (0-472 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1f</b> ] (M) | $[NO_3^{-}](M)$ | Equiv. |
|----|------------|-------------------|-----------------|--------|
| 00 | 0          | 1.01E-05          | 0.00E+00        | 0.00   |
| 01 | 5          | 1.01E-05          | 5.69E-06        | 0.56   |
| 02 | 10         | 1.01E-05          | 1.14E-05        | 1.13   |
| 03 | 25         | 1.01E-05          | 2.82E-05        | 2.79   |
| 04 | 40         | 1.01E-05          | 4.48E-05        | 4.44   |
| 05 | 55         | 1.01E-05          | 6.11E-05        | 6.05   |
| 06 | 70         | 1.01E-05          | 7.72E-05        | 7.65   |
| 07 | 85         | 1.01E-05          | 9.31E-05        | 9.22   |
| 08 | 100        | 1.01E-05          | 1.09E-04        | 10.77  |
| 09 | 130        | 1.01E-05          | 1.39E-04        | 13.81  |
| 10 | 160        | 1.01E-05          | 1.69E-04        | 16.76  |
| 11 | 190        | 1.01E-05          | 1.98E-04        | 19.63  |
| 12 | 220        | 1.01E-05          | 2.26E-04        | 22.42  |
| 13 | 250        | 1.01E-05          | 2.54E-04        | 25.14  |
| 14 | 300        | 1.01E-05          | 2.98E-04        | 29.51  |
| 15 | 400        | 1.01E-05          | 3.81E-04        | 37.70  |
| 16 | 500        | 1.01E-05          | 4.57E-04        | 45.24  |
| 17 | 700        | 1.01E-05          | 5.92E-04        | 58.65  |
| 18 | 900        | 1.01E-05          | 7.09E-04        | 70.21  |
| 19 | 1100       | 1.01E-05          | 8.10E-04        | 80.27  |

**Table S38.** Titration of **1f** with  $NO_3^-$ . (Stock [Br<sup>-</sup>] = 2.28 mM).



**Figure S38.** Binding isotherm for  $NO_3^-$  titration of **1f** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1f** (10.1  $\mu$ M) titrated with TBA  $NO_3^-$  (0-80 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1g</b> ] (M) | $[Cl^{-}](M)$ | Equiv. |
|----|------------|-------------------|---------------|--------|
| 0  | 0          | 3.94E-05          | 0.00E+00      | 0.00   |
| 1  | 5          | 3.94E-05          | 2.46E-05      | 0.63   |
| 2  | 10         | 3.94E-05          | 4.91E-05      | 1.25   |
| 3  | 20         | 3.94E-05          | 9.77E-05      | 2.48   |
| 4  | 30         | 3.94E-05          | 1.46E-04      | 3.70   |
| 5  | 50         | 3.94E-05          | 2.41E-04      | 6.11   |
| 6  | 70         | 3.94E-05          | 3.34E-04      | 8.48   |
| 7  | 90         | 3.94E-05          | 4.25E-04      | 10.80  |
| 8  | 110        | 3.94E-05          | 5.15E-04      | 13.07  |
| 9  | 130        | 3.94E-05          | 6.02E-04      | 15.30  |
| 10 | 150        | 3.94E-05          | 6.89E-04      | 17.49  |
| 11 | 190        | 3.94E-05          | 8.56E-04      | 21.75  |
| 12 | 230        | 3.94E-05          | 1.02E-03      | 25.86  |
| 13 | 270        | 3.94E-05          | 1.17E-03      | 29.82  |
| 14 | 310        | 3.94E-05          | 1.32E-03      | 33.64  |
| 15 | 360        | 3.94E-05          | 1.51E-03      | 38.24  |
| 16 | 410        | 3.94E-05          | 1.68E-03      | 42.65  |
| 17 | 510        | 3.94E-05          | 2.01E-03      | 50.94  |
| 18 | 710        | 3.94E-05          | 2.59E-03      | 65.68  |
| 19 | 910        | 3.94E-05          | 3.09E-03      | 78.40  |

**Table S39.** Titration of 1g with Cl<sup>-</sup>. (Stock  $[Cl^-] = 9.87 \text{ mM}$ ).



**Figure S39.** Binding isotherm for Cl<sup>-</sup> titration of **1g** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1g** (39.4  $\mu$ M) titrated with TBA Cl<sup>-</sup> (0-78 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1g</b> ] (M) | $[Br^{-}](M)$ | Equiv. |
|----|------------|-------------------|---------------|--------|
| 0  | 0          | 3.22E-05          | 0.00E+00      | 0.00   |
| 1  | 5          | 3.22E-05          | 1.84E-05      | 0.57   |
| 2  | 20         | 3.22E-05          | 7.32E-05      | 2.28   |
| 3  | 30         | 3.22E-05          | 1.09E-04      | 3.40   |
| 4  | 50         | 3.22E-05          | 1.80E-04      | 5.60   |
| 5  | 70         | 3.22E-05          | 2.50E-04      | 7.77   |
| 6  | 90         | 3.22E-05          | 3.18E-04      | 9.90   |
| 7  | 110        | 3.22E-05          | 3.85E-04      | 11.98  |
| 8  | 130        | 3.22E-05          | 4.51E-04      | 14.02  |
| 9  | 150        | 3.22E-05          | 5.15E-04      | 16.03  |
| 10 | 190        | 3.22E-05          | 6.41E-04      | 19.94  |
| 11 | 230        | 3.22E-05          | 7.62E-04      | 23.70  |
| 12 | 270        | 3.22E-05          | 8.79E-04      | 27.33  |
| 13 | 310        | 3.22E-05          | 9.92E-04      | 30.84  |
| 14 | 360        | 3.22E-05          | 1.13E-03      | 35.05  |
| 15 | 410        | 3.22E-05          | 1.26E-03      | 39.09  |
| 16 | 510        | 3.22E-05          | 1.50E-03      | 46.69  |
| 17 | 710        | 3.22E-05          | 1.94E-03      | 60.20  |
| 18 | 910        | 3.22E-05          | 2.31E-03      | 71.86  |
| 19 | 1110       | 3.22E-05          | 2.64E-03      | 82.02  |

**Table S40.** Titration of 1g with  $Br^-$ . (Stock  $[Br^-] = 7.39 \text{ mM}$ ).



**Figure S40.** Binding isotherm for Br<sup>-</sup> titration of **1g** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1g** (32.2  $\mu$ M) titrated with TBA Br<sup>-</sup> (0-82 equiv., increasing abs.) in CDCl<sub>3</sub>.

|    | Guest (µL) | [ <b>1g</b> ] (M) | $[NO_{3}^{-}](M)$ | Equiv. |
|----|------------|-------------------|-------------------|--------|
| 0  | 0          | 3.56E-05          | 0.00E+00          | 0.00   |
| 1  | 5          | 3.56E-05          | 1.97E-05          | 0.55   |
| 2  | 20         | 3.56E-05          | 7.83E-05          | 2.20   |
| 3  | 30         | 3.56E-05          | 1.17E-04          | 3.28   |
| 4  | 50         | 3.56E-05          | 1.93E-04          | 5.41   |
| 5  | 70         | 3.56E-05          | 2.67E-04          | 7.51   |
| 6  | 90         | 3.56E-05          | 3.40E-04          | 9.56   |
| 7  | 110        | 3.56E-05          | 4.12E-04          | 11.57  |
| 8  | 130        | 3.56E-05          | 4.83E-04          | 13.55  |
| 9  | 150        | 3.56E-05          | 5.52E-04          | 15.49  |
| 10 | 190        | 3.56E-05          | 6.86E-04          | 19.26  |
| 11 | 230        | 3.56E-05          | 8.15E-04          | 22.89  |
| 12 | 270        | 3.56E-05          | 9.40E-04          | 26.40  |
| 13 | 310        | 3.56E-05          | 1.06E-03          | 29.79  |
| 14 | 360        | 3.56E-05          | 1.21E-03          | 33.86  |
| 15 | 410        | 3.56E-05          | 1.35E-03          | 37.76  |
| 16 | 510        | 3.56E-05          | 1.61E-03          | 45.10  |
| 17 | 710        | 3.56E-05          | 2.07E-03          | 58.16  |
| 18 | 910        | 3.56E-05          | 2.47E-03          | 69.42  |
| 19 | 1110       | 3.56E-05          | 2.82E-03          | 79.23  |

**Table S41.** Titration of **1g** with  $NO_3^-$ . (Stock  $[NO_3^-] = 7.91 \text{ mM}$ )



**Figure S41.** Binding isotherm for  $NO_3^-$  titration of **1g** in CHCl<sub>3</sub> by UV-vis. Stacked spectra of **1g** (35.6  $\mu$ M) titrated with TBA  $NO_3^-$  (0-79 equiv., increasing abs.) in CDCl<sub>3</sub>.

## **Job Plots**

UV-Vis Job Plot Conditions. UV-Vis Job plots were carried out on an HP 8453 UV-Vis spectrometer. Water-saturated CHCl<sub>3</sub> was prepared in the same manner as for <sup>1</sup>H data. Job plots were obtained by  $\Delta\lambda_{max}$  of the anion-bound complex highest peak. Hamilton gas-tight syringes were used during serial dilutions and titrations.

**Tetrabutylammonium nitrate with 1b.** A stock solution of **1b** was prepared using serial dilution to a final volume of 5 mL (1.32 mg,  $[1b] = 77.76 \ \mu\text{M}$ ). A 5 mL solution of TBANO<sub>3</sub> (6.41 mg, 77.69  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S42. Job plot of 1b with NO<sub>3</sub><sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium chloride with 1c.** A stock solution of **1c** was prepared using serial dilution to a final volume of 5 mL (1.23 mg,  $[1c] = 75.11 \ \mu\text{M}$ ). A 5 mL solution of TBACl (15.18 mg, 75.10  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S43. Job plot of 1c with Cl<sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium bromide with 1c.** A stock solution of **1c** was prepared using serial dilution to a final volume of 5 mL (1.25 mg,  $[1c] = 48.95 \mu$ M). A 5 mL solution of TBABr (8.96 mg, 48.85  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S44. Job plot of 1c with Br<sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium nitrate with 1c.** A stock solution of **1c** was prepared using serial dilution to a final volume of 5 mL (1.36 mg,  $[1c] = 72.21 \ \mu\text{M}$ ). A 5 mL solution of TBANO<sub>3</sub> (7.72 mg, 72.26  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S45. Job plot of 1c with NO<sub>3</sub><sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium chloride with 1d.** A stock solution of **1d** was prepared using serial dilution to a final volume of 5 mL (1.55 mg,  $[1d] = 71.52 \mu$ M). A 5 mL solution of TBACl (10.60 mg, 71.51  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S46. Job plot of 1d with Cl<sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium bromide with 1d.** A stock solution of **1d** was prepared using serial dilution to a final volume of 5 mL (1.18 mg,  $[1d] = 71.26 \ \mu\text{M}$ ). A 5 mL solution of TBABr (10.07 mg, 71.22  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S47. Job plot of 1d with Br<sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium nitrate with 1d.** A stock solution of **1d** was prepared using serial dilution to a final volume of 5 mL (1.65 mg,  $[1d] = 70.53 \ \mu\text{M}$ ). A 5 mL solution of TBANO<sub>3</sub> (5.83 mg, 70.56  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S48. Job plot of 1d with NO<sub>3</sub><sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium chloride with 1f.** A stock solution of **1f** was prepared using serial dilution to a final volume of 5 mL (1.85 mg,  $[1f] = 69.17 \mu$ M). A 5 mL solution of TBACl (18.54 mg, 69.16  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S49. Job plot of 1f with Cl<sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium bromide with 1f.** A stock solution of **1f** was prepared using serial dilution to a final volume of 5 mL (1,76 mg,  $[1f] = 70.50 \ \mu\text{M}$ ). A 5 mL solution of TBABr (29.32 mg, 70.49  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S50. Job plot of 1f with Br<sup>-</sup> in water-saturated CHCl<sub>3</sub>.

**Tetrabutylammonium nitrate with 1f.** A stock solution of **1f** was prepared using serial dilution to a final volume of 5 mL (2.12 mg,  $[1f] = 70.77 \ \mu$ M). A 5 mL solution of TBANO<sub>3</sub> (6.47 mg, 70.75  $\mu$ M) was prepared by serial dilution. The volume in the cuvette was 2.0 mL.



Figure S51. Job plot of 1f with NO<sub>3</sub><sup>-</sup> in water-saturated CHCl<sub>3</sub>.





**Figure S52.** Hammett plots of the ESP for the C-H hydrogen bond donor in **6a-g**. ESP fit with  $\sigma_p$  ( $\rho = 0.243$ , i = 0.026) is superior to  $\sigma_m$  ( $\rho = 0.372$ , i = -0.050).

|                    |        |        |       |             |       |       | ]           | ESP values |             |                               |
|--------------------|--------|--------|-------|-------------|-------|-------|-------------|------------|-------------|-------------------------------|
| Х                  | H (CH) | C (CH) | $H_1$ | $N_1^{\ a}$ | Н2    | $H_3$ | $N_2^{\ b}$ | С–Н        | $N-H_2^{c}$ | N-H <sub>3</sub> <sup>c</sup> |
| N(Me) <sub>2</sub> | 0.168  | -0.362 | 0.388 | -0.596      | 0.382 | 0.418 | -0.789      | 36.3       | 55.9        | 47.5                          |
| t-Bu               | 0.174  | -0.321 | 0.386 | -0.605      | 0.381 | 0.416 | -0.779      | 39.2       | 57.0        | 48.6                          |
| Н                  | 0.175  | -0.273 | 0.387 | -0.613      | 0.381 | 0.417 | -0.775      | 39.2       | 57.8        | 50.1                          |
| F                  | 0.177  | -0.279 | 0.387 | -0.613      | 0.381 | 0.418 | -0.774      | 43.1       | 59.5        | 51.6                          |
| NO3                | 0.186  | -0.250 | 0.385 | -0.608      | 0.381 | 0.417 | -0.775      | 48.6       | 62.6        | 53.6                          |

Table S42. Mulliken atomic charge and ESP values for 5a-g.

\*Mulliken charges are given as a fraction of one electronic charge. ESP values are reported here in kcal/mol. <sup>a</sup>Areneethynyl attached nitrogen. <sup>b</sup>Terminal nitrogen. <sup>c</sup>Hydrogens on terminal nitrogen.

**Table S43.** Coefficients and Fitting Statistics for Mulliken charges and ESP of 5a-g with  $\sigma_p$ .

|        |        | ρ                   | i                   | Ν | R <sup>2</sup> | F    |
|--------|--------|---------------------|---------------------|---|----------------|------|
| Charge | C (CH) | -0.104(±0.021)      | 0.029(±0.011)       | 5 | 0.90           | 25.7 |
|        | N1     | $-0.008(\pm 0.005)$ | $-0.607(\pm 0.003)$ | 5 | 0.43           | 2.3  |
|        | N2     | $0.005(\pm 0.002)$  | 0.002(±0.001)       | 5 | 0.68           | 6.3  |
| ESP    | С-Н    | $0.080(\pm 0.015)$  | $0.023(\pm 0.008)$  | 5 | 0.90           | 28   |
|        | N-H2   | $0.032(\pm 0.006)$  | $0.007(\pm 0.003)$  | 5 | 0.91           | 29   |
|        | N-H3   | 0.034(±0.006)       | 0.002(±0.003)       | 7 | 0.91           | 29   |

**Table S44.** Coefficients and Fitting Statistics for Hammett Plots of  $\sigma_+$  and  $\sigma_-$ .

| K <sub>a</sub> (X <sup>-</sup> )  | ρ                | i                 | Ν | $\mathbf{R}^2$ | F  |
|-----------------------------------|------------------|-------------------|---|----------------|----|
| Cl <sup>-</sup> (σ <sub>+</sub> ) | 0.35(±0.07)      | 0.08(±0.06)       | 7 | 0.83           | 24 |
| $Br^{-}(\sigma_{+})$              | $0.34(\pm 0.07)$ | 0.14(±0.05)       | 7 | 0.84           | 26 |
| Ι- (σ+)                           | 0.27(±0.07)      | 0.21(±0.06)       | 7 | 0.73           | 14 |
| $NO_3^{-}(\sigma_+)$              | $0.30(\pm 0.06)$ | 0.15(±0.05)       | 7 | 0.81           | 21 |
| Cl <sup>-</sup> (σ.)              | 0.52(±0.11)      | $-0.08(\pm 0.05)$ | 7 | 0.83           | 24 |
| Br- (σ.)                          | 0.49(±0.12)      | $-0.02(\pm 0.06)$ | 7 | 0.77           | 17 |
| Ι- (σ.)                           | $0.41(\pm 0.10)$ | $-0.08(\pm 0.05)$ | 7 | 0.77           | 16 |
| NO <sub>3</sub> <sup>-</sup> (σ.) | $0.41(\pm 0.12)$ | $-0.02(\pm 0.06)$ | 7 | 0.71           | 13 |

## Part V. References

 (a) Carroll, C. N.; Berryman, O. B.; Johnson II, C. A.; Zakharov, L. N.; Haley, M. M.; Johnson, D. W. *Chem. Commun.* **2009**, 25202522; (b) Kimball, D. B.; Weakley, T. J. R.; Haley, M. M. *J. Org. Chem.* **2002**, *67*, 6395–6405.

2. Chanteau, S. H.; Tour, J. M. J. Org. Chem. 2003, 68, 8750-8766.

3. (a) Haley, M. M.; Wan, W. B. J. Org. Chem. 2001, 66, 3893–3901; (b) Probst, G. D.; Bowers,
S.; Sealy, J. M.; Stupi, B.; Dressen, D.; Jagodzinska, B. M.; Aquino, J.; Gailunas, A.; Truong, A.
P.; Tso, L.; Xu, Y.-Z.; Hom, R. K.; John, V.; Tung, J. S.; Pleiss, M. A.; Tucker, J. A.; Konradi,
A. W.; Sham, H. L.; Jagodzinski, J.; Toth, G.; Brecht, E.; Yao, N.; Pan, H.; Lin, M.; Artis, D. R.;
Ruslim, L.; Bova, M. P.; Sinha, S.; Yednock, T. A.; Gauby, S.; Zmolek, W.; Quinn, K. P.; Sauer,
J.-M. *Bioorg. Med. Chem. Lett.* 2010, 20, 6034–6039.

4. (a) Lee, G. W.; Kim, N.-K.; Jeong, K.-S. Org. Lett. **2010**, *12*, 2634-2637; (b) Görl, C.; Beck, N.; Kleiber, K.; Alt, H. G. J. Mol. Catal. A: Chem. **2012**, *352*, 110–127.

5. Sheldrick, G. M. Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI, 1998.

6. SHELXTL-6.10 "Program for Structure Solution, Refinement and Presentation" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.

7. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.

8. Tresca, B. W.; Zakharov, L. N.; Carroll, C. N.; Johnson, D. W.; Haley, M. M. Chem. Commun. 2013, 49, 7240–7242.

9. Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305–1323.

10. Gans, P.; Sabatini, A. Vacca, A. Talanta 1996, 43, 1739-1753.

Part VI: NMR Spectra



Figure S54. <sup>13</sup>C NMR spectrum of 2a in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S55. <sup>1</sup>H NMR spectrum of **2b** in DMSO-*d6*.





Figure S58. <sup>13</sup>C NMR spectrum of 2c in DMSO- $d_6$ .















S68









Figure S72. <sup>13</sup>C NMR spectrum of 1c in DMSO- $d_6$ .





Figure S74. <sup>13</sup>C NMR spectrum of 1d in DMSO- $d_6$ .










